简述硬盘结构(图)
硬 盘
2.SCSI接口的硬盘 SCSI(Small Computer System Interface,小型计算机 系统接口)最早研制于20世纪70年代末。经过不断的发展, 今天的SCSI已划分为SCSI-1,SCSI-2以及最新的SCSI-3三 个类型。不过,目前最为流行的版本是SCSI-2。
目前,SCSI硬盘接口有三种,分别是50针、68针和 80针。我们常见的硬盘型号上标有“N”“W”“SCA”,就 是表示接口针数的。N即窄口(Narrow),50针;W即宽 口(Wide),68针;SCA即单接头(Single ConnectorAttachment),80针。其中80针的SCSI硬盘一 般支持热插拔。
四、硬盘的主要参数 硬盘的主要参数有磁头数、柱面、每磁道扇区数和 交错因子。 (1)磁头数。硬盘的每一个盘片均有两个磁面,每 个磁面都有一个磁头,磁头数的多少与硬盘内部的盘片 数有关。一般情况下,磁头数数量是盘片数的两倍。 (2)柱面。硬盘由一组重叠的盘片组成,每个盘面 都被划分为数量相等的磁道,最外圈是0磁道,内部的磁 道编号依次加1。具有相同磁道编号的磁道形成一个圆柱, 因而磁道数就等于柱面数。
图5.1.6 浮动磁头装置
3.主轴组件 主轴组件包括轴承、马达等。用户存取的资料是通过 马达的转动被带到磁头下方的,因而马达的转速越快,用 户存取数据的时间就越短,磁盘马达的转速决定了硬盘最 终的速度。
三、硬盘的性能指标 我们只有熟悉硬盘的性能指标,才能根据这些指标 来判断硬盘品质的优劣,硬盘的性能指标很多,其中主 要的几个性能指标如下: (1)主轴转速。硬盘主轴马达带动盘片高速旋转, 产生浮力使磁头源浮在盘片上方,将所要存取资料的扇 区带到磁头下方来进行数据的存取。转速越快,数据传 输率就越高,硬盘性能就越好。目前的硬盘转速有5 400 r/m和7 200 r/m,也有一些高端硬盘达到了10 000 r/m,甚 至15 000 r/m。
简述机械硬盘的结构和数据读写过程
一、机械硬盘的结构机械硬盘是一种储存设备,主要由机械部分和电子部分组成。
其机械部分由外壳、盘片、磁头和主轴马达等组成,盘片通常是由薄膜覆盖的铝合金材料制成,而每块盘片上都会有若干个可用来储存数据的盘面。
磁头则是用来读写数据的装置,它们会在盘片的表面移动,并且通过磁场来读取或写入数据。
主轴马达是用来旋转盘片的主要动力来源,它能够确保盘片的稳定旋转。
而电子部分则由主控制器、接口电路板和固态存储器等组成,主控制器负责控制硬盘的读写操作,并将数据传输到计算机中,而固态存储器则主要用来存储硬盘的缓存数据。
二、机械硬盘的数据读写过程1. 概述机械硬盘的数据读写过程主要分为磁头寻道、扇区定位、数据读取/写入等步骤,整个过程是由硬盘的控制器负责调度和执行的。
2. 磁头寻道在进行数据读写操作之前,磁头首先需要移动到正确的盘面上,这就需要进行磁头寻道操作。
磁头寻道是指磁头在盘片表面上寻找要读取或写入数据的盘面的过程。
硬盘通常会将盘面划分成许多的同心圆状的轨道,而每个轨道又被划分成许多的扇区。
当需要进行读写操作时,硬盘的磁头会通过移动臂进行寻道,将磁头移动到正确的轨道上。
3. 扇区定位定位扇区是指将磁头精确地移动到指定的扇区上,以进行数据的读取或写入。
硬盘在磁头寻道完成后,会通过电子部分控制磁头的精确位置,使其准确地停留在需要进行数据读写的扇区上。
4. 数据读取/写入当磁头准确定位到目标扇区后,硬盘的磁头会根据数据的磁编码信息,通过磁场的变化来读取或写入数据。
在数据读取过程中,磁头会感知盘片上的磁场变化,并将其转换成电信号,然后通过接口电路板传输给计算机。
而在数据写入过程中,磁头则会通过改变盘面上的磁场,将电信号转换成磁场,从而改变盘面上的数据。
5. 数据传输硬盘通过接口电路板将读取的数据传输到计算机中,或者将计算机传输过来的数据写入到盘面上,完成一次数据的读写过程。
机械硬盘的数据读写过程是一个复杂的技术过程,其涉及到磁头的寻道定位和数据读写等多个环节,而整个过程又是由硬盘的控制器来进行调度和管理的。
简述固态硬盘的基本结构
简述固态硬盘的基本结构
固态硬盘是一种新兴的储存设备,相比传统的机械硬盘,它具有
更快的读写速度、更低的能耗、更高的稳定性和更长的使用寿命。
那么,固态硬盘的基本结构是怎样的呢?
固态硬盘主要由控制器、存储芯片和外壳三部分组成。
控制器是
固态硬盘的核心组成部分,它负责控制数据的读写和储存等主要工作。
存储芯片是固态硬盘的存储单元,通常采用闪存芯片,不同的容量和
技术水平的芯片会影响硬盘的读写速度和寿命。
外壳是固态硬盘的保
护层,能够有效地抵御外界的震动和撞击等。
固态硬盘的设计使得其读写速度较传统机械硬盘更快,因为它采
用了闪存芯片来存储数据,而传统机械硬盘则是通过盘片和读写头来
读写数据。
固态硬盘还具有更低的能耗,因为它不需要电机来驱动盘
片的旋转。
此外,固态硬盘因为没有机械部件,所以具有更高的稳定
性和更长的使用寿命。
在使用固态硬盘的过程中,一些应该注意的问题也需要知道。
首先,固态硬盘的性能因芯片的质量和容量的不同而异,价格也有很大
的差异,需要根据自己的需求和预算进行选择。
其次,固态硬盘的寿
命是相对较长的,但不是无限的,所以在日常使用中需要注意合理使用,例如避免频繁的写入操作、减少温度过高等操作,以保证其性能
和寿命。
总之,固态硬盘作为一种新型的储存设备,其基本结构简单可靠,但需要注意相关的使用和维护问题。
随着其不断发展和完善,相信它
将会为人类带来更多、更好的储存体验。
硬盘物理结构
硬盘物理结构先看下硬盘物理结构1 硬盘物理结构硬盘物理上主要是盘片、机械手臂、磁头、和主轴等组成. 在盘片逻辑划分上又分为磁道、扇区, 例如下图:2 盘片磁道、扇区磁道:当硬盘盘片旋转时, 磁头若保持在一个位置上, 则磁头会在盘片表面划出一个圆形轨迹, 这些圆形轨迹就叫做磁道. 以盘片中心为圆心, 由此可以划分出很多磁道来, 这些磁道用肉眼是根本看不到的, 因为它们仅是盘面上以特殊方式磁化了的一些磁化区, 硬盘上的信息便是沿着这样的轨道存放的, 盘片上的磁道由外向内依次从“0”开始进行编号.柱面:由于硬盘可以由很多盘片组成, 不同盘片的相同磁道就组成了柱面(cylinder), 如图1所示.磁头:假设有N个盘片组成的硬盘, 那么有2N个盘面(一个盘片有2面), 那么磁头也就有2N个, 即每个盘面有一个磁头.扇区:早期的硬盘盘片的盘面以圆心开始向外放射状将磁道分割成等分的弧段, 这些弧段便是硬盘的扇区(如图2). 每个扇区一般规定大小为512byte, 这里大家应该比较疑惑, 外圈周长很明显比内圈要长, 怎么可能每个扇区都是512byte?其实答案早期硬盘外圈存储比内圈存储密度低一些, 所以外圈很长但是仍然只能存储512byte, 因此如果我们知道了柱面数(磁道数) Cylinders、磁头数Heads、扇区数Sectors, 基本上硬盘的容量我们能够计算出来硬盘总容量= Cylinders * Heads * Sectors * 512byte. 但是由于早期硬盘外圈密度低, 导致盘片利用率不高, 现在的硬盘盘片则采用内外存储密度一致的方式, 每个磁道都划分成以512byte大小的弧段, 这样也造成了内外磁道上扇区数量会不一样, 外圈上的扇区数要多于内圈扇区数.硬盘寻址方式硬盘存取、读取数据, 首先要做的就是寻址, 即定位到数据所在的物理地址, 在硬盘上就要找到对应的柱面、磁头以及对应的扇区, 那么怎么寻址呢?有两种方式: CHS和LBACHS模式:CHS(Cylinder/Head/Sector)寻址模式也称为3D模式, 是硬盘最早采用的寻址模式, 它是在硬盘容量较小的前提下产生的.硬盘的C/H/S 3D参数既可以计算出硬盘的容量, 也可以确定数据所在的具体位置. 这是因为扇区的三维物理地址与硬盘上的物理扇区一一对应, 即三维物理地址可完全确定硬盘上的物理扇区. 三维物理地址通常以C/H/S的次序来书写, 如C/H/S为0/1/1, 则第一个数字0指0柱面, 第二个数字1指1磁头(盘面), 第三个数字1指1扇区, 表示该数据位于硬盘1盘面上的0磁道1扇区. 现在定位已完成, 硬盘内部的参数和主板BIOS之间进行协议, 正确发出寻址信号, 从而正确定位数据位置.早期硬盘一个磁道上分63个扇区, 物理磁头最多16个(8个盘片, 盘片多了硬盘那就真要加厚了). 采用8位寻址方式, 8位二进制位的最大值是256(0-255), 可以表示磁头数, 而扇区只有63个(1-63), 只需要其中6个二进制位即可表示, 剩下2位拿去表示柱面, 柱面数用10(8+2)位来表达, 达到1024个柱面(0-1023), 因此总扇区数(1024×16×63). 前面说一个扇区大小为512byte, 这也就是说, 如果以C/H/S寻址模式寻址, 则IDE硬盘的最大容量只能为1024×16×63×512B= 500MB左右.可以思考下, 在8位寻址模式下, 其实可以寻址的硬盘最大容量为1024×256×63×512B =8G,那为啥CHS模式硬盘只支持到500MB呢?原因很简单, 我们的硬盘盘片不可能让128片盘片重叠起来吧, 那会是多厚??如果采用28位寻址方式, 那么可以寻址137G, 盘片也不可能一直堆叠下去.LBA(Logical Block Addressing)经常去买硬盘的人都知道, 目前硬盘经常都说单碟、双碟, 其实意思就是说硬盘盘片只有1个或者2个, 而且都只是用一面, 单碟一个磁头而已, 但是硬盘容量确是几百G, 而且硬盘柱面往往都大于1024个柱面, CHS是无法寻址利用完这些硬盘容量的.另外由于老硬盘的扇区划分方式对硬盘利用率不高, 因此出现了现在的等密度盘, 外圈的扇区数要比内圈多, 原来的3D寻址方式也就不能适应这种方式, 因此也就出现了新的寻址方式LBA, 这是以扇区为单位进行的线性寻址方式, 即从最外圈柱面0开始, 依次将扇区号编为0、1….等等, 举个例子, 假设硬盘有1024个柱面, 由于是等密度硬盘, 柱面0(最外圈)假设有128个扇区, 依次编号为0-127, 柱面1有120个扇区, 则依次编号为127-246, …..依次最内圈柱面127只有扇区64个, 则编号到最后.因此要定位到硬盘某个位置, 只需要给出LBA 数即可, 这个就是逻辑数.在LBA 模式下, 为了保留原来CHS时的概念, 也可以设置柱面、磁头、扇区等参数, 但是他们并不是实际硬盘的物理参数, 只是为了计算方便而出的一个概念, 1023之前的柱面号都一一物理对应, 而1023以后的所有柱面号都记录成1023磁头最大数可以设置为255, 而扇区数一般是每磁道63个, 硬盘控制器会把由柱面、磁头、扇区等参数确定的地址转换为LBA 数. 这里我们再此明确两个概念:物理扇区号:一般我们称CHS模式下的扇区号为物理扇区号, 扇区编号开始位置是1逻辑扇区号:LBA下的编号, 扇区编号是从0开始.CHS模式转换到逻辑扇区号LBA计算公式LBA(逻辑扇区号)=磁头数×每磁道扇区数×当前所在柱面号+ 每磁道扇区数×当前所在磁头号+ 当前所在扇区号–1例如: CHS=0/0/1, 则根据公式LBA=255 ×63 ×0 + 63 ×0 + 1 –1= 0也就是说物理0柱面0磁头1扇区, 是逻辑0扇区.硬盘分区我们知道, 一般使用硬盘, 我们首先会对硬盘进行分区, 然后对分区使用某个文件系统格式(NTFS、FAT、ext2/ext3)进行分区格式化, 然后才能正常使用. 那么分区是怎么回事呢?我们常见的windows中说到的c、d、e盘是怎么划分出来的呢?其实, 在装windows系统过程中, 一般我们只需要填写每个分区的大小, 看不出来分区过程的实际工作情况, 我们可以从linux系统分区过程反而能反应底层实际分区情况.柱面是分区的最小单位, 即分区是以某个某个柱面号开始到某个柱面号结束的.如图, 柱面1~200我们可以分为一个区, 柱面201~500再划分为一个区, 501~1000再划分为一个区, 以此类推. 大家可以看到, 柱面0没有在任何分区里面, 为何?这里说说, 前面说到硬盘从外圈(柱面0)到内圈扇区是依次编号, 看似各个扇区没有什么区别, 但是这里硬盘的柱面0的第一个扇区(逻辑扇区0, CHS表示应该是0/0/1)却是最重要的, 因为硬盘的第一个扇区记录了整个硬盘的重要信息, 第一个扇区(512个字节)主要记录了两部分:①MBR(Master Boot Record): 主引导程序就放在这里, 主引导程序是引导操作系统的一个程序, 但是这部分只占446字节.②DPT(Disk Partition table): 硬盘分区表也在这里, 分区表就是用来记录硬盘的分区情况的, 例如c盘是1~200柱面, d盘是201~500柱面, 分区表总共只占64字节, 可以看出, 分区其实很简单, 就是在这个表里面修改一下记录就重新分区了, 但是由于只有64字节, 而一条记录就要占用16字节, 这个分区表最多只能记录4个分区信息, 为了继续分出更多分区来, 引入了扩展分区的概念, 也就是说, 在这4个分区中, 可以使用其中一条记录来记录扩展分区的信息, 然后在扩展分区中再继续划分逻辑分区, 而逻辑分区的分区记录则记录在扩展分区的第一个扇区中, 如此则可以像链表一样划分出很多分区来. 但是请注意, 一个分区表中可以有1~4条主分区, 但是最多只能有1个扩展分区.举例, 主分区可以是P1:1~200, 扩展分区P2: 2~1400, 扩展分区开始的第一个扇区可以用来记录扩展分区中划分出来的逻辑分区.分区表链分区表之间是如何关联的, 详细讲一下, 分区表是一个单向链表, 第一个分区表, 也就是位于硬盘第一个扇区中的DPT, 可以有一项记录扩展分区的起始位置柱面, 类似于指针的概念, 指向扩展分区(图3), 根据这项记录我们可以找到扩展分区的某柱面0磁头1扇区(CHS), 而这个扇区中又存放了第二个分区表, 第二个分区表第一项记录一般表述了当前所在的逻辑分区的起始/终止柱面, 第二项记录表述了下一个逻辑分区所在的0磁头1扇区(CHS),第三、第四项记录不存任何信息(图4).请看下图, 主引导记录/分区表所在的是硬盘第一个分区, 基本分区1、基本分2、基本分区3都是主分区、扩展分区内有2个逻辑分区, 每个逻辑分区的第一个扇区都是分区表, 至于引导扇区(DBR), 在系统启动一节中会提及.系统启动:之前提到MBR中安装的引导加载程序, 他的作用是什么?①提供开机菜单选项: 可以供用户选择启动哪个操作系统, 这是多重引导功能.②加载操作系统内核: 每个操作系统都有自己的内核, 需要引导程序来加载③转交给其他引导程序: 可以将工作移交给其他引导程序来进行上述操作.其实引导加载程序除了可以安装在MBR中, 还可以直接安装在每个分区的引导扇区(DBR)中, 注意下, 每个分区(主分区、逻辑分区)都有一个自己的启动扇区, 专门用来安装引导加载程序, 如上图标3结构图.系统启动过程:①首先,BIOS启动后, 读取硬盘第一个扇区MBR中的引导加载程序(可能是windows或者linux 的grub)②MBR中的引导程序提供开机菜单, 你可以选择1)直接加载windows 内核2)将工作转交给windows 分区内的引导扇区中的加载程序, 让他自己去加载内核3)转交给linux分区内引导扇区, 让他去加载linux.③根据用户选择的选项和引导加载程序中记录的分区, 到分区表找对应的分区柱面号等分区信息, 启动内核或者分区加载程序.Window安装时默认会自动将MBR和windows所在分区的引导扇区都装上引导程序, 而不会提供任何选项给用户选择, 因此如果之前装过其他操作系统, 然后再另外装一个windows时, 会把公用的MBR覆盖掉, 如此, 原来的操作系统就无法启动了. 如果先装windows, 然后装linux, linux会覆盖MBR, 然后让用户选择是否将windows等其他操作系统的启动项添加进来, 如果你选择了添加进来, 那么你在开机时就会有两个选项让用户进行选择了.后记l 这里讨论的全部是硬盘相关的东西, 光盘不在此列, 而且光盘的磁道并不是从外圈到内圈编号, 而是从内圈开始编号, 这点注意.l 硬盘第一个扇区是由MBR和分区表占据, 因此0柱面0磁头上剩下的62个扇区一般会空出来保留(这部分保留称为隐藏扇区, 因为操作系统读取不到这部分扇区, 这部分扇区是提供给BIOS读取的), 而系统分区则从0柱面1磁头1扇区开始, 折算成LBA=255 ×63 ×0 + 63 ×1 + 1 –1= 63, 即从LBA 63号扇区开始分区. 不过查阅有的资料提及到另外一种说法, 那就是有的硬盘可能0柱面全部空下来, 如果真是这样, 那浪费可就真的大了.l 对于扩展分区的分区表我们知道也是由扩展分区的第一个扇区开始写, 而且是写到每个逻辑驱动器的第一个扇区, 同样, 扩展分区内的第一个扇区所在的磁道剩余的扇区也会全部空余出来, 这些保留的扇区操作系统也是无法读取的, 注意在扩展分区的第一个扇区里面是没有引导加载记录的. 引导加载记录都是放在隐藏扇区后面的. 可以看图3, 图4。
硬盘的结构
硬盘的结构1、硬盘的外部物理结构硬盘主要由盘体、控制电路板和接口部件组成。
盘体是一个密封的腔体。
(后续将介绍硬盘的内部物理结构即是指盘体的内部结构)。
控制电路板上主要有硬盘BIOS、硬盘缓存(Cache)和主控制芯片等单元。
硬盘接口包括插座、数据接口和主、从跳线等。
2、硬盘的内部物理结构硬盘盘体是完全密封的,里面主要有磁头、盘片等部件。
硬盘的盘片材料硬度和耐磨性要求很高,所以一般采用合金材料,多数为铝合金。
(早期有塑料,陶瓷的,现在也出现了玻璃材料的)。
盘基上涂上磁性材料。
硬盘盘片厚一般在0.5mm左右,盘片的转速与盘片大小有关,考虑到惯性及盘片稳定性,盘片越大转速越低。
有些硬盘只装一张盘片,有此则有多张。
硬盘盘片安装在主轴电机的转轴上,在主轴电机的带动下作高速旋转。
每张盘片的容量称为单碟容量,而一块硬盘的总容量就是所有盘片容量的总和。
早期硬盘由于单碟容量低,所以盘片较多。
现代的硬盘盘片一般只有少数几片。
一块硬盘内的所有盘片都是完全一样的,否则控制部分就太复杂了。
盘片上的记录密度很大,而且盘片工作时会高速旋转,为保证其工作的稳定,数据保存的长久,所以硬片都是密封在硬盘内部的,内部并非真空。
不可自行拆卸硬盘,在普通环境下空气中的灰尘,都会对硬盘造成永久损害。
以上介绍的是盘片,一张单面的盘片需要一个磁头,双面的盘片则需要两个磁头。
硬盘采用高精度、轻型磁头驱动和定位系统。
这种系统能使磁头在盘面上快速移动,读写硬盘时,磁头依靠磁盘的高速旋转引起的空气动力效应悬浮在盘面上,与盘面的距离不到1微米(约为头发直径的百分之一),可以在极短的时间内精确定位到计算机指令指定的磁道上。
注意:由于磁盘是旋转的,则连续写入的数据是排列在一个圆周上的。
我们称这样的圆周为一个磁道(Track)。
由于定位系统限制,磁头臂只能在盘片的内外磁道之间移动。
因此,不管开机还是关机,磁头总在盘片上。
所不同的是,关机时磁头停留在盘片启停区,开机时磁头“飞行”在磁盘片上方。
硬盘的内部结构图
硬盘正面硬盘正面的面板我们称之为固定面板,它与底板结合成一个密封的整体。
由于硬盘内部完全密封,并不是有人说的“真空”,只是内部无尘而已,所以为了保证硬盘内部组件的稳定运行,固定面板上有一个带有过滤器的小小透气孔,该气孔主要使硬盘内部气压与大气气压保持一致,这是让磁盘盘片和磁头在硬盘内部稳定工作的关键因素。
硬盘接口硬盘的外部接口包括电源线接口和数据线接口两部分,其中电源线接口与主机电源相连接,为硬盘正常工作提供电力保证。
数据线接口则是硬盘与主板之间进行数据传输交换的通道,常见的数据线接口有ATA接口、SCSI接口、SATA接口三类。
硬盘的背面硬盘的背面主要有控制电路板、接口及其它附件。
硬盘的控制电路板几乎都是采用贴片式焊接,它包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、控制与接口电路等。
电路板上主要的芯片包括主控制芯片、数据传输芯片、高速数据缓存芯片等。
探索硬盘内部固定面板下的硬盘这块硬盘用了10多颗特殊的六角型螺丝来固定,要花点大力气才能将固定面板揭开。
面板揭开后,硬盘的内部结构终于可以一览无余了,可以看见内部主要有磁盘盘片、磁头组件这两部分。
硬盘盘片硬盘内部最吸引眼球的当然是银晃晃的磁盘盘片了,有人戏称这是世界上最昂贵的镜子。
盘片是硬盘存储数据的载体,现在硬盘盘片表面大多采用金属薄膜材料,它具有高的存储密度高、存储容量大、存储成本低等优点。
除此之外,还有一种玻璃材质的磁盘盘片。
将硬盘的固定面板取下后,就可以挪动最上面的一张盘片了,可以发现这块硬盘采用的是双盘,在两个盘片中间,有一个垫圈,取下后可以拿出另外一张盘片。
磁头组件磁头组件是硬盘中最精密的部件之一,它由读写磁头、传动手臂、传动轴三部分组成。
其中磁头是硬盘中最重要的部分,一块硬盘中的每张盘片都配有一个读写磁头,而这些磁头又连接在同一个传动机构上。
磁头加电后在高速旋转的磁盘表面上0.1~0.3μm的地方移动,磁盘的数据。
磁头驱动机构读写磁盘磁道的过程是靠移动磁头来完成的,而移动磁头则需要磁头驱动机构来实现。
硬盘内部结构
1、硬盘的组成硬盘大家一定不会陌生,我们可以把它比喻成是我们电脑储存数据和信息的大仓库。
一般说来,无论哪种硬盘,都是由盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份组成。
所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。
而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。
所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。
磁头可沿盘片的半径方向动作,而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。
由于硬盘是高精密设备,尘埃是其大敌,所以必须完全密封。
2、硬盘的工作原理硬盘在逻辑上被划分为磁道、柱面以及扇区.硬盘的每个盘片的每个面都有一个读写磁头,磁盘盘面区域的划分如图所示。
磁头靠近主轴接触的表面,即线速度最小的地方,是一个特殊的区域,它不存放任何数据,称为启停区或着陆区(Landing Zone),启停区外就是数据区。
在最外圈,离主轴最远的地方是“0”磁道,硬盘数据的存放就是从最外圈开始的。
那么,磁头是如何找到“0”磁道的位置的呢?在硬盘中还有一个叫“0”磁道检测器的构件,它是用来完成硬盘的初始定位。
“0”磁道是如此的重要,以致很多硬盘仅仅因为“0”磁道损坏就报废,这是非常可惜的。
早期的硬盘在每次关机之前需要运行一个被称为Parking的程序,其作用是让磁头回到启停区。
现代硬盘在设计上已摒弃了这个虽不复杂却很让人不愉快的小缺陷。
硬盘不工作时,磁头停留在启停区,当需要从硬盘读写数据时,磁盘开始旋转。
旋转速度达到额定的高速时,磁头就会因盘片旋转产生的气流而抬起,这时磁头才向盘片存放数据的区域移动。
盘片旋转产生的气流相当强,足以使磁头托起,并与盘面保持一个微小的距离。
这个距离越小,磁头读写数据的灵敏度就越高,当然对硬盘各部件的要求也越高。
早期设计的磁盘驱动器使磁头保持在盘面上方几微米处飞行。
FAT文件结构
一、硬盘的物理结构:硬盘存储数据是根据电、磁转换原理实现的。
硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。
硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。
当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。
因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。
这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。
二、硬盘的逻辑结构。
硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。
如果有N个盘片。
就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。
每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。
)每个盘片的划分规则通常是一样的。
这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinde rs×Heads×Sector个扇区。
这三个参数即是硬盘的物理参数。
我们下面的很多实践需要深刻理解这三个参数的意义。
三、磁盘引导原理。
3.1 MBR(master boot record)扇区:计算机在按下power键以后,开始执行主板bios程序。
第9章 硬盘驱动器
3.反应时间 反应时间就是硬盘完成第一次转轮旋转的时间, 它是反映非曲直硬盘转速最直接的一个性能指标。 5400 r/min的硬盘拥有的是5.55 ms的反应时间,而7200 r/min的硬盘反应时间可以达到4.17 ms。 4.平均潜伏期(AL) 平均潜伏期是指当磁头移动到数据所在的磁道后, 等待所要的数据继续转动(半圈或多些、少些)到磁头下 的时间,单位为ms。
9.3 硬盘的工作原理
硬盘的工作原理非常复杂,在这里我们以硬盘的 一个工作流程来讲述硬盘的工作原理。当硬盘驱动器 加电正常工作后,利用控制电路中的单片机初始化模 块进行初始化工作,此时磁头置于盘片的中心位置, 初始化完成后主轴电机将启动并高速旋转,装载磁头 的小车机构移动,将浮动磁头置于盘片表面的00道, 处于等待指令的启动状态。
图9–1 硬盘背面
图9–2 硬盘正面
9.2 硬盘的内部结构
硬盘的内部结构主要由固定面板、控制电路板、 盘头组件、接口及附件等几大部分组成。盘头组件 (HDA,Hard Disk Assembly)是构成硬盘的核心,封装 在硬盘的净化腔内,包括浮动磁头组件、磁头驱动机 构、盘片及主轴驱动机构、前置读写控制电路等,如 图9–3所示。
5.最大内部数据传输率(MIDTR) 最大内部数据传输率也叫持续数据传输率 (Sustained Transfer Rate),它是指磁头到磁盘缓存间的 最大数据传输率,单位为Mb/s,即兆位/秒的意思(注意 与MB/s之间的差别:MB/s=Mb/s÷8)。 6.外部数据传输率(ETR) 外部数据传输率是指从硬盘缓冲区读取数据的速 率,常以数据接口速率代替,单位为MB/s。
硬盘硬盘硬盘
硬盘的维护及选购
4.3
硬盘的选购: (1)重视硬盘的单碟容量,因为其值越高,所需要的碟片数量就越少,硬 盘的磁头数量就会减少,发热量也会减少,从而稳定性就越高。 (2)当前主流转速是7200转,比5400转有了不小的提升。 (3)稳定性:购买主流产品,稳定性最高。 (4)缓存:大容量缓存可以很明显的提高硬盘性能。 (5)质保:各品牌的盒装硬盘一般提供三年或五年的质量保证。
吐举止、知识能力等方面做出积极、准确的评价吗? • A 不能B 很难说C 我想可以
• 5 你说话时姿态是否丰富?
• A 偶尔做些手势B 从不指手画脚C 我常用姿势补充 言语表达
• 6 若别人谈到了你兴味索然的话题,你将:
• A 打断别人,另起一题B 显得沉默、忍耐C 仍然认 真听,从中寻找乐趣
• 7 你是否在寒暄之后,很快就能找到双方共同感兴趣的 话题?
• A 是的,对此我很敏锐B 我觉得这很难C 必须经 过较长一段时间才能找到
• 8 你和别人告别时,下次相会的时间地点是: • A对方提出的B谁也没有提这事C我提议的
• 9 你讲话的速度怎么样?
• A频率相当高B十分缓慢C节律适中
• 10 你同他(她)谈话时,眼睛望着何处?
• A直视对方眼睛B看着其他的东西或人C盯着自己的纽扣, 不停玩弄
• 11 会面时你说话的音量总是:
• A 很低,以致别人听得较困难B 柔和而低沉C 声音 高亢热情
• 12 通常第一次交谈,你们分别所占用的时间是:
•
A 差不多B 他多我少C 我多于他
• 12~22分:第一印象差 • 也许你会感到吃惊,因为很可能你只是依着自己的习惯行事而
已。也许你本来是很愿意给别人留下一个美好的印象,可是你的 不经心或缺乏体贴、或言语无趣,无形中却让来人做出关于你的 错误的勾勒。你必须记住交往是种艺术,而艺术是不能不修边幅 的。 • 23~46分:第一印象一般 • 你的表现中存在着某些令人愉快的成分,但同时又偶有不够精 彩之处,这使得别人不会对你印象恶劣,却也不会产生很强的吸 引力。如果你希望提高自己的魅力,首先必须从心理上重视,努 力在“交锋”的第一回合中显示出自己的最佳形象。 • 47~60分:第一印象好 • 你的适度、温和、合作给第一次见到你的人留下了深刻的印象。 无论对方是你工作范围抑或私人生活中的接触者,他们无疑都有 与你进一步接触的愿望。你的问题只在于注意那些单向的对你“一 见钟情”者。
硬盘内部结构及原理图
让们简单的了解一下硬盘的外部和内部结构及逻辑结构。
1、硬盘的外部结构:硬盘是一个集机、电、磁于一体的高精密系统。
图(一)对上图(一)的解释:1、缓存这就是我们经常说的缓存,缓存的作用主要是和硬盘内部交换数据,我们平时所说的内部传输率其实也就是缓存和硬盘内部之间的数据传输速率。
2、电源接口和光驱一样,硬盘的电源接口也是由4针组成。
其中,红线所对应的+5V电压输入,黄线对应输出的是+12V电压。
3、跳线跳线的作用是使IDE设备在工作时能够一致。
当一个IDE接口上接两个设备时,就需要设置跳线为“主盘”或者“从盘”,具体的设置可以参考硬盘上的说明。
4、IDE接口硬盘IDE接口是和主板IDE接口进行数据交换的通道。
我们通常说的UDMA/33模式就是指的缓存和主板IDE接口之间的数据传输率(也就是外部数据传输率)为33.3MB/s,目前的接口规范已经从UDMA/33发展到UDMA/66和UDMA/100。
但是由于内部传输率的限制,实际上外部传输率达不到理论上的那么高。
为了使数据传输更加可靠,UDMA/66模式要求使用80针的数据传输线,增加接地功能,使得高速传输的数据不致出错。
在UDMA/66线的使用中还要注意,其兰色的一端要接在主板IDE口上,而黑色的一端接在硬盘上。
5.电容硬盘存储了大量的数据,为了保证数据传输时的安全,需要高质量的电容使电路稳定。
6.控制芯片硬盘的主要控制芯片,负责数据的交换和处理,是硬盘的核心部件之一。
硬盘的电路板可以互相换(当然要同型号的),在硬盘不能读出数据的时候,只要硬盘本身没有物理损坏且能够加电,我们就可以通过更换电路板的方式来使硬盘“起死回生”。
2、硬盘内部结构:硬盘内部结构由固定面板、控制电路板子、磁头、盘片、主轴、电机、接口及其他附件组成,其中磁头组件是构成硬盘的核心。
详细如图(二):图(二)对上图(二)的解释:磁头头组件如图(三):磁头组件是硬盘最精密的部件之一,主要包括读写磁头、传动手臂、传动轴三部分组成。
硬盘分区图解(参考样图)
移动硬盘分区图解(参考样图)
警告:移动硬盘在分区前,请务必确认硬盘里是否有重要数据或是确认数据已备份,不然分区后里面所有保存的数据就会全部消失没有!
在WIN2000/XP/VISTA/WIN7等操作系统中可执行以下图示的操作,具体操作方式是:右键单击桌面上“我的电脑”,在弹出的下拉菜单中选“管理”,在接下来弹出的“计算机机管理”对话框中选“磁盘管理”就OK了。
切记,分区的时候不要分错对像了,一般移动硬盘为“磁盘1”,“磁盘0”是本机硬盘。
卷标和每个分区的容量大小,可以根据自己的喜欢和使用习惯设置。
硬盘结构图
2扇区
1扇区
硬盘物理结构及MBR详解
日期:2004.7.18
3.MBR数据结构(0柱面,0磁头,1扇区).
0柱面,0磁头,1扇区起始位置
结束标志: 55 AA (1FEH~1FFH) 2字节
硬盘磁头安全 着陆区
分区表信息 (1BEH~1FDH) 64字节
主引导程序
硬盘物理结构及MBR详解
日期:2004.7.18
1.结构总图: 转动轴
0磁头
盘片
2磁头
1磁头
移 动 臂
3磁头
4磁头
5磁头
2.俯视图(0磁头) 转动 方向
磁盘边缘 0磁道 1磁道 0扇区 2磁道
MBR起始位置: 0柱面,0磁头,1扇区. 大小为1个扇区(512B) 分为三部分: (1).主引导程序. (2).分区表. (3).结束标志.
说明: 1.主引导程序:共446字节, 包括启动引导程序及出错信息两部分. 2.分区表信息:共64字节,分为四个分区表项,每个表项均为16字节,一般第一表项为主分区信息, 第二表项为扩展分区信息,第三,四表项全为零字节.表项中各字节分配及含义如下: 序号 字节数 数值 含义 主分区为80(可自举),扩展分区为00. 第1字节 80或00 1 2 3 4 5 6 7 8 第2字节 第3,4字节 第5字节 第6字节 第7,8字节 第9~12字节 第13~16字节
3F 00 00 00(第一表项)
00或01
于第一表项中表示主分区(即C盘)首扇所在的磁头,扇区,柱面(通常为1头1扇 0柱). 于第二表项中表示扩展分区首扇所在的磁头,扇区,柱面(通常为0头1扇,柱面 号为C盘的终止柱面加1) 于第一表项中表示主分区(即C盘)末扇所在的磁头,扇区,柱面(通常磁头数为 硬盘的磁头数减1,扇区数为63扇,柱面数为C盘的终止柱面) 于第二表项中表示扩展分区末扇(也即整个硬盘的末扇)所在的磁头,扇区,柱 面(通常磁头数为硬盘磁头减1,扇区数为63,柱面数为硬盘柱面数减1) 于第一表项指C盘首扇区之前的隐含扇区数(通常为63), 于第二表项指C盘扇区总数加隐含扇区数(63) 于第一表项为主分区的逻辑扇区总数, 于第二表项为扩展分区的逻辑扇区总数.
简述固态硬盘基本结构
简述固态硬盘基本结构
固态硬盘(Solid State Drive,简称SSD)是一种使用闪存芯片存储数据的硬盘。
与传统的机械硬盘相比,固态硬盘具有更高的速度、更低的耗能和更小的体积。
固态硬盘的基本结构包括控制器、闪存芯片和缓存。
控制器是固态硬盘的核心,它负责管理数据的读写和运行各种算法来提高性能和可靠性。
控制器还负责将数据从电脑系统传输到闪存芯片,并将数据从闪存芯片中读取到系统中。
闪存芯片是固态硬盘存储数据的组件。
它使用非易失性存储器来存储数据,这意味着即使断电也不会丢失数据。
闪存芯片通常采用NAND 闪存技术,其中的存储单元被组织成一个个页和块。
每个页通常包含几百个字节的数据,而每个块则包含多个页。
当需要读取或写入数据时,控制器会根据需要在闪存芯片的不同块之间进行数据的搬移,以保证每个块的使用寿命均匀。
缓存是固态硬盘的临时存储区域,用于加快数据的读写速度。
固态硬盘的缓存通常采用DRAM(动态随机存取存储器),它具有高速读写的特点。
当数据被写入固态硬盘时,首先会暂时存储在缓存中,然后控制器再将数据写入闪存芯片。
同样,当需要读取数据时,控制器会首先从闪存芯片读取数据并存储在缓存中,然后再传输给系统。
除了上述基本结构,固态硬盘还可能包含一些高级功能,如错误校验和修正(ECC),数据压缩和加密等。
这些功能可以提高数据的可靠性和安全性。
总之,固态硬盘的基本结构包括控制器、闪存芯片和缓存。
通过这些组件的协同工作,固态硬盘能够提供更高的速度和更可靠的数据存储。
计算机硬盘完全拆解全过程(全程详细图解)
硬盘拆解全过程详细图解现在,硬盘的容量越来越大,给我们的工作带来了极大的方便.但是,硬盘的脆弱使得他一旦出现问题.我们又没有及时备份,后果将是带来无法估量的损失.幸好,目前在国内出现的一个新兴行业"数据恢复",使得我们遇到数据丢失,病毒破坏,误删除,误ghost,硬件故障...等不幸后可以极大地挽救重要数据,从而减少损失. 今天介绍的是大家最为关心,最为好奇,也很少见到的硬盘开盘更换磁头处理.首先我们要了解一下磁头与盘片的关系,大家都知道,数据是以磁记录方式存储在盘片上的,读取和写入都靠磁头来完成.然而,磁头并不是贴在盘片上读取的,由于磁盘的高速旋转,使得磁头利用“温彻斯特/Winchester”技术悬浮在盘片上.这使得硬盘磁头在使用中几乎是不磨损的,这使得数据存储非常稳定,硬盘寿命也大大增长.但磁头也是非常脆弱的,在硬盘工作状态下,即使是再小的振动,都有可能使磁头受到严重损坏.由于盘片是工作在无尘环境下,所以,我们在处理磁头故障,也就是更换磁头时,都必须在无尘室内完成,而且还要有扎实的基本功,熟练的技巧,才能使成功率大大提高上海数据恢复.现在我们就来边看图片.边了解更换磁头的具体过程首先,开盘需要特定的条件和工具,无尘环境是必不可少的,其次我们可以从图中看到还需要医用手套,美工刀,尖嘴钳,直头和弯头镊子,螺丝刀(一字和t8)这次我们要更换磁头的硬盘是某客户的一个迈拓120g 硬盘,故障情况是工作后不认盘,电机转,有敲头声.首先,我们用美工刀小心地揭开硬盘上的保修标签.接下来当然是拆除top上的所有螺丝,为了工作效率,外面不是要求很高的螺丝,我们可以用电动起子去卸.我们小心的将螺丝放在培养皿里,打开top,我们就可以一览无遗地看到硬盘的内部结构了,我们可以清楚地看到组成硬盘的各个组件,包括底座base,马达moter,磁盘disc,磁头eblk,和已经打开的顶盖top......打开盘腔以后,我们首先要拆除磁头eblk与主板pcba的连接线.这里,我们就不选用电动起子了,改用手工拆除,这样可以大大地降低失误而造成的严重后果,盘片是需要特别保护的,不允许有任何物体掉落在上面.接下来我们来拆vcm组件中的钕磁铁,钕磁铁的吸力是非常大的,我们要非常当心,左手用力按住盘腔,右手紧握尖嘴钳,将钕磁铁取下.然后我们需要把磁头从盘片上停靠区移出来,移出盘片,这样才可以将磁头拆下.我们用一字螺丝刀小心地拆下磁头,用左手按住磁头,避免磁头碰到任何东西.小心翼翼地手拿vcm,把坏磁头取下.这张图上我们可以清楚的看到,这个120g的迈拓盘有3个磁头,上面两个(并着),下面一个独立的.盘片数目是2片.取下磁头以后,我们找出和坏磁头同一型号的磁头去更换,我们找来事先准备好,存放在培养皿里的备用磁头.小心地将其装在盘腔上,尤其是磁头不能碰到任何东西,因为磁头是非常脆弱的,上面的簧片稍微受到力就会变形,一旦磁头变形,即宣告这个磁头的报废.接下来这个步骤是关键中的关键了,工程师的基本功和经验都体现在这里了,这里失误,将严重损坏新换上的磁头,这个步骤就是磁头上盘片,工程师用镊子将磁头挑开,直至3个磁头全部放到盘片上,当然,磁头数目越多也就意味着难度越大.把磁头移到盘片上的磁头停靠区把磁头与pcba的连接线固定好安装vcm组件......ok,我们已经安装好盘腔里面的所有东西了.仔细检查一下就可以关上top了最后一步.安装top,上螺丝当然要注意顺序,不要一次上紧,先对角上齐螺丝,然后在对角依次拧紧每个螺丝......呵呵,一切的努力终于换来了成果,接上pc检测一下,顺便用耳朵听一下,硬盘已经可以正常认盘了,盘片没有问题的话可以直接挂负盘直接复制数据,如果盘片有问题,我们就需要用软件来跳过坏道恢复数据.......。
(完整word版)硬盘结构原理磁道,扇区和柱面图示
硬盘结构原理磁道,扇区和柱面图示我们知道硬盘中是由一片片的磁盘组成的,大家可能没有打开过硬盘,没见过它具体是什么样.不过这不要紧.我们只要理解了什么是磁道,扇区和柱面就够了.在下图中,我们可以看到一圈圈被分成18(假设)等分的同心圆,这些同心圆就是磁道(见图).不过真打开硬盘你可看不到.它实际上是被磁头磁化的同心圆.如图可以说是被放大了的磁盘片。
那么扇区就是每一个磁道中被分成若干等分的区域。
相邻磁道是有间隔的,这是因为磁化单元太近会产生干扰。
一个小软盘有80个磁道,硬盘嘛要远远大于此值,有成千上万的磁道.每个柱面包括512个字节。
那么什么是柱面呢?看下图,我们假设它只有3片.每一片中的磁道数是相等的.从外圈开始,磁道被分成0磁道,1磁道,2磁道.。
....具有相同磁道编号的同心圆组成柱面,那么这柱面就像一个没了底的铁桶。
哈哈,这么一说,你也知道了,柱面数就是磁盘上的磁道数.每个磁面都有自己的磁头。
也就是说,磁面数等于磁头数。
硬盘的容量=柱面数(CYLINDER)*磁头数(HEAD)*扇区数(SECTOR)*512B。
这下你也可以计算硬盘的一些参数了。
什么是簇?文件系统是操作系统与驱动器之间的接口,当操作系统请求从硬盘里读取一个文件时,会请求相应的文件系统(FAT16/32/NTFS)打开文件。
扇区是磁盘最小的物理存储单元,但由于操作系统无法对数目众多的扇区进行寻址,所以操作系统就将相邻的扇区组合在一起, 形成一个簇,然后再对簇进行管理.每个簇可以包括2、4、8、16、32或64个扇区。
显然,簇是操作系统所使用的逻辑概念,而非磁盘的物理特性.为了更好地管理磁盘空间和更高效地从硬盘读取数据,操作系统规定一个簇中只能放置一个文件的内容,因此文件所占用的空间,只能是簇的整数倍;而如果文件实际大小小于一簇,它也要占一簇的空间。
所以,一般情况下文件所占空间要略大于文件的实际大小,只有在少数情况下,即文件的实际大小恰好是簇的整数倍时,文件的实际大小才会与所占空间完全一致。
简述硬盘零扇区的结构
简述硬盘零扇区的结构硬盘是计算机中存储数据的重要设备之一、硬盘零扇区是硬盘的一部分,用来存储硬盘上不可访问、不可分配的区域。
在本文中,我们将详细介绍硬盘零扇区的结构和功能。
硬盘零扇区指的是硬盘中无法进行数据读写的区域。
这些区域通常位于硬盘的内部,并且由硬盘制造商保留。
零扇区可以分为两部分,包括主引导记录(Master Boot Record,MBR)和坏道表。
主引导记录是硬盘上的第一个扇区,占用512字节的存储空间。
MBR存储着计算机启动时必要的引导程序和分区表信息。
当计算机启动时,主引导记录将被加载到内存中,以确定硬盘上的启动分区和操作系统的位置。
MBR还包含磁盘分区表,用于记录硬盘中分区的信息,包括分区的起始位置和大小。
这些信息对于操作系统正确地访问硬盘上的分区至关重要。
坏道表是记录硬盘上不可用扇区的表格。
由于硬盘使用一系列磁性位来存储数据,而这些位可能会受到磁头、磁片或其他因素的影响而变为不可用。
当硬盘制造商在生产过程中发现不可用的扇区时,他们将将这些扇区的位置记录在坏道表中。
操作系统在读写硬盘数据时,会检查坏道表来避免使用这些不可用的扇区。
对于用户而言,硬盘零扇区通常是不可见的。
它们的作用在于确保硬盘的正常运行和数据的安全。
MBR和坏道表被硬盘制造商保留,不允许用户直接读写这些扇区。
然而,用户可以通过一些特殊的工具和方法来查看硬盘零扇区的信息,并进行一些必要的修复。
对于硬盘维护和修复而言,MBR和坏道表是非常重要的。
如果MBR损坏或丢失,计算机将无法启动。
在这种情况下,用户可以使用引导修复工具来修复MBR,以使计算机能够正常启动。
坏道表的作用是告知操作系统硬盘上不可用的扇区,并将这些扇区标记为“已坏块”。
当操作系统读写数据时,它会自动忽略这些扇区,从而避免数据的损坏。
当发现硬盘上有新的坏道时,操作系统会将它们添加到坏道表中,从而保证硬盘的数据完整性。
除了MBR和坏道表之外,硬盘零扇区中还可能包含其他固件或工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述硬盘结构(图)
硬盘在外部传输方面,主要通过接口来展现。
从2002年到现在,接口实现了从PATA
到SATA的转变,但速度依然没有得到很好的改观。
在SATA 未能给速度带来多大提升的时候,SATA2应运而生,并带来了新的技术NCQ以及300MB/s的峰值带宽。
到了2009年末,SATA3终于来了。
作为新接口标准的SATA3.0,它的到来能否为硬盘带来新动向,压制日益发展的固态硬盘产品呢?首先我们了解一下目前温彻斯特硬盘的构造。
硬盘(英文名:Hard Disc Drive,简称HDD,全名温彻斯特式硬盘)是电脑中必不可少的存储媒介之一。
硬盘的组成是由一个或者多个铝制或者玻璃制的碟片组成。
这些碟片外覆盖有铁磁性材料。
绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。
●硬盘基本参数详解:
硬盘内部结构详解
转速:硬盘通常是按每分钟转速(RPM,Revolutions Per Minute)计算:该指标代表了硬盘主轴马达(带动磁盘)的转速,比如5400 RPM就代表该硬盘中主轴转速为每分钟5400转。
目前主流笔记本硬盘转速为5400RPM;台式机硬盘则为7200RPM。
但随着技术的不断进步,笔记本和台式机均有万转产品问世,但多用用于企业用户。
单碟容量:单碟容量是硬盘相当重要的参数之一。
硬盘是由多个存储碟片组合而成,而单碟容量就是指一个存储碟所能存储的最大数据量。
目前在垂直记录技术的帮助下,单碟容量从之前80GB升级到500GB或者640GB,发展速度相当快。
硬盘单碟容量提高不仅仅可以带
来总容量提升,有利于降低生产成,提高工作稳定性;而且单碟容量越大其内部数据传输速率就越快。
硬盘结构示意图
平均寻道时间:平均寻道时间指硬盘在盘面上移动读写磁头到指定磁道寻找相应目标数据所用的时间,单位为毫秒。
当单碟容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘访问速度。
硬盘背面PCB详解
缓存:缓存是硬盘与外部交换数据的临时场所。
硬盘读/写数据时,通过缓存一次次地填充与清空,再填充,再清空,就像一个中转仓库一样。
目前大多数硬盘缓存已经达到32MB,而对于大容量产品则均为64MB容量。
内部数据传输率:内部传输率是指硬盘磁头与缓存之间的数据传输率,简单说就是硬盘将数据从盘片上读取出来,然后存储在缓存上的速度。
内部传输率可以明确表现出硬盘的读写速度,它的高低才是评价一个硬盘整体性能的决定性因素。
目前大多数桌面级硬盘基本都在70-90MB/S之间,笔记本硬盘则在55MB/S左右。