绝对值、平均值练习题及答案
绝对值和平均值
绝对值和平均值(一) 绝对值1. 绝对值的定义:,,0a a o a a a ≥⎧=⎨-<⎩ , 2.a a =2. 几何意义:实数a 的绝对值就是数轴上与a 对应的点到原点的距离。
3. 绝对值的主要性质:(1)0;a ≥(2);a a =-(3)a b a b +≤+;等号成立的条件为0;ab ≥(4)a b a b -≤+;等号成立的条件为0.ab ≤4.非负数:(1)0;a ≥(2)20;a ≥(3)若a 有意义,则0a ≥且0.a ≥【真题分析】例1(2003)不等式24x x s -+-<无解(1)s 2≤ (2)s >2例2(2003)可以确定x y2x-y +=(1)x 3y = (2)x 1y 3= 例3(2004) x ,y 是实数,x y x y +=-(1)x>0, y<0 (2)x<0, y>0例4(2004)2a b a b =-(1)a<0, b>0 (2) a>0, b<0例5(2005)实数a ,b 满足a a+b a b +()>a(1)a<0 (2) b>—a例6(2006)b a c b c a -+--=(1) 实数a ,b ,c 在数轴上的位置为例7 (2008)方程x 1x 2++=无根(1)()x 1∈-∞-, (2)()x 10∈-,例8 (2008)f (x )有最小值2(1)()511212f x x x =-+- (2)()24f x x x =-+-例9(2008)1b c c a a b a b c+++++= (1) 实数a ,b ,c 满足a+b+c=0(2) 实数a ,b ,c 满足abc>0例10(2001)已知a 5b 70,a b ab ==<-=,,则 ( )(A) 2 (B) —2 (C )12 (D) —12例11(2001)已知32x 2x x 2x +=-⋅+,则x 的取值范围是 ( )(A )x<0 (B)x 2≥- (C)2x 0-≤≤ (D)20x -<<例12(2003) 已知5x 335x 2x 52x 5--=++,则实数x 的取值范围为( ) 5325A x x <-≥()或 53()25B x -≤≤ (C )5325x -<≤ 35x <52D -≤()例13(2008) 设y x-2x 2=++,则下列结论正确的是( )(A )y 没有最小值 (B )只有一个x 使y 取到最小值(C )有无穷多个x 使y 取到最大值 (D )有无穷多个x 使y 取到最小值 (E )以上结论均不正确。
绝对值专题训练及答案
绝对值专题训练及答案1.如果|a|=﹣a,那么a的取值范围是()A .a>0 B.a<0 C.a≤0 D.a≥02.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个3.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a6.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣27.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或18.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|10.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.13.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.14.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a| 15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A a>0B a≥0C a<0 D自然数....24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3 C.﹣3 D.0﹣330.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57. 下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数58.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.59.若ab<0,试化简++.60.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.参考答案:1.因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.2.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5 A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.6.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.7.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9. 依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.10.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.13.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b14.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29. ∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.58.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160. ∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.。
七年级数学-绝对值练习及答案
七年级数学-绝对值练习要点感知1 一般地,数轴上表示数a的点与原点的距离叫做数a的,记作,读作a的绝对值.预习练习1-1 数轴上一个点到原点的距离为5,则这个点所表示的数的绝对值为.要点感知2一个正数的绝对值是;一个负数的绝对值是;0的绝对值是.预习练习2-1 (云南中考)计算:|-17|=( )A.-17B.17C.-7 D.72-2(六盘水中考)绝对值最小的数是.知识点1 绝对值的意义1.(1)-3到原点的距离是3,所以|-3|=;(2)0到原点的距离是0,所以|0|=;(3)|-4|是数轴上表示的点到原点的距离.2.在数轴上,绝对值为14,且在原点左边的点表示的数为 .3.|2 015|的意义是数轴上表示______的点与原点的距离.4.(丽水中考)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.-2 C.0 D.4知识点2 绝对值的计算5.(西双版纳中考)-2 013绝对值是( )A.2 013 B.-2 013 C.12 013D.-12 0136.(梧州中考)|6|=( )A.6 B.7 C.8 D.107.下列说法中,错误的是( )A.-12的绝对值是12B.绝对值等于12的数只有12C.+12的绝对值等于12D.+12、-12的绝对值相等8.若a与1互为相反数,则|a+2|等于( )A.2 B.-2 C.1 D.-19.在有理数中,绝对值等于它本身的数有( )A.一个 B.两个 C.三个 D.无数个10.计算:|-3.7|=,-(-3.7)=,-|-3.7|=,-|+3.7|=.11.求下列各数的绝对值:(1)+813;(2)-7.2; (3)0;(4)-813.知识点3 绝对值的性质12.(1)①正数:|+5|=,|12|=;②负数:|-7|=,|-15|=;③零:|0|=;(2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是,即|a| 0.13.因为互为相反数的两个数到原点的距离相等,所以到原点的距离为2 013的点有个,分别是,即绝对值等于2 013的数是.14.若|a|+|b|=0,则a=,b=.15.(昭通中考)-4的绝对值是( )A.14B.-14C.4 D.-416.下列说法中正确的是( )A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等17.(黔西南中考)|-3|的相反数是( )A.3 B.-3 C.±3 D.3118.如果-a的相反数是最小的正整数,b是绝对值最小的数,那么a+b=.19.绝对值小于6的整数有个,它们分别是;绝对值大于3且小于6的整数是.20.若|x|=|-2|,则x=;若|m|=13,且m<0,则m=.21.若|a|=a,则a 0;若|a|=-a,则a 0.22.当x=时,|x|+5取最小值,这个最小值是;当a=时,36-|a -2|取最大值,这个值为.23.写出下列各数的绝对值:-1,23,-34,0,-325,15.24.化简:(1)-|-3|; (2)-|-(-7.5)|; (3)+|-(+7)|. 25.计算:(1)|-7.25|×|-4|+|-32|÷|-8|;(2)(312-|-12|+0.5)×|-6|.挑战自我26.(1)已知|a|=5,|b|=3,且a>0,b>0,求a+b的值;(2)已知|a-2|+|b-3|+|c-4|=0,求式子a+b+c的值.参考答案要点感知1 绝对值, |a|.预习练习1-1 5.要点感知2它本身;它的相反数; 0.预习练习2-1 B2-2 0.1.(1) 3;(2) 0;(3) -4 .2.-14. 3. 2 015.4.B 5.A 6.A 7.B 8.C 9.D 10. 3.7, 3.7,-3.7,-3.7.11.求下列各数的绝对值:(1) |813|=813.(2) |-7.2|=-(-7.2)=7.2.(3) |0|=0.(4) |-813|=-(-813)=813.12.(1)①5,12;②7,15;③0;(2)非负数,≥.13.两,2_013和-2_013,±2_013.14.0,0.15.C 16.D 17.B 18. 1. 19. 11个, ±5,±4,±3,±2,±1,0; ±5,±4.20. ±2; -13. 21. ≥ ; ≤. 22. 0 , 5; 2 , 36. 23. 各数的绝对值分别为:1,23,34,0,325,15. 24. (1) 原式=-3.(2) 原式=-|7.5|=-7.5.(3) 原式=+|-7|=7.25. (1) 原式=7.25×4+32÷8=29+4 =33.(2) 原式=(312-12+0.5)×6 =3.5×6=21.挑战自我26. 因为|a|=5,|b|=3,且a>0,b>0,所以a =5,b =3.所以a +b =5+3=8.(2) 因为|a -2|+|b -3|+|c -4|=0,所以a -2=0,b -3=0,c -4=0.所以a =2,b =3,c =4,所以a +b +c =2+3+4=9.。
绝对值习题及答案
例1求下列各数的绝对值:<1>-38;<2>0.15;<3>a<a<0>;<4>3b<b>0>;<5>a-2<a<2>;<6>a-b.分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,<6>题没有给出a与b的大小关系,所以要进行分类讨论.解:<1>|-38|=38;<2>|+0.15|=0.15;<3>∵a<0,∴|a|=-a;<4>∵b>0,∴3b>0,|3b|=3b;<5>∵a<2,∴a-2<0,|a-2|=-<a-2>=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数<用含字母的式子表示时>无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.例2判断下列各式是否正确<正确入"T〞,错误入"F〞>:<1>|-a|=|a|;< ><2>-|a|=|-a|;< ><4>若|a|=|b|,则a=b;< ><5>若a=b,则|a|=|b|;< ><6>若|a|>|b|,则a>b;< ><7>若a>b,则|a|>|b|;< ><8>若a>b,则|b-a|=a-b.< >分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数<或证明>一个结论是错误的,只要能举出反例即可.如第<2>小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第<6>小题中取a=-1,b=0,在第<4>、<7>小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第<3>小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第<1>、< 5>、<8>小题要注意字母取零的情况.解:其中第<2>、<4>、<6>、<7>小题不正确,<1>、<3>、<5>、<8>小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规X.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.例3判断对错.<对的入"T〞,错的入"F〞><1>如果一个数的相反数是它本身,那么这个数是0.< ><2>如果一个数的倒数是它本身,那么这个数是1和0.< ><3>如果一个数的绝对值是它本身,那么这个数是0或1.< ><4>如果说"一个数的绝对值是负数〞,那么这句话是错的.< ><5>如果一个数的绝对值是它的相反数,那么这个数是负数.< >解:<1>T.<2>F.-1的倒数也是它本身,0没有倒数.<3>F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0.<4>T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的.<5>F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点:<1>必须"紧扣〞概念进行判断;<2>要注意检查特殊数,如0,1,-1等是否符合题意.例4 已知<a-1>2+|b+3|=0,求a、b.分析:根据平方数与绝对值的性质,式中<a-1>2与|b+3|都是非负数.因为两个非负数的和为"0〞,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.解:∵<a-1>2≥0,|b+3|≥0,又<a-1>2+|b+3|=0∴a-1=0且b+3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.例5填空:<1>若|a|=6,则a=______;<2>若|-b|=0.87,则b=______;<4>若x+|x|=0,则x是______数.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.解:<1>∵|a|=6,∴a=±6;<2>∵|-b|=0.87,∴b=±0.87;<4>∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:"绝对值〞是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:<家教4.0,复习辅导"有理数〞例3 2结<1>—<4>>例6 判断对错:<对的入"T〞,错的入"F〞><1>没有最大的自然数.< ><2>有最小的偶数0.< ><3>没有最小的正有理数.< ><4>没有最小的正整数.< ><5>有最大的负有理数.< ><6>有最大的负整数-1.< ><7>没有最小的有理数.< ><8>有绝对值最小的有理数.< >解:<1>T.<2>F.数的X围扩展后,偶数的X围也随之扩展.偶数包含正偶数,0,负偶数<-2,-4,…>,所以0不是最小的偶数,偶数没有最小的.<3>T.<4>F.有最小的正整数1.<5>F.没有最大的负有理数.<6>T.<7>T.<8>T.绝对值最小的有理数是0.例7 比较下列每组数的大小,在横线上填上适当的关系符号<"<〞"=〞">〞><1>|-0.01|______-|100|;<2>-<-3>______-|-3|;<3>-[-<-90>]_______0;<6>当a<3时,a-3______0;|3-a|______a-3.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较.解:<1>|-0.01|>-|100|;<2>-<-3>>-|-3|;<3>-[-<-90>]<0;<6>当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.例8 比较大小:分析:比较两个负分数的大小,按法则,先要求出它们的绝对值,并比较绝对值的大小.<1>这两个数的绝对值是两个异分母的正分数,要比较它们的大小,需通分;<2>用<1>的方法比较这两个负数绝对值的大小是非常麻烦的,此法不可取.通过比较它们的倒数,可以快捷的达到目的.说明:两个有理数比较大小,当它们都是负数时,必须通过比较绝对值的大小来确定它们的大小.<1>一定要注意,因为是两个负数,所以它们的绝对值越大,对应点在数轴的左边离原点的距离就越远,因此它的值就越小.<2>比较两个异分母正分数的大小时,如果通分很麻烦,可以考虑通过比较它们倒数大小的方法间接达到目的.理论依据例9 在数轴上画出下列各题中x的X围:<1>|x|≥4;<2>|x|<3;<3>2<|x|≤5.分析:根据绝对值的几何意义画图.例如,|x|≥4的几何意义是:数轴上与原点的距离大于或等于4个单位长度的点的集合;|x|<3的几何意义是:数轴上与原点的距离小于3个单位长度的点的集合.解:<1>|x|≥4,即数轴上x对应的点到原点的距离大于或等于4,如图1.∴当x>0时,有x≥4;当x<0时,有x≤-4.<2>|x|<3,即数轴上x对应的点到原点的距离小于3,如图2.即有-3<x<3.<3>2<|x|≤5,即数轴上x所对应的点到原点的距离比2大且小于或等于5,如图3.即-5≤x<-2或2<x≤5.说明:在数轴上表示含绝对值的不等式时,最容易错的是忘记或画错原点左边<负半轴上>符合条件的点的X围.应当认真研究负数部分符合条件的点的X围的画法,并真正做到"理解〞.例10 <1>求绝对值不大于2的整数;<2>已知x是整数,且2.5<|x|<7,求x.分析:<1>求绝对值不大于2的整数,就是求数轴上与原点的距离小于或等于2个单位长度的整数点.<2>因为2.5<|x|<7中的x表示的是绝对值小于7同时绝对值又大于2.5的整数,所以,依绝对值定义应该是满足-7<x<-2.5,或2.5<x<7的所有整数.解:<1>先画出数轴上与原点的距离小于或等于2的点的X围.由图看出,绝对值不大于2的整数是:-2,-1,0,1,2<2>符合2.5<|x|<7的所有整数,就是符合-7<x<-2.5或2.5<x<7的所有整数.由图看出,符合2.5<|x|<7的整数是:x=±3,±4,±5,±6.说明:因为绝对值概念课本上从几何与代数两个角度都给出了定义,所以在解含绝对值的问题时要注意灵活运用这两个定义.此题也可以用代数定义求解.根据绝对值的几何定义,用数形结合的思想,把有关绝对值的问题转化为数轴上的点与原点的距离问题来解决,是经常采用的方法.例11已知a、b、c所表示的数如图所示:<1>求|b|,|c|,|b+1|,|a-c|;*<2>化简|a-b|-|-a|+|c-1|+|c-b|.分析:由图知a<-1<b<0,0<c<1.根据以上条件,先确定绝对值符号内的数是正数还是负数,然后再化简.解:由图知a<0,b<0,c>0,且b>-1,a<c,a<b,c<1,c>b,∴b+1>0,a-c<0,a-b<0,c-1<0,c-b>0<1>|b|=-b,|c|=c,|b+1|=b+1|a-c|=-<a-c>=c-a<2>|a-b|-|-a|+|c-1|+|c-b|=<b-a>-<-a>+<1-c>+<c-b>=b-a+a+1-c+c-b=1说明:<1>a-b的相反数是-<a-b>=b-a.a+b的相反数是-<a+b>=-a-b.<2>|a-b|的几何意义是:数轴上表示数a、b的两个点之间的距离.不同的两个点之间的距离总是一个正数,等于"较大的数减较小的数〞的差.例12 解方程:<1>已知|14-x|=6,求x;*<2>已知|x+1|+4=2x,求x.分析:解简单的含有绝对值符号的方程,一般都根据绝对值的代数定义,先化去绝对值符号,然后求解.<2>题需把原方程转化为|x+1|=2x-4的形式后,才便于应用绝对值的代数定义.解:<1>∵|14-x|=|x-14|=6∴x-14=±6当x-14=6时,x=20;当x-14=-6时,x=8.∴x=20或8.<2>∵|x+1|+4=2x∴|x+1|=2x-4∵|x+1|≥0,∴2x-4≥0,x≥2.∵x≥2,∴x+1>0,|x+1|=x+1.原方程变形为x+1+4=2x∴x=5.*例13 化简|a+2|-|a-3|分析:要化简此式,关键是依据绝对值定义判断好绝对值符号内a+2和a-3在a取不同数值时它们的符号情况,才能正确地转化为不含绝对值的式子.为了能达到此目的,首先应判定|a+2|=0和|a-3|=0时a的取值,即a=-2和a =3,由此可知,a的取值可分为三种情况:即a<-2,-2≤a<3,a≥3.这时|a+2|和|a-3|就可依绝对值定义分别得到不同的去掉绝对值符号后的新形式了.解:由|a+2|=0和|a-3|=0得a=-2或a=3.-2和3把数轴分为三部分<如图>:当a<-2时,原式=-<a+2>-[-<a-3>]=-a-2+a-3=-5当-2≤a<3时,原式=a+2-[-<a-3>]=a+2+a-3=2a-1当a≥3时,原式=a+2-<a-3>=a+2-a+3=5说明:解含有绝对值符号的题目时,首先要将其转化为不含绝对值符号的形式.然后再进行整理或化简.。
初中数学上册平均数计算练习35题(含答案)
初中数学上册平均数计算练习35题(含答
案)
本文档提供了初中数学上册平均数计算练的35个题目及其答案。
以下是每个题目的描述和解答:
1. 题目:某班级有30名学生,他们的身高分别为160cm、165cm、170cm、158cm......。
请计算这个班级学生的平均身高。
解答:将所有学生的身高相加,然后除以学生人数即可得到平均身高。
2. 题目:小明连续7天每天的运动里程分别为3km、4km、
5km、6km、7km、8km、9km。
请计算这7天的平均运动里程。
解答:将连续7天的运动里程相加,然后除以7即可得到平均运动里程。
3. 题目:某家庭连续5个月的水费分别为100元、120元、150元、90元、110元。
请计算这5个月的平均水费。
解答:将连续5个月的水费相加,然后除以5即可得到平均水费。
......
35. 题目:某地区过去10年的年平均温度分别为20摄氏度、22摄氏度、19摄氏度、21摄氏度......。
请计算这个地区的年平均温度。
解答:将过去10年的年平均温度相加,然后除以10即可得到年平均温度。
本文档提供了35个平均数计算练习的题目和答案,希望对初中数学学习有所帮助。
绝对值专项训练及其答案
绝对值专项训练及其答案1、如果a a 22-=-,则a 的取值范围是2.7=x ,则______=x ; 7=-x ,则______=x .3.如果3>a ,则______3=-a ,______3=-a .4、(1)如果m=-1,那么-(-│m │)=________.(2)若│a-b │=b-a ,则a ,b 的大小关系是________.5.若│a │=5,│b │=4,且a>0,b<0,则a=______,b=_______.6、若22x x --=-1,求x 的取值范围 。
7、若│a │=8,│b │=5,且a+b>0,那么a-b 的值是 。
8、a<0时,化简||3a a a+结果为 9、已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________.10、已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值.11、已知│a-3│+│b-4│=0,求a b ab+的值.12、已知│x-4│+│y-2│=0,求x+y 的相反数。
13、如果│x-4│+│2y+6│=0,求x 、y 。
总结:若几个非负数的和等于零,则这几个非负数同时为零14、│a │=a ,则a=15、│a │=-a ,则a=易错总结 :一个非负数的绝对值等于它本身,解题时容易只考虑到正数,将0忽略。
16、如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-•cd 的值.17、(1)求|110-111|+|111-112|+…|149-150|的值.(2)化简100211003120021200312003120041-++-+-18、化简│1-a │+│2a+1│+│a │(a<-2).19、已知-a<b<-c<0<-d,且│d │<│c │,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.20、若a 、b 互为相反数,表示有理数m 的点到原点的距离为1,求a+b a+b+2+m 的值。
绝对值计算化简专项练习30题(有答案)
绝对值计算化简专项练习30题(有答案)1.题目中给出了数轴上的位置,求解绝对值计算的结果。
化简后的表达式为:1) |2a| - |a+c| - |1-b| + |-a-b|2) |a-b| + |b-c| + |a-c|2.已知xy<,x<y且|x|=1,|y|=2.根据绝对值的定义,可以列出以下方程:1) x+y=0.x<y。
x=-1.y=12) |x-y|=33.计算绝对值表达式:5 | + |-10| ÷ |-2| = 5 + 5 = 104.当x<0时,求|x+1|+2x的值。
根据绝对值的定义,可以列出以下方程:1) x+1<0.x<-1.|x+1|=-(x+1)。
|x+1|+2x=-x-12) x+1≥0.x>-1.|x+1|=x+1.|x+1|+2x=3x+15.若abc<0,|a+b|=a+b,|a|<-c,求代数式的值。
根据绝对值的定义,可以列出以下方程:a+b|=a+b。
a+b≥0a|=-a。
ac6.若|3a+5|=|2a+10|,求a的值。
根据绝对值的定义,可以列出以下方程:1) 3a+5=2a+10.a=52) 3a+5=-2a-10.a=-57.已知|m-n|=n-m,且|m|=4,|n|=3,求(m+n)的值。
根据绝对值的定义,可以列出以下方程:m-n|=|n-m|。
m-n=n-m。
m=4.n=3.m+n=78.a、b在数轴上的位置如图所示,化简:|a|+|a-b|-|a+b|。
根据绝对值的定义,可以列出以下方程:1) a≥b。
|a|+|a-b|-|a+b|=2a-2b2) a<b。
|a|+|a-b|-|a+b|=2b-2a9.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a-c|-|a-b|-|b-c|+|2a|。
根据绝对值的定义,可以列出以下方程:a-c|=a-c。
a-c≥0a-b|=a-b。
a-b≥0b-c|=b-c。
绝对值专项练习60题有答案8页
绝对值专项练习 60题(有答案)1.下列说法中正确的是( )A . 有理数的绝对值是正数 C . 整数分数统称有理数B . 正数负数统称有理数D . a 的绝对值等于 a2.在数轴上距-2有3个单位长度的点所表示的数是( A . - 5 3.计算:|-4|=( C . - 1 A . 0 B . -4 C . 14) D . 4 3, |y|=5,则x+y 的值为 B . 2 x 的相反数是 -8 4. 若 A . 5.如果|a|=-a ,那么a 的取值范围是( A . a> 0 B . av 0 6.如图,数轴上的点 A 所表示的是实数 A a C . C . a , C . 7.如果a 是负数, 那么-a 、2a 、 a+|a|、 & 在-(- 2), -|-7|,- |+3|, ( ) 8或-2 ) aO D . - 8 或 D. a% 则点A 到原点的距离是( D . - |a| 这四个数中,负数的个数( |a| C . 3个 -舟I ,1(*¥)中,负数有(C . 3个 A . 1个 9.如图,数轴的单位长度为 1,如果点A 、C 表示的数的绝对值相等,则点 B 表示的数是(10 .任何一个有理数的绝对值在数轴上的位置是( A .原点两旁 B .整个数轴 11. a, b 在数轴位置如图所示,则 A . |a|> |b| B . |a 申| 12 .已知|x|=3,则在数轴上表示 A . 3 B .出 C .原点右边 |a 与 |b|关系是( |C . ||a|v |b| x 的点与原点的距离是( C . - 3 13 .若|a|=- a ,则数a 在数轴上的点应是在( D .原点及其右边D • ]|aMb| ) D . 0 - 3A . 原点的右侧B . 原点的左侧C . 原点或原点的右侧D . 原点或原点的左侧 14 .下列判断错误的是( )A . 任何数的绝对值一定是正数B . 一个负数的绝对值一 ) D .定是正数 C . 一个正数的绝对值一定是正数 任何数的绝对值都不是负数15 . a 为有理数,下列判断正确的是( A . -a 一定是负数 B . |a| —定是正数 |a 一定不是负数 16 .若abv0,且a >b ,贝U a , |a -b|, b 的大小关系为( A . a > |a - b|>b B . a >b >|a - b| 17 .若 |a|=8, |b|=5, a+b >0,那么 a - b 的值是( A . 3 或 13 B . 13 或-13 18 .下列说法正确的是(C . |a - b|> a > b ) C .3 或-3D . - |a| —定是负数 ) |D .||a - b|>b >a|D .- 3 或 13D . 19. 一个数的绝对值 A .正数 -|a| —定是负数只有两个数相等时,它们的绝对值才相等 若|a|=|b|,则a 与b 互为相反数若一个数小于它的绝对值,则这个数为负数 定是( ) B .负数 c .非负数 20 .若ab >0,则聖冲■的值为( ) |b| |b| |ab|A . 3B . - 1 21.已知:a >0, bv0, |a|v |b|v 1,那么以下判断正确的是(A . 1 - b >- b > 1+a > aB . c .±或出 1+a > a > 1 - b >— bC . 22 .若 |-x|= - X ,则 x 是( A .正数 B .负数 23 .若|a|>- a ,则a 的取值范围是( A . a > 0B . a 为 24 .若|m - 1|=5,则m 的值为( A . 6B . - 4 D.非正数 D . 3或- 1 ) 1+a > 1 - b > a >- b D . 1 - b > 1+a >- b > aC .非正数 ) C. av 0 D.非负数 D. I 自然数 C . 6 或- 4 D. - 6 或 4 25 .下列关系一定成立的是( A .若 |a|=|b|,贝U a=b B . 26 .已知a 、b 互为相反数,且 A . 2 B . 2 或 3 ) 若|a|=b ,贝y a=b|a - b|=6,贝y |b - 1|的值为 C . 若|a|=- b ,贝y a=b D .若 a=- b ,则 |a|=|b| ) D . 2 或 4 27 . av 0时,化简竺里4吉果为(3a B . 0 A . 2 3 28 .在有理数中, A . 1个 绝对值等于它本身的数有( B . 2个 C . D . -2a C . 3个 29 .已知|a|=- a 、|b|=b 、|a|> |b|>0,则下列正确的图形是 A. 0 ◎ A B . a ~*C. 30 .若|a|+|b|=|a+b |,贝U a 、b 间的关系应满足( A . b 同号 B . C . b 异号 D . D .无穷多个 ) 0 「D . p ) b 同号或其中至少一个为零 b 异号或其中至少一个为零 31.已知 |m|=4, |n|=3,且 mnv 0,贝U m+n 的值等于( ) A . 7 或- 7 B . 1 或- 1 C . 7 或 1 D . -7 或-1 32.已知a 、b 、c 大小如图所示, 的值为 a b cA . 1B . - 1 33.下列各式的结论成立的是( A .若 |m|=|n|, 34 .绝对值小于 A . 3个35 .绝对值大于 A . 7C . ±D . 则 m > n B .4的整数有(B . 5个 1而小于3.5的整数有(B . 6 ) m >n ,则 |m|> |n| )C . 若 m V nv0,贝U |m|> |n|D .若|m| > |n|,贝U m > n36 .若X 的绝对值小于1,则化简|x - A . 0 B . 237 . 3.14 - n 的差的绝对值为( A . 0B . 3.14- nC . 6个 )个. C .「5 1|+x+1| 得(C . 2x C . n —3.14D . 7个D . D . D . -2x 0.14下列说法正确的是():有理数的绝对值一定是正数有理数的相反数一定是负数互为相反数的两个数的绝对值相等 如果两个数的绝对值相等,那么这两个数相等若 |-a|=5,设 A=|x - b|+|x - 20|+|x - b - 20|,其中 0< b < 20, b^x<20,则 A 的最小值是52 .若a , b 为有理数,且|a|=2, |b|=3, 求 a+b 的值.53. 若 |x|=3, |y|=6,且 xy < 0,求 2x+3y 的值.54. 试求 |x - 1|+|x - 3|+ •• + |x - 2003|+|x - 2005|的最小值.55.有理数a 、b 在数轴上的位置如图所示,化简 |a - b|+|a+b|.a 0a=12, b= - 3, c= -( |b|- 3),求 |a|+2|b|+|c|的值.a 、b 、c 在数轴上的位置如图所示,化简 |a|+|c- b|+|a - c|+|b - a|58.小刚在学习绝对值的时候发现: |3 - 1可表示数轴上3和1这两点间的距离;而|3+1|即 |3-( - 1) |则表示3和-1这两点间的距离.根据上面的发现,小刚将|x - 2|看成x 与2这两点在数轴上的距离;那么|x+31可看成x 与_38. A . B .C .D . 39F 面说法错误的是( A . B . C .D . )-(-5)的相反数是(-5)3和-3的绝对值相等数轴上右边的点比左边的点表示的数小若|a|> 0,则a 一定不为零|b|>b ,且 |a|> |b|,则( B . a < b 40. A . a > b 41 .已知 |x 鬥,|y|W1,那么 |y+1|+|2y -已知|a|> a , )C .不能确定 x - 4|的最小值是D . a=b42. 从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为 43. ____________________________ 最大的负整数是_______________________________ ,绝对值最小的有理数是 ______________ 44.最大的负整数,绝对值最小的数,最小的正整数的和是 0 ____________2的四位数有个.则 |x|=|y|.(46. 绝对值等于 47. 48.10的数是则a= -3.5的绝对值是 49. 50 .绝对值小于10的所有正整数的和为 51.化简:|x - 2|+|x+3|,并求其最小值. ;绝对值是5的数是 ;绝对值是-5的数是56.已知 57.已知59 .若abv 0,试化简血+止1+丄坐1a b ab60.同学们都知道,|5-( - 2) |表示5与-2之差的绝对值,实际上也可理解为 5与-2两数在数轴上所对的两点之间的距离. 试探索:(1) 求 |5-( - 2) |= ____________ . (2) 设x 是数轴上一点对应的数,则 |x+1|表示与(3)若x 为整数,且|x+5|+|x - 2|=7,则所有满足条件的 x 为__________ 在数轴上的距离.小刚继续研究发现: x 取不同的值时,|x - 2|+|x+3|=5有最 值,请你借助数轴解决下列问题(1) (2) (3) (4) 当|X — 2|+|x+3|=5时,x 可取整数 _______ 若A=|x+1|+|x - 5|,那么 A 的最小值是 若B=|x+2|+|x|+|x - 1|,那么B 的最小值是 写出 |x+5|+|x+3|+|x+1|+|x - 2|的最小值.(写出一个符合条件的整数即可),此时x 为之差的绝对值参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a< 0时,a的绝对值等于-a,故D错误. 故选C.2.依题意得:|- 2 - x|=3,即-2 - x=3 或-2 - x= - 3,解得:x= - 5 或x=1 .故选 D .3.根据一个负数的绝对值是它的相反数,可知|-4|=4.故选D .4.x 的相反数是3,则x= - 3, |y|=5, y= ±, . x+y= - 3+5=2,或x+y= - 3 - 5= - 8.则x+y的值为-8或2 .故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=- a,那么a的取值范围是aW).故选C.6.依题意得:A到原点的距离为|a|,v a< 0,. |a|=- a,. A到原点的距离为-a.故选B.7•当a是负数时,根据题意得,- a> 0,是正数,2av 0,是负数,a+|a|=0,既不是正数也不是负数, 是负数;所以, 2a、启是负数,所以负数2个.故选B.a8 •••-(- 2) =2,是正数;-I- 7|=- 7,是负数;-|+3|=- 3是负数;|H|,是正数;-译5 9.如图,AC =-更是负数;.在以上数中,负数的个数是3.故选C.5的中点即数轴的原点O.根据数轴可以得到点B表示的数是-1.故选C.10.11.12.13.A 5 C•••任何非0数的绝对值都大于0,•任何非0数的绝对值所表示的数总在原点的右侧,■/ 0的绝对值是0,. 0的绝对值表示的数在原点.故选 D .••• a<- 1, 0< b< 1 ,••• |a|> |b|.故选 A•••|x|=3,又•••轴上x的点到原点的距离是|x|,.数轴上x的点与原点的距离是3;故选A .•/ |a|=- a,. aW),即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14•根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B, C, D 都正确.A中,0的绝对值是0,错误.故选 A .15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立. 故选C16.T abv0,且a> b,;a>0, b< CT. a- b>a> 0^ |a- b|>a> b 故选C.17.18.19.•/ |a|=8, |b|=5,••• a=i8, b=芳,又T a+b>0,A a=8, b= i5.A a- b=3 或13.故选 A .A、 -|a不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.一个数的绝对值一定是非负数•故选C.20.因为ab>0,所以a, b同号.①若a, b同正,^T S)+卡J+|日+仆仁彳;22.23.24. ②若a, b 同负,^则i: I + |[ |+ I = - 1 - 1+1= - 1. 故选D.■/ a> 0,. |a|=a;T b< 0, • |b|= - b;又■/ |a|< |b|< 1, • a<- b< 1;. 1 - b> 1+a;而1+a> 1, • 1 - b> 1+a>- b>a.故选D.••• |- x|= - x;. xW).即x是非正数.故选C.若|a|>- a,贝U a的取值范围是a> 0.故选A.■/ |m- 1|=5, . m - 1= ±, . m=6 或-4.故选C.25 .选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.Ta 、b 互为相反数,••• a+b=O,T |a- b|=6,.・.b=出,|b - 1|=2 或 4.故选 D .27. V av 0,.••吐L L L =兰1!=0.故选 B3a 3a28. 在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选 29. V |a|=- a 、|b|=b , • av 0, b >0,即a 在原点的左侧,b 在原点的右侧,•••可排除A 、B ,v |a|>|b|,. a 到原点的距离大于 b 到原点的距离,•可排除C ,故选D .30. 设 a 与 b 异号且都不为 0,则 |a+b|=||a|- |b||,当 |a|> |b|时为 |a|- |b|,当 |a|<fb|时为 |b|- |a|. 不满足条件|a|+|b|=|a+b|,当a 与b 同号时,可知|a|+|b|=|a+b 成立;当a 与b 至少一个为 0时,|a|+|b|=|a+b 也成立. 故选B .31. V |m|=4, |n|=3,^ m=也,n= ±3,又 v mn v O ,:当 m=4 时,n= - 3, m+n=1 ,当 m= - 4 时,n=3 , m+n= - 1,故选 B .32.根据图示,知 av 0v bv c,.••园」£!==+¥+£=- 1+1+1=1 .故选 A .a b c a b c33. A 、若 m= -3, n=3 , |m|=|n|, mv n,故结论不成立; B 、若 m=3, n= - 4, m>i,则 |m|v|n|,故结论不成立;C 、若mv nv 0,则|m|> |n|,故结论成立;D 、若m= - 4, n=3 , |m|> |n|,贝U mvn ,故结论不成立.故选:C34. 绝对值小于4的整数有:±3,塑,±1, 0,共7个数.故选D35. 绝对值大于1而小于3.5的整数有:2, 3, - 2, - 3共4个.故选D .36.V x 的绝对值小于1,数轴表示如图:从而知道 x+1 >0, x - 1v0;可知|x+1|+|x - 1|=x+1+1 - x=2 .740.41. T |X|W1, |y 鬥,•••- 1強冬,-1鬥冬,故可得出:|y+1|+|2y - X - 4|=y+1+ (4+x - 2y ) =5+x - y ,当X 取-1, y 取1时取得最小值,所以|y+1|+|2y - x - 4|min =5- 1 - 1=3 .42.V 千位数与个位数之差的绝对值为 2,可得数对”分别是:(0, 2), ( 1, 3), (2, 4) , ( 3 , 5), (4 , 6) , ( 5 , •••( 0 , 2)只能是千位2,个位0,•—共15种选择,•••从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为43.最大的负整数是-1 ,绝对值最小的有理数是0 .44. 最大的负整数是-1,绝对值最小的数 0 ,最小的正整数是 1 V- 1+0+1=0, •••最大的故选B .-2V n> 3.14, • 3.14 - nV 0 ,• |3.14 -冗|= -( 3.14 - n) = n- 3.14 .故选:CA V 0的绝对值是0,故本选项错误.B V 负数的相反数是正数,故本选项错误.CV 互为相反数的两个数的绝对值相等,故本选项正确.D V 如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选 A 、 - (- 5) =5, 5的相反数是-5,故本选项说法正确; B 、 3和-3的绝对值都为3,故本选项说法正确;C 、 数轴上右边的数总大于左边的数,故本选项说法错误;D 、 绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选 V |a|>a , |b|>b ,. a 、b 均为负数,又 V |a|> |b|,. av b .故选 By+1 为;2y - x - 4 v 0,37.38. 39.C .2的四位数有15 >8 X7=840个.不存在故答案为:37), (6, 8), (7, 9),负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:45.V x+y=0 ,• X、y互为相反数.二|x|=|y|.故答案为(V46 .绝对值等于10的数是±0 .47.若|- a|=5,贝U a= ±5.48.由题意得:从€0 得知,x - b% x - 20O x - b-20O,A=|x - b|+|x- 20|+|x - b- 20|= (x- b) + (20- x) + (20+b - x) =40 - x, 又x最大是20,则上式最小值是40 - 20=20 .49. - 3.5的绝对值是 3.5 ;绝对值是5的数是±5 ;绝对值是-5的数是26.Ta 、b 互为相反数,••• a+b=O,T |a- b|=6,.・.b=出,|b - 1|=2 或 4.故选 D .2=503004 . 故答案为:503004 .55.V 在数轴上原点右边的数大于0,左边的数小于 0,右边的数总大于左边的数可知,b < a < 0,•• |a - b|=a - b , |a+b|=- a - b ,;原式=a -b - a - b= - 2b56. •/ a=12 , b= - 3,; c= -( |b|- 3) = -( 3 - 3) =0,• |a|+2|b|+|c|=12+2X3+0=18 . 57.由数轴,得 b > c >0, a <0,; c - b < 0, a - c < 0, b - a >0,••• |a|+|c— b|+|a - c|+|b - a|= - a -( c - b ) -( a - c ) +b - a= - a - c+b - a+c+b - a =2b - 3a .58. v |x+3|=|x -( - 3) |,.・. |x+3|可看成x 与-3的点在数轴上的距离;(1) x=0 时,|x - 2|+|x+3|=| - 2|+|3|=2+3=5 ; (2) |x+1|+|x - 5|表示x 到点-1与到点5的距离之和, 当-1$老时,A 有最小值,即表示数5的点到表示数-1的点的距离,所以 A 的最小值为6;(3) |x+2|+|x|+|x - 1|表示x 到数-2、0、1三点的距离之和,所以当 x=0时,它们的距离之和最小, 即B 的最小值为3,此时x=0 ;(4) |x+5|+|x+3|+|x+1|+|x - 2|表示 x 到数-5、- 3、- 1、2 四点的距离之和, 所以当-3<x<- 1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x - 2|的最小值为9.59.V ab <0, • a 和b 中有一个正数,一个负数,不妨设 a >0,b < 0,原式=1 - 1 - 1= - 160. (1) |5-( - 2) |=|5+2|=7; (2) |x+1|表示 x 与-1 之差的绝对值;(3)v |x+5|表示x 与-5两数在数轴上所对的两点之间的距离, |x - 2|表示x 与2两数在数轴上所对的两点之间的距离,而-5与2两数在数轴上所对的两点之间的距离为 2 -( - 5) =7, |x+5|+|x - 2|=7,• - 5$电.故答案为7; x , - 1 ; -.50. 绝对值小于 10 的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45 . 故本题的答案是:45. 51. ①当 XW — 3 时,原式=2 - x - x - 3= - 2x - 1;②当-3< x < 2 时,原式=2 - x+x+3=5 ; ③ 当x 呈时,原式=x - 2+x+3=2x+1 ;•••最小值为52. V a , b 为有理数,当 a=+2, 当 a=+2, 故答案为: 53. V |x|=3, |a|=2, |b|=3,••• a=±2, b=±,a+b=2+3=5 ; 当 a=- 2, b= - 3 时,a+b= - 2 - 3= - 5;b=+3 时,a+b= - 2+3=1.b=+3 时,b= - 3 时,芳、±1.|y|=6,二 x= ±3, y= ±), v xy < 0,二 x=3 , y= - 6,或 x= - 3,① x=3 , y= - 6 时,原式=2 >3+3X ( - 6) =6 - 18=- 12; ② x= - 3, y=6,原式=2X (- 3) +30=- 6+18=1254. V 2005=2X1003 - 1,•共有 1003 个数,••• x=502 X - 1=1003时,两边的数关于|x - 1003|对称,此时的和最小,此时 |x - 1|+|x - 3|+ •• + |x - 2003|+|x - 2005|=(x - 1) + (x -3) ••+ (1001 - x ) + (1003- x ) + (1005- x ) =2 (2+4+6+••+1002) C2+1002) X501=2 X ---------- --------+ •• + (2005—x )。
绝对值练习题及答案
绝对值练习题及答案绝对值是数学中常见的概念,它可以帮助我们计算数值的距离和大小。
在这篇文章中,我们将介绍一些绝对值的练习题,并提供相应的答案,帮助读者更好地理解和应用这个概念。
1. 练习题一:计算绝对值计算以下数的绝对值:-5, 10, -3.14, 0, 100.答案:绝对值是一个数到原点的距离,因此绝对值永远是非负数。
所以答案分别是:5, 10, 3.14, 0, 100.2. 练习题二:绝对值的性质根据绝对值的定义,我们可以得出以下性质:- 对于任意实数a,|a| ≥ 0,且当且仅当a = 0时,|a| = 0.- 对于任意实数a和b,有|ab| = |a| * |b|.- 对于任意实数a和b,有|a + b| ≤ |a| + |b|.3. 练习题三:绝对值的应用绝对值在实际生活中有着广泛的应用,例如:- 温度计上的温度差值就是绝对值的概念。
当我们说温度差为5度时,实际上是指两个温度之间的绝对值差为5.- 距离的计算也常常用到绝对值。
当我们计算两个点之间的距离时,实际上就是计算两个坐标的绝对值差。
- 绝对值还可以用于解决一些实际问题,例如计算误差、求解方程等等。
4. 练习题四:绝对值的计算计算以下表达式的值:|3 - 7| + |10 - 15|.答案:首先计算绝对值内的差值,得到:|-4| + |-5|. 然后计算绝对值,得到:4 + 5 = 9.5. 练习题五:绝对值的不等式解决以下绝对值不等式:|x - 3| ≤ 5.答案:我们可以将不等式分为两个部分来求解。
当x - 3 ≥ 0时,不等式变为:x - 3 ≤ 5,解得:x ≤ 8. 当x - 3 < 0时,不等式变为:-(x - 3) ≤ 5,解得:x ≥ -2. 综合起来,解集为:-2 ≤ x ≤ 8.通过以上的练习题,我们可以更深入地理解和应用绝对值的概念。
绝对值不仅仅是一个数学概念,它在实际生活中有着广泛的应用。
通过练习和掌握绝对值的计算和性质,我们可以更好地解决实际问题,并提高数学运算的准确性。
完整版)绝对值练习题(含答案)
完整版)绝对值练习题(含答案)2.3 绝对值一、选择题1.下列说法中正确的个数是(。
)1) 一个正数的绝对值是它本身;2) 一个非正数的绝对值是它的相反数;3) 两个负数比较,绝对值大的反而小;4) 一个非正数的绝对值是它本身。
A。
1个 B。
2个 C。
3个 D。
4个2.若 -│a│ = -3.2,则 a 是(。
)A。
3.2 B。
-3.2 C。
±3.2 D。
以上都不对3.若│a│=8,│b│=5,且 a+b>0,那么 a-b 的值是(。
) A。
3 或 13 B。
13 或 -13 C。
3 或 -3 D。
-3 或 -134.一个数的绝对值等于它的相反数的数一定是(。
)A。
负数 B。
正数 C。
负数或零 D。
正数或零5.当 a<0 时,化简 a+|a| 的结果为(。
)A。
3a/2 B。
0 C。
-1 D。
-2a/3二、填空题6.绝对值小于 5 而不小于 2 的所有整数有_________。
4,-3,-2,2,3,47.绝对值和相反数都等于它本身的数是_________。
8.已知│a-2│+(b-3)+│c-4│=0,则 3a+2b-c=_________。
179.比较下列各对数的大小(用“)”或“〈”填空〉1) -3/2 〈 -3211/1000.2) -1 〈 -1.167.3) -5/369 〈 |-1|。
10.有理数 a,b,c 在数轴上的位置如图所示:试化简:│a+b│-│b-1│-│a-c│-│1-c│=___________。
2三、解答题11.计算1) │-6.25│+│+2.7│=6.25+2.7=8.95;2) |-8|+|-3|+|-20|=8+3+20=31.12.比较下列各组数的大小:1) -1/2 〈 -2/3 〈 -0.3;2) -2/33 〈 -2 〈 -3/10.13.已知│a-3│+│-b+5│+│c-2│=0,计算 2a+b+c 的值。
a+b+c=0,代入得 2a+b+c=2a-2b+8.14.如果 a、b 互为相反数,c、d 互为倒数,x 的绝对值是1,求代数式 x+(a+b)x-•cd 的值。
七年级绝对值培优练习经典题26道,含答案
七年级绝对值培优练习经典题26道,含答案
七年级绝对值培优练习经典题
下年是七年级的绝对值培优教材内容,前8道是例题,后面18道是练习,同学们可以下载打印作一下
例1考察绝对值的非负性,求出a,b的值代入计算即可
例2不懂可以关注亘晨数学的视频,有一个视频专门讲这类题的
例3根据a,b,c为整数,可以推出有两个数相等且有两个数是相邻自然数
例4考察绝对值的几何意义
例5去掉绝对值大部分项可以抵消
例6按照绝对值的定义去绝对值化简即可
例7可以用字母来代替动点
下面是18道培优练习
【培优例题】答案
1题:2917/2018;2题:-1,1;2,0,-1;3,-1;3题:2;4题:(1)3,5,-2,5;(2)7,(3)6,(4)9;5题:0;6题:1-2c+b;7题:(1)5,(2)2.5;8题:1990.
【培优练习答案】
1题:5,-5;3,-3;2题:10,-10;3题:1;4题:2;5题:-2,-8;6题:-1008;
7题:-1;8题:大于等于;9题:C;10题:0,2; 11题:4;12题:2;13题:(1)2,(2)25;14题:0;15题:4,0,-4;16题:(1)1,(2)3.5,-1.5,(3)4/15,2/23;17题:(1)3,3,4(2)|-1-x|, -3,1, -1小于等于x小于等于2; 18题:b+c。
绝对值练习题
绝对值练习题一、选择题1. 下列哪个数的绝对值等于5?A. 5B. 5C. 3D. 32. 如果 |x 2| = 3,那么x的值可能是:A. 5B. 1C. 2D. 33. 下列哪个式子的值最小?A. |2 5|B. |3|C. |4 7|D. |6|4. 已知 |a| = 7,那么a的平方是多少?A. 49B. 7C. 14D. 05. 若 |x + 3| = 0,则x的值为:A. 3B. 3C. 0D. 无法确定二、填空题1. | 8 | = _______2. 如果 |x 4| = 9,那么x的值可以是 _______ 或 _______。
3. 已知 |a| = 5,那么a可以是 _______ 或 _______。
4. |5 7| + |8 5| = _______5. 当 |x| = 0 时,x的值为 _______。
三、解答题1. 计算下列各题的值:(1) | 3 + 5 |(2) | 4 9 |(3) | 7 2 |2. 解下列绝对值方程:(1) |2x 5| = 3(2) |x + 4| 6 = 0(3) |3x 2| = |2x + 1|3. 已知 |a 3| = 7,求a的值。
4. 若 |x 2| + |x + 1| = 5,求x的值。
5. 讨论当k为何值时,方程 |x k| = 2 有两个不相等的实数解。
四、判断题1. 绝对值表示一个数与0的距离,所以绝对值总是非负的。
()2. 如果|x| = |y|,那么x一定等于y。
()3. |a + b|总是大于等于|a| + |b|。
()4. 对于任何实数x,|x| + |x| = 2|x|。
()5. 当x < 0时,|x| = x。
()五、应用题1. 小明家的温度计显示温度为3℃,而小华家的温度计显示温度为+5℃,请问两家温度计显示的温度差是多少?2. 在一次跑步比赛中,甲、乙两名运动员从同一起点出发,甲向正北方向跑,乙向正南方向跑,经过一段时间后,两人相距200米,求甲、乙各自跑了多少米?3. 一辆汽车在平直的公路上行驶,从A地出发到B地,再返回A 地,如果汽车去时的速度是60km/h,返回时的速度是80km/h,求汽车往返的平均速度。
绝对值练习题及答案
绝对值练习题及答案1. 计算下列各数的绝对值:- |-5|- |3|- |-12|- |0|2. 如果一个数的绝对值是5,那么这个数可能是什么?3. 解释绝对值的性质,并给出一个例子。
4. 计算以下表达式的值:- |-7 - 3|- |-8 + 2|5. 如果 |a| = 4,a 可能等于什么?6. 一个数的绝对值是它本身,这个数可能是什么?7. 计算以下表达式的值:- |-x| 如果 x = 3- |-y| 如果 y = -48. 如果 |x - 5| = 3,求 x 的所有可能值。
9. 一个数的绝对值是它相反数的3倍,这个数是什么?10. 计算以下表达式的值:- |-2x| 如果 x = -1答案1. 计算结果如下:- |-5| = 5- |3| = 3- |-12| = 12- |0| = 02. 如果一个数的绝对值是5,那么这个数可能是5或-5。
3. 绝对值的性质包括:- 非负性:绝对值总是非负的。
- 正数的绝对值是其本身。
- 负数的绝对值是其相反数。
- 零的绝对值是零。
例子:|-7| = 7,|7| = 7,|0| = 0。
4. 计算结果如下:- |-7 - 3| = |-10| = 10- |-8 + 2| = |-6| = 65. 如果 |a| = 4,a 可能等于4或-4。
6. 如果一个数的绝对值是它本身,这个数可能是正数或零。
7. 计算结果如下:- |-x| = 3 当 x = 3- |-y| = 4 当 y = -48. 如果 |x - 5| = 3,那么 x - 5 = 3 或 x - 5 = -3,解得 x = 8 或 x = 2。
9. 如果一个数的绝对值是它相反数的3倍,设这个数为 a,那么 |a| = 3|-a|,解得 a = 0。
10. 计算结果如下:- |-2x| = 2 当 x = -1通过这些练习题,学生可以更好地理解绝对值的概念,并提高解决相关问题的能力。
初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学上册绝对值同步练习题基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x <y <0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱=3 ,则x=。
8.若︱x+3︱+︱y -4︱= 0,则x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14.式子︱x +1 ︱的最小值是,这时,x值为。
15.下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。
绝对值专项练习60题(有答案)8页
绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A.﹣5 B.1C.﹣1 D.﹣5或13.计算:|﹣4|=()A.0B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2C.8或﹣2 D.﹣8或25.如果|a|=﹣a,那么a的取值范围是()A.a>0 B.a<0 C.a≤0 D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A.1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A.1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A.1B.0C.﹣1 D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A.原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A.|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A.3B.±3 C.﹣3 D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A.正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A.3B.﹣1 C.±1或±3 D.3或﹣1 21.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B. 1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A.正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A.a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A.6B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3 C.4D.2或427.a<0时,化简结果为()A.B.0C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A.B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A.7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A.1B.﹣1 C.±1 D.033.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A.3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A.7B.6C.5D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A.0B.2C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A.0B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A.a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。
绝对值练习题
绝对值练习题一、选择题1. 下列哪个选项的绝对值等于5?A. 5B. 5C. 3D. 82. 若 |x 2| = 3,则x的值可能是:A. 1B. 5C. 2D. 33. 下列哪个式子的值是负数?A. |3| 5B. |3| 5C. |3| + 5D. |3| + 54. 若 |a| = 7,则2|a|的值为:A. 14B. 49C. 7D. 14二、填空题1. 若 |x + 3| = 8,则x的值为______。
2. |(5) × 2| 的值为______。
3. 若 |a 4| = |a + 4|,则a的值为______。
4. 若 |x| = 9,则x的平方为______。
三、解答题1. 已知 |x 1| + |x + 1| = 8,求x的值。
2. 设 |a| = 3,求 |a + 1| 的值。
3. 已知 |x 2| |x + 2| = 4,求x的值。
4. 若 |x| |y| = 5,且x、y均为正数,求x + y的值。
四、应用题1. 小明和小华进行100米赛跑,小明领先小华10米,求小明领先小华的距离的绝对值。
2. 某天,气温从零上5摄氏度下降到零下3摄氏度,求气温变化的绝对值。
3. 在一次考试中,甲、乙两同学的成绩相差15分,求他们成绩差的绝对值。
4. 一辆汽车从A地出发,先向东行驶40公里,然后掉头向西行驶20公里,求汽车离开A地的绝对距离。
五、判断题1. 绝对值表示一个数与0的距离,所以绝对值总是非负的。
()2. 若|x| = |y|,则x一定等于y。
()3. 对于任意实数a,|a| + |a| = 2|a|。
()4. 若a < 0,则|a| = a。
()六、简答题1. 解释绝对值的定义,并给出一个例子。
2. 为什么说绝对值函数是一个偶函数?3. 说出三个绝对值在日常生活中的应用实例。
4. 如何求解含有绝对值的不等式?请举例说明。
七、作图题1. 在坐标系中作出函数y = |x 1|的图像。
平均值绝对值测试
6、如果对于 x ∈ R ,不等式 x + 1 ≥ kx 恒成立,则 k 的取值范围是 A、 (− ∞,0] B、 [− 1,0] C、 [0,1] D、 [0,+∞ )
(1) ab > 0 9、a 与 b 的算术平均值为 8
)
二、条件充分性判断题: 1. a b = ab
2 2
3、设 a + 2 ≤ 1 , b + 2 ≤ 2 ,则正确的不等式是( A、
a−b ≤3
B、
a−b ≤ 2
C、 a − b ≤ 1
4.已知方程 x − 2 + x + 3 = 7 成立,则方程解的个数为 A,1 个 B,2 个 C,3 个 D,无解 E, 以上答案均不正确 5.不等式 x + 3 − 7 − x > s 对任意 x 均不成立,则 A.s<10 B.s≤-10 C. s≥10 D. s ≥10
( (2) a, b 异号 ( (2)a<b
)
1 1 1 , 的算术平均值为 a b 6 1 1 1 (2) a 与 b 为自然数,且 , 的算术平均值为 a b 6
(1) a 与 b 为不相等的自然数,且 10、两数 a, b 的几何平均值的 3 倍大于它的算术平均值: ( (1) a, b满足a 2 + b 2 < 36ab (2) a, b均为正数 11、 ( )
14、不等式 x + 6 − 4 − x < s 对任意 x 均成立 (1)s>10 (2)s≤10 ( )
15.不等式 x + 3 + 7 − x < s 对任意 x 均不成立 (1)s>10 (2)s≤10