2018年高考数学考试大纲解读专题15坐标系与参数方程理 Word版 含答案
(2021年整理)2018高考数学试题分项版_极坐标参数方程[解析版]
2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)的全部内容。
2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)〉这篇文档的全部内容。
2017年高考数学试题分项版—极坐标参数方程(解析版)一、填空题1.(2017·北京理,11)在极坐标系中,点A在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为________.1.【答案】1【解析】由ρ2-2ρcos θ-4ρsin θ+4=0,得x2+y2-2x-4y+4=0,即(x-1)2+(y-2)2=1,圆心坐标为C(1,2),半径长为1。
2018年高考数学总复习 选考部分 坐标系与参数方程
l 的距离为 d=|3cos������+√41s7in������-������-4|. 当 a≥-4 时,d 的最大值为���√���+179.由题设得���√���+179 = √17,所以 a=8;
当 a<-4 时,d 的最大值为-√������1+71.由题设得-√������1+71 = √17,所以 a=-16. 综上,a=8 或 a=-16.
(1)在伸缩变换下,直线仍然变成直线,圆仍然变成圆. ( × )
(2)点 P 在曲线 C 上,则点 P 的极坐标一定满足曲线 C 的极坐标
方程.
(× )
(3)如果点 P 的直角坐标为(-√2, √2),那么它的极坐标可表示为
2,
3π 4
.
(4)参数方程
������ ������
= =
-21+-������,������(t
选修4—4 坐标系与参数方程
-2-
考纲要求
五年考题统计
1.了解坐标系的作用,了
解在平面直角坐标系伸
缩变换作用下平面图形 的变化情况. 2.了解极坐标的基本概 念,会在极坐标系中用极 坐标刻画点的位置,能进 行极坐标和直角坐标的 互化. 3.能在极坐标系中给出简 单图形表示的极坐标方
程. 4.了解参数方程,了解参 数的意义. 5.能选择适当的参数写出
①直线过极点:θ=θ0和 θ=π +θ0 ;
②直线过点M(a,0),且垂直于极轴: ρcos θ=a ;
③直线过 M
������,
π 2
,且平行于极轴:
ρsin θ=b
.
5.圆的极坐标方程
(1)若圆心为M(ρ0,θ0),半径为r,则圆的方程为 ρ2-2ρ0ρcos(θ-θ0)+������0.2-r2=0
2018年高考数学真题专题汇编----极坐标与参数方程
( 1)求 的取值范围; ( 2)求 AB 中点 P 的轨迹的参数方程.
4.【 2018 江苏卷 21C】在极坐标系中,直线 l 的方程为 4cos ,求直线 l 被曲线 C 截得的弦长.
sin( π 6
) 2 ,曲线 C 的方程为
参考答案
一、填空题
1.1 2
1
2.
2
二、解答题
1.解: ( 1)由 x cos , y sin 得 C2 的直角坐标方程为 ( x 1)2 y2 4.
2018 年高考数学真题专题汇编 ----
极坐标与参数方程
一、填空题
1. 【 2018 北京卷 10】在极坐标系中,直线 cos 则 a=_______2cos 相切,
x 2.【2018 天津卷 12】 )已知圆 x2 y2 2 x 0的圆心为 C,直线
2 1 t,
( 2)由( 1)知 C2 是圆心为 A( 1,0) ,半径为 2 的圆.
2 ( t 为参数 )
y 3 2t 2
与该圆相交于 A,B 两点,则 △ ABC 的面积为
.
二、解答题
1.【 2018 全国一卷 22】在直角坐标系 xOy 中,曲线 C1 的方程为 y k|x| 2.以坐标原点为 极点, x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 2 2 cos 3 0 .
( 1)求 C2 的直角坐标方程; ( 2)若 C1 与 C2 有且仅有三个公共点,求 C1 的方程 .
x 2cos θ, 2【. 2018 全国二卷 22】在直角坐标系 xOy 中,曲线 C 的参数方程为 y 4sin θ( θ为参数) , 直线 l 的参数方程为
x 1 t cos α, ( t 为参数).
2018年高考理科数学考纲解读与题型示例 (15)坐标系与参数方程
2018年高考理科数学考纲解读与题型示例 (15) 坐标系与参数方程【2018年高考考纲解读】 高考对本内容的考查主要有: (1)直线、曲线的极坐标方程; (2)直线、曲线的参数方程; (3)参数方程与普通方程的互化;(4)极坐标与直角坐标的互化 ,本内容的考查要求为B 级. 【重点、难点剖析】 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=y x x ≠0 .2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=α;(2)直线过点M (a,0)(a >0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b .3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r :ρ=r ; (2)当圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)当圆心位于M ⎝⎛⎭⎫r ,π2,半径为r :ρ=2r sin θ.(4)圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).圆心在点A (ρ0,θ0),半径为r 的圆的方程为r 2=ρ2+ρ20-2ρρ0cos(θ-θ0). 4.直线的参数方程经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量.5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(2)双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a sec θ,y =b tan θ(θ为参数).(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数).【题型示例】题型一 极坐标方程和参数方程【例1】【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为210y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点【变式探究】【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线10x -=过圆22(1)1x y -+=的圆心,因此 2.AB =【变式探究】(2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,则点A 到直线l 的距离为________.【变式探究】(2015·北京,11)在极坐标系中,点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析 在平面直角坐标系下,点⎝⎛⎭⎫2,π3化为(1,3),直线方程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1.答案 1【举一反三】(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.解析 由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x -y =0,∴圆心(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最大距离为4+2=6.答案 6【变式探究】(2014·辽宁)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.【命题意图】本题主要考查参数方程与普通方程、极坐标方程与普通方程间的转化.结合方程的转化和应用考查考生的应用意识和转化思想.【思路方法】(1)先列方程,再进一步转化为参数方程. (2)解出交点,再求得直线方程,最后转化为极坐标方程.【解析】(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t(t 为参数).【感悟提升】若极坐标系的极点与直角坐标系的原点重合,极轴与x 轴正半轴重合,两坐标系的长度单位相同,则极坐标方程与直角坐标方程可以互化.求解与极坐标方程有关的问题时,可以转化为熟悉的直角坐标方程求解.若最终结果要求用极坐标表示,则需将直角坐标转化为极坐标. 题型二 极坐标方程与直角坐标方程、参数方程与普通方程的互化【例2】 【2017·江苏】[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离d,当s = min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 【考点】参数方程化普通方程【变式探究】【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I )圆,222sin 10a ρρθ-+-=(II )1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅱ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos 162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .【变式探究】(2015·新课标全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.【变式探究】在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP →=2OM →,点P 的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【解析】(1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫x 2,y 2,由于M 点在C 1上,所以⎩⎪⎨⎪⎧x2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α(α为参数).(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以AB =|ρ2-ρ1|=2 3.【规律方法】解决这类问题一般有两种思路,一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【变式探究】(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得1,2,x x y y =⎧⎨=⎩由x 21+y21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为cos 2sin x t y t =⎧⎨=⎩(t 为参数).(2)由221,4220y x x y ⎧+=⎪⎨⎪+-=⎩解得:1,0x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -1,化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.题型三 参数方程及其应用【例3】 【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la. 【答案】(1)C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭;(2)8a =或16a =-. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430{ 19x y x y +-=+=解得3{ 0x y ==或2125{ 2425x y =-=. 从而C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭. (2)直线l 的普通方程为440x y a +--=,故C 上的点()3cos ,sin θθ到l 的距离为d 当4a ≥-时, d=8a =;当4a <-时, d=16a =-. 综上, 8a =或16a =-. 【变式探究】【2016高考新课标2理数】选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B两点,||AB =l 的斜率. 【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ). 【解析】(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++=(II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==, 所以l【变式探究】(2015·重庆,15)已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析 直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).答案 (2,π)【变式探究】(2014·福建)已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t(t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧ x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 【命题意图】本小题主要考查直线与圆的参数方程等基础知识,意在考查考生的运算求解能力及化归与转化思想.【解题思路】(1)消去参数,即可求出直线l 与圆C 的普通方程.(2)求出圆心的坐标,利用圆心到直线l 的距离不大于半径,得到关于参数a 的不等式,即可求出参数a 的取值范围.【解析】(1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4, 解得-25≤a ≤2 5.【感悟提升】1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参和三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.【变式探究】(2015·福建,21(2))在平面直角坐标系xOy 中,圆C 的参数方程为13cos ,23sin x t y t =+⎧⎨=-+⎩(t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).①求圆C 的普通方程及直线l 的直角坐标方程;②设圆心C 到直线l 的距离等于2,求m 的值.【举一反三】(2015·湖南,16Ⅱ)已知直线l:2,12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将2,12x y t ⎧=⎪⎪⎨⎪=+⎪⎩代入②式,得t 2+53t +18=0. 设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.。
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年全国高考(理科)数学试题分类汇编:坐标系与参数方程
全国高考理科数学试题分类汇编18:坐标系与参数方程
一、选择题
1 (安徽数学(理)试题)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( )
A .=0()cos=2R θρρ∈和
B .=()cos=22R πθρρ∈和
C .=
()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和*B
二、填空题 2 (天津数学(理)试题)已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭
, 则|CP | = ______.
*
3 (高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为
__________
4 (高考北京卷(理))在极坐标系中,点(2,
6π)到直线ρsin θ=2的距离等于________*1
5 (重庆数学(理)试题)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标
系.若极坐标方程为cos 4ρθ=的直线与曲线23x t y t
⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则______AB =*16
6 (广东省数学(理)卷)(坐标系与参数方程选讲选做题)已知曲线C
的参数方程为x t y t ⎧=⎪⎨=⎪
⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则
l 的极坐标方程为_____________.
*
sin 4πρθ⎛⎫+= ⎪⎝⎭ 7 (高考陕西卷(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则
圆220y x x +-=的参数方程为______ .。
2018版高考数学大一轮复习专题15坐标系与参数方程课件
考点71 极坐标
1.极坐标系的概念
பைடு நூலகம்
2.直角坐标与极坐标的互化 3.直线的极坐标方程
圆心为M(ρ0,θ0),半径为r的圆的方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r2=0. 几个特殊位置的圆的极坐标方程: (1)圆心位于极点,半径为r:ρ=r; (2)圆心位于M(a,0),半径为a:ρ=2acos θ;
考点71 极坐标
考法2 直线与圆的极坐标方程的应用
考点71 极坐标
考法2 直线与圆的极坐标方程的应用
600分基础 考点&考法
考点72 参数方程
考法3 参数方程与普通方程的互化
考法4 直线与圆锥曲线的参数方程的应用
考法5 直线参数方程中参数t的几何意义的应用
考点72 参数方程
考点71 极坐标
(1)在平面内取一个定点O,叫做极点;自极点O引 一条射线Ox,叫做极轴;再选定一个长度单位、一个
角度单位(通常取弧度)及其正方向(通常取逆时针方向),
这样就建立了一个极坐标系(如图). (2)设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极 轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)称为 点M的极坐标,记为M(ρ,θ).
考点71 极坐标
1.极坐标系的概念
把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系 中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标和极坐 标分别为(x,y)和(ρ,θ),则
考点71 极坐标
1.极坐标系的概念 2.直角坐标与极坐标的互化
若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为 ρsin(α-θ)=ρ0sin(α-θ0). 几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π+θ0; (2)直线过点M(a,0)且垂直于极轴:ρcos θ=a;
高考数学试题分类汇编_专题坐标系与参数方程_理
2018年高考试卷数学(理科)选修系列:坐标系与参数方程一、选择题:1. (2018年高考安徽理科5)在极坐标系中,点到圆的圆心的距离为(A)2 (B) (C) (D)2. (2018年高考安徽卷理科3)在极坐标系中,圆的圆心的极坐标是A. B. C. D.二、填空题:1.(2018年高考天津卷理科11)已知抛物线的参数方程为(为参数),若斜率为 1的直线经过抛物线C的焦点,且与圆(x-4)^2+y^2=r^2(r>0)相切,则r=______2.(2018年高考江苏理科)(坐标系与参数方程选做题)若曲线的极坐标方程为g=2sinx+4cosx,以极点为原点,极轴为X轴正半轴建立直角坐标系,则该曲线的直角坐标方程为3. (2018年高考湖南卷理科9)在直角坐标系中,曲线C 1的参数方程为(为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为。
4. (2018年高考广东卷理科14)(坐标系与参数方程选做题)已知两曲线参数方程分别为和,它们的交点坐标为 .5. (2018年高考湖北卷理科14)如图,直角坐标系Oy所在的平面为,直角坐标系 (其中轴与y轴重合)所在平面为,(Ⅰ)已知平面内有一点,则点在平面内的射影P的坐标为;(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影C的方程是 .6.(2018年高考陕西卷理科15)(坐标系与参数方程选做题)直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线为参数)和曲线上,则的最小值为7.(2018年高考上海卷理科5)在极坐标系中,直线与直线的夹角大小为。
三、解答题:1.(2018年高考辽宁卷理科23)(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy中,曲线C 1的参数方程为(为参数)曲线C2的参数方程为(,为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C 1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C 1,C2的交点分别为A1,B1,当=-时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.2. (2018年高考全国新课标卷理科23)(本小题满分10分)选修4-4坐标系与参数方程在直角坐标系中,曲线的参数方程为,(为参数)M是曲线上的动点,点P满足,(1)求点P的轨迹方程;(2)在以D为极点,X轴的正半轴为极轴的极坐标系中,射线与曲线,交于不同于原点的点A,B求3.(2018年高考江苏卷21)选修4-4:坐标系与参数方程(本小题满分10分)在平面直角坐标系中,求过椭圆(为参数)的右焦点且与直线(为参数)平行的直线的普通方程。
2018年高考数学分类汇编:极坐标与参数方程(K12教育文档)
2018年高考数学分类汇编:极坐标与参数方程(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学分类汇编:极坐标与参数方程(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学分类汇编:极坐标与参数方程(word版可编辑修改)的全部内容。
《2018年高考数学分类汇编》:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a=__________.2。
【2018天津卷12】)已知圆2220x y x +-=的圆心为C ,直线1,32⎧=-⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A,B 两点,则ABC △的面积为 。
二、解答题1。
【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+。
以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=。
(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程。
2。
【2018全国二卷22】在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.3。
【2018全国三卷22】在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.参考答案一、填空题1.21+2.21二、解答题1。
2018年高考数学(理)(江苏专用)总复习教师用书第十二章系列4选考部分第3讲坐标系与参数方程Word版含答案
第3讲 坐标系与参数方程考试要求 1.坐标系的有关概念及其作用,A 级要求;2.点的极坐标,极坐标与直角坐标、极坐标方程与直角坐标方程的互化,B 级要求;3.简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程,B 级要求;4.参数方程、参数的意义,B 级要求;5.直线、圆及椭圆的参数方程,B 级要求;6.参数方程与普通方程的互化,B 级要求;7.参数方程的简单应用,B 级要求.知 识 梳 理1.极坐标系(1)设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ,以极轴Ox 为始边,射线OM 为终边的角叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).一般地,不作特殊说明,我们认为ρ≥0,0≤θ<2π.(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标为(ρ,θ),则它们之间的关系为x =ρcos_θ,y =ρsin_θ.另一种关系为ρ2=x 2+y 2,tan θ=yx(x ≠0).2.常用简单曲线的极坐标方程 (1)几个特殊位置的直线的极坐标方程: ①直线过极点:θ=θ0和θ=π+θ0; ②直线过点M (a,0)且垂直于极轴:ρcos θ=a ;③直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴:ρsin θ=b .(2)几个特殊位置的圆的极坐标方程: ①当圆心位于极点,半径为r :ρ=r ;②当圆心位于M (a,0),半径为a :ρ=2a cos_θ;③当圆心位于M ⎝⎛⎭⎪⎫a ,π2,半径为a :ρ=2a sin_θ.3.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎪⎨⎪⎧x =ft ,y =g t并且对于t 的每一个允许值,上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数.4.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ,(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θy =b sin θ,(θ为参数).5.直线的参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 是参数,t 可正、可负、可为0)若M 1,M 2是l 上的两点,其对应参数分别为t 1,t 2,则(1)M 1,M 2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α). (2)M 1M 2=|t 1-t 2|.(3)若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离MM 0=|t |=⎪⎪⎪⎪⎪⎪t 1+t 22.(4)若M 0为线段M 1M 2的中点,则t 1+t 2=0.诊 断 自 测1.(2015·江苏卷)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsinθ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.2.(2017·南京、盐城模拟)在极坐标系中,已知点A 的极坐标为(22,-π4),圆E 的极坐标方程为ρ=4cos θ+4sin θ,试判断点A 和圆E 的位置关系, 解 点A 的直角坐标为(2,-2),圆E 的直角坐标方程为(x -2)2+(y -2)2=8,则点A 到圆心E (2,2)的距离d =-2+-2-2=4>r =22,所以点A 在圆E 外.3.(2016·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解 直线l 的方程化为普通方程为3x -y -3=0, 椭圆C 的方程化为普通方程为x 2+y 24=1,联立方程组得⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎪⎨⎪⎧x 2=-17,y 2=-837,∴A (1,0),B ⎝ ⎛⎭⎪⎫-17,-837.故AB =⎝ ⎛⎭⎪⎫1+172+⎝ ⎛⎭⎪⎫0+8372=167.考点一 直角坐标方程与极坐标方程的互化【例1】 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程. 解 (1)∵ρcos ⎝⎛⎭⎪⎫θ-π3=1, ∴ρcos θ·cos π3+ρsin θ·sin π3=1.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴12x +32y =1. 即曲线C 的直角坐标方程为x +3y -2=0.令y =0,则x =2;令x =0,则y =233.∴M (2,0),N ⎝⎛⎭⎪⎫0,233.∴M 的极坐标为(2,0),N 的极坐标为⎝⎛⎭⎪⎫233,π2. (2)M ,N 连线的中点P 的直角坐标为⎝⎛⎭⎪⎫1,33, P 的极角为θ=π6.∴直线OP 的极坐标方程为θ=π6(ρ∈R ).规律方法 (1)直角坐标方程化为极坐标方程,只要运用公式x =ρcos θ及y = ρsin θ直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.【训练1】 (2017·南京模拟)在极坐标系中,已知点A ⎝⎛⎭⎪⎫2,π4,圆C 的方程为ρ=42sinθ(圆心为点C ),求直线AC 的极坐标方程.解 法一 以极点为原点,极轴所在直线为x 轴建立平面直角坐标系xOy . 圆C 的平面直角坐标方程为x 2+y 2=42y , 即x 2+(y -22)2=8,圆心C (0,22).A 的直角坐标为(2,2).直 线AC 的斜率k AC =22-20-2=-1.所以直线AC 的直角坐标方程为y =-x +22,极坐标方程为ρ(cos θ+sin θ)=22,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=2. 法二 在直线AC 上任取一点M (ρ,θ),不妨设点M 在线段AC 上. 由于圆心为C ⎝⎛⎭⎪⎫22,π2,S △OAC =S △OAM +S △OCM ,所以12×22×2sin π4=12×2×ρsin ⎝ ⎛⎭⎪⎫θ-π4+12×ρ×22sin ⎝ ⎛⎭⎪⎫π2-θ,即ρ(cos θ+sin θ)=22,化简得直线AC 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2. 考点二 参数方程与普通方程的互化 【例2】 已知直线l的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θy =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.规律方法 (1)将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,一定要保持同解变形.【训练2】 (2017·泰州模拟)在平面直角坐标系xOy 中,已知直线C 1:⎩⎪⎨⎪⎧x =t +1,y =7-2t (t 为参数)与椭圆C 2:⎩⎪⎨⎪⎧x =a cos θ,y =3sin θ(θ为参数,a >0)的一条准线的交点位于y 轴上,求实数a 的值.解 直线C 1:2x +y =9,椭圆C 2:y 29+x 2a2=1(0<a <3),准线为y =±99-a2,由99-a2=9得a =2 2.考点三 参数方程与极坐标方程的综合应用【例3】 (2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)曲线C 1的普通方程为x 23+y 2=1.又曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.所以ρsin θ+ρcos θ=4. 因此曲线C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值.d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2,当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 【例4】 (2017·苏北四市调研)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =m +2cos α,y =2sin α(α为参数,m 为常数).以原点O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4= 2.若直线l 与圆C 有两个公共点,求实数m 的取值范围.解 圆C 的普通方程为(x -m )2+y 2=4. 直线l 的极坐标方程化为ρ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=2,即22x +22y =2,化简得x +y -2=0. 因为圆C 的圆心为C (m,0),半径为2, 圆心C 到直线l 的距离d =|m -2|2, 所以d =|m -2|2<2,解得2-22<m <2+2 2.规律方法 (1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【训练3】 (1)(2017·盐城模拟)在直角坐标系xOy 中,已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程是ρ=2,求曲线C 1与C 2的交点在直角坐标系中的直角坐标.解 (1)由⎩⎪⎨⎪⎧x =t ,y =3t3消去t 得曲线C 1的普通方程是y =33x (x ≥0); 由ρ=2得ρ2=4,则曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x x,x 2+y 2=4,解得⎩⎨⎧x =3,y =1.(2)(2017·苏州调研)已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=3 2. ①把直线l 的极坐标方程化为直角坐标方程;②已知P 为曲线C :⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)上一点,求点P 到直线l 的距离的最大值.解 ①因为直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4=32, 则22ρsin θ-22ρcos θ=32,即ρsin θ-ρcos θ=6, 所以直线l 的直角坐标方程为x -y +6=0.②因为P 为曲线⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)上一点,所以设P (4cos θ,3sin θ),所以点P 到直线l 的距离d =|4cos θ-3sin θ+6|2=θ+φ+6|2,其中cos θ=45,所以当cos(θ+φ)=1时,d 取最大值1122.[思想方法]1.曲线的极坐标方程与直角坐标系的互化思路:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ. 3.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法. [易错防范]1.极径ρ是一个距离,所以ρ≥0,但有时ρ可以小于零.极角θ规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P 点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点. 2.在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.(建议用时:70分钟)1.(2014·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.(2012·江苏卷)在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程. 解 在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0).如图所示,因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.3.(2017·苏北四市联考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+22t ,y =22t (t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ,若直线l 与曲线C 相交于A ,B 两点,求线段AB 的长. 解 由ρ=2sin θ-2cos θ得ρ2=2ρsin θ-2ρcos θ, 所以曲线C 的直角坐标方程为x 2+y 2=2y -2x , 标准方程为(x +1)2+(y -1)2=2.直线l 的参数方程化成普通方程为x -y +1=0. 圆心到直线l 的距离为d =|-1-1+1|2=22, 所求弦长L =22-⎝⎛⎭⎪⎫222= 6. 4.(2013·江苏卷)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标. 解 因为直线l的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y=2t ,得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =x -,y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.5.(2016·全国Ⅱ卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,AB =10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.AB =|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由AB =10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 6.(2017·南京、盐城、徐州、连云港四市模拟)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π3-θ=32,椭圆C 的参数方程为⎩⎨⎧x =2cos t ,y =3sin t(t 为参数).(1)求直线l 的直角坐标方程与椭圆C 的普通方程; (2)若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.解 (1)由ρsin ⎝ ⎛⎭⎪⎫π3-θ=32得ρ⎝ ⎛⎭⎪⎫32cos θ-12sin θ=32,所以直线l 的直角坐标方程为32x -12y =32, 化简得y =3x -3,即直线l 的直角坐标方程是y =3x - 3.由⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 32=cos 2t +sin 2t =1得椭圆C 的普通方程为x 24+y 23=1.(2)联立直线方程与椭圆方程得⎩⎪⎨⎪⎧y =3x -3,x 24+y 23=1,消去y 并整理得5x 2-8x =0,解得x 1=0,x 2=85,所以A (0,-3),B ⎝ ⎛⎭⎪⎫85,335或A ⎝ ⎛⎭⎪⎫85,335,B (0,-3).所以AB =⎝ ⎛⎭⎪⎫0-852+⎝ ⎛⎭⎪⎫-3-3352=165. 7.(2017·盐城模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.设P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的直角坐标. 解 由ρ=23sin θ得ρ2=23ρsin θ,从而有x 2+y 2=23y ,即x 2+(y -3)2=3,则C (0,3),设P ⎝ ⎛⎭⎪⎫3+12t ,32t , 则PC =⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值,此时P 点的坐标为(3,0).8.(2016·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧ x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2- 2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.。
2018年高考数学考试大纲解读专题15坐标系与参数方程理
专题15 坐标系与参数方程选考内容(一)坐标系与参数方程1.坐标系(1)理解坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查与参数方程、极坐标方程相关的互化与计算2.从考查内容来看,主要考查:(1)极坐标系中直线和圆的方程;(2)已知直线和圆的参数方程,判断直线和圆的位置关系.考向一参数方程与普通方程的互化样题1(2017新课标全国Ⅰ理科)在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xyθθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a tty t=+⎧⎨=-⎩(为参数).(1)若a=−1,求C与l的交点坐标;(2)若C上的点到l a.考向二极坐标方程与直角坐标方程的互化样题2已知极坐标方程(1)求的直角坐标方程,并分别判断的形状;(2)求交点间的距离.考向三 极坐标方程与参数方程的综合应用样题3 已知直线l的参数方程为1x t y =+=⎧⎪⎨⎪⎩(t 为参数).在以坐标原点O 为极点, x 轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为24cos sin 40ρρθθ--+=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于,A B 两点,求OA OB ⋅.【解析】(1)直线l的普通方程是)1y x =-,即y =.曲线C的直角坐标方程是22440x y x +--+=,即()(2223x y -+=. (2)直线lC 的极坐标方程得:2540ρρ-+=, 所以4A B OA OB ρρ⋅==.样题4在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点. (1)写出曲线的直角坐标方程和直线的普通方程;(2)若,求的值.。
高考数学真题——坐标系与参数方程
2018年数学全国1卷在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.学#科网当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.2017年数学全国1卷在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩. 从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =.当4a ≥-时,d=,所以8a =; 当4a <-时,d.=,所以16a =-.综上,8a =或16a =-.、2016年数学全国1卷在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=;(II )1 【解析】试题分析:(Ⅰ)把cos 1sin x a t y a t =⎧⎨=+⎩化为直角坐标方程,再化为极坐标方程;(Ⅱ)联立极坐标方程进行求解.试题解析:解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅱ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .2013年数学全国1卷已知曲线C 1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为。
2018年高考数学(理)一轮复习教师用书 第十二章 坐标系与参数方程 Word版含解析
第课时坐标系.平面直角坐标系设点(,)是平面直角坐标系中的任意一点,在变换φ:(\\(′=λ·(λ>(,′=μ·(μ>())的作用下,点(,)对应到点′(′,′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换..极坐标系()极坐标与极坐标系的概念在平面内取一个定点,自点引一条射线,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点称为极点,射线称为极轴.平面内任一点的位置可以由线段的长度ρ和从射线到射线的角度θ来刻画(如图所示).这两个数组成的有序数对(ρθ,称为点的极径)称为点的极坐标.,θρ一般认为θ的取值范围是π).当极角≥极角.ρ称为点的时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=,极角θ可取任意角.()极坐标与直角坐标的互化设为平面内的一点,它的直角坐标为(,),极坐标为(ρ,θ).由图可知下面关系式成立:(\\(=ρ θ=ρ θ)),或(\\(ρ=+,θ=()(≠(.))这就是极坐标与直角坐标的互化公式..常见曲线的极坐标方程考点一 极坐标与直角坐标的互化例] ()把点的极坐标化成直角坐标; ()把点的直角坐标(-,-)化成极坐标.解:()∵=- =-,=-=-, ∴点的直角坐标是(),-())).()ρ= ==, θ==.∵点在第三象限,ρ>,∴最小正角θ=.因此,点的极坐标是方法引航]()在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.()在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性..点的直角坐标为(,-),则点的极坐标为( )解析:选.因为点(,-)在第四象限,与原点的距离为,且与轴所成的角为-..若点的极坐标为,则到轴的距离为.。
2018年高考数学试题汇编极坐标和参数方程及详细解析
2018年高考数学试题汇编极坐标和参数方程及详细解析1、(2018年高考数学全国卷I理科22)(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.2、(2018年高考数学全国卷II理科22)(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.3、(2018年高考数学全国卷III理科22)(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=ta nα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).4、(2018年高考数学天津卷理科12)(5分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.5、(2018年高考数学北京卷理科10)(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=1+.【解答】解:圆ρ=2cosθ,转化成:ρ2=2ρcosθ,进一步转化成直角坐标方程为:(x﹣1)2+y2=1,把直线ρ(cosθ+sinθ)=a的方程转化成直角坐标方程为:x+y﹣a=0.由于直线和圆相切,所以:利用圆心到直线的距离等于半径.则:=1,解得:a=1±.a>0则负值舍去.故:a=1+.6、(2018年高考数学江苏卷理科23)在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.6、(2018年高考数学全国卷I文科22)(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.7、(2018年高考数学全国卷II文科22)(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.8、(2018年高考数学全国卷III文科22)(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1)。
考点55 极坐标与参数方程-2018版典型高考数学试题解读与变式 Word版 含答案
典型高考数学试题解读与变式2018版考点55 极坐标与参数方程【考纲要求】1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程.4.了解参数方程,了解参数的意义.5.能选择适当的参数写出直线、圆和椭圆的参数方程.【命题规律】极坐标与参数方程近几年是在第22题解答题中考查,主要是极坐标方程、参数方程与平面直角坐标方程的互化、直线与曲线的位置关系的判断以及距离的最值问题.难度中等.【典型高考试题变式】(一)参数方程与极坐标方程的综合运用例1.【2017新课标3】在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.【分析】(1)由题意得直线l 1,l 2的普通方程,然后消去参数即可得到曲线C 的普通方程;(2)联立两个极坐标方程可得2291cos ,sin 1010θθ==【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.【变式1】【2018衡水联考】在平面直角坐标系xOy 中,已知曲线C :122x y ⎧=-+⎪⎪⎨⎪=⎪⎩(α为参数),以原点O 为极点, x 轴的正半轴为极轴建立极坐标系,直线lcos 14πρθ⎛⎫+=- ⎪⎝⎭. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -,且与直线l 平行的直线1l 交曲线C 于A , B 两点,求点M 到A , B 两点的距离之积. 【解析】(1)由题知,曲线C 化为普通方程为2213x y +=cos 14πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-,所以直线l 的直角坐标方程为20x y -+=.(2)由题知,直线1l的参数方程为122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t为参数), 代入曲线C :2213x y +=中,化简,得2220t -=, 设A , B 两点所对应的参数分别为1t , 2t ,则121t t =-,所以121MA MB t t ⋅==.【变式2】【2018山西两校联考】在平面直角坐标系xOy 中,曲线13cos :sin x C y αα=⎧⎨=⎩ (α为参数),以坐标原点O 为极点, x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=-.(1)分别求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)若P Q 、分别为曲线12C C 、上的动点,求PQ 的最大值.【解析】(1)因为曲线1C 参数方程为3cos sin x y αα=⎧⎨=⎩,所以cos 3sin x y αα⎧=⎪⎨⎪=⎩, 因为22sin cos 1αα+=,所以1C 的普通方程为2219x y +=. 因为曲线2C 的极坐标方程为2sin ρθ=-,即22sin ρρθ=-,故曲线2C 的直角坐标方程为222x y y +=-,即()2211x y ++=.(二)参数方程的运用例2.【2017年新课标1】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .【分析】(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为d =对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=. 由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-.【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决.【变式1】已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t ,(t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ,(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.。
高考数学真题专题十五 坐标系与参数方程第四十一讲坐标系与参数方程
专题十五 坐标系与参数方程 第四十一讲 坐标系与参数方程1.(2018北京)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.2.(2017北京)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.3.(2017天津)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.4.(2016北京)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B两点,则||AB =____.5.(2015广东)已知直线l的极坐标方程为2sin()4πρθ-=Α的极坐标为7)4πA (,则点Α到直线l 的距离为 . 6.(2015安徽)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是7.(2018全国卷Ⅰ) [选修4–4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 8.(2018全国卷Ⅱ)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 9.(2018全国卷Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O e 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O e 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.10.(2018江苏)C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.11.(2017新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .12.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.13.(2017新课标Ⅲ)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt=+⎧⎨=⎩ (t 为参数),直线2l 的参数方程为2x m m y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.14.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.15.(2016年全国I )在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I )说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II )直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .16.(2016年全国II )在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB ,求l 的斜率.17.(2016年全国III )在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标. 18.(2016江苏)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.19.(2015新课标Ⅰ)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N,求2C MN ∆的面积.20.(2015新课标Ⅱ)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C:ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值. 21.(2015江苏)已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.22.(2015陕西)在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=. (Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.23.(2014新课标Ⅰ)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ) 写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(2014新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.25.(2013新课标Ⅰ)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。
专题15 坐标系与参数方程热点难点突破-2018年高考数学
专题15 坐标系与参数方程(热点难点突破) 2018年高考数学(理)考纲解读与热点难点突破1.在极坐标系中,过点⎝⎛⎭⎫2,π2且与极轴平行的直线方程是( ) A .ρ=2B .θ=π2C .ρcos θ=2D .ρsin θ=2解析 先将极坐标化成直角坐标表示,⎝⎛⎭⎫2,π2化为(0,2),过(0,2)且平行于x 轴的直线为y=2,再化成极坐标表示,即ρsin θ=2.故选D. 答案 D2.在直角坐标系xOy 中,已知点C (-3,-3),若以O 为极点,x 轴的正半轴为极轴,则点C 的极坐标(ρ,θ)(ρ>0,-π<θ<0)可写为________. 解析 依题意知,ρ=23,θ=-5π6.答案 ⎝⎛⎭⎫23,-5π6 3.在直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =sin α,y =cos α+1(α为参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为________. 解析 依题意知,曲线C :x 2+(y -1)2=1, 即x 2+y 2-2y =0,所以(ρcos θ)2+(ρsin θ)2-2ρsin θ=0. 化简得ρ=2sin θ. 答案 ρ=2sin θ4.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.5.在极坐标系中,已知两点A ,B 的极坐标分别为⎝⎛⎭⎫3,π3,⎝⎛⎭⎫4,π6,则△AOB (其中O 为极点)的面积为________.解析 由题意得S △AOB =12×3×4×sin ⎝⎛⎭⎫π3-π6=12×3×4×sin π6=3.答案 36.已知曲线C :⎩⎨⎧x =2cos t ,y =2sin t(t 为参数),C 在点(1,1)处的切线为l .以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.7.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x = t ,y =2t(t 为参数),以原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-ρsin θ+1=0.则l 与C 的交点直角坐标为________.解析 曲线C 的普通方程为y =2x 2(x ≥0),直线l 的直角坐标方程是y =x +1,二者联立,求出交点坐标. 答案 (1,2)8.在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a 的值为________.解析 将极坐标方程化为普通方程,得 C 1:2x +y -1=0, C 2:x 2+y 2=a 2.在C 1中,令y =0,得x =22,再将⎝ ⎛⎭⎪⎫22,0代入C 2,得a =22. 答案 229.已知曲线C 1:ρ=22和曲线C 2:ρcos ⎝⎛⎭⎫θ+π4=2,则C 1上到C 2的距离等于2的点的个数为________.解析 将方程ρ=22与ρcos ⎝⎛⎭⎫θ+π4=2化为直角坐标方程得x 2+y 2=(22)2与x -y -2=0,知C 1为以坐标原点为圆心,半径为22的圆,C 2为直线,因圆心到直线x -y -2=0的距离为2,故满足条件的点的个数为3.答案 310.在直角坐标系xOy 中,曲线C 1参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),在极坐标系(与直角坐标系xOy 相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点个数为________.11.在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝⎛⎭⎫4,π6到圆心C 的距离是________.解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝⎛⎭⎫4,π6的直角坐标系为(23,2),故点A 到圆心的距离为(0-23)2+(2-2)2=2 3. 答案 2 312.在极坐标系中,点M ⎝⎛⎭⎫4,π3到曲线ρcos ⎝⎛⎭⎫θ-π3=2上的点的距离的最小值为________.解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+(3)2=2. 答案 213.在平面直角坐标系下,曲线C 1:⎩⎪⎨⎪⎧x =2t +2a ,y =-t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =2sin θ,y =1+2cos θ(θ为参数),若曲线C 1,C 2有公共点,则实数a 的取值范围是________. 解析 曲线C 1的直角坐标方程为x +2y -2a =0,曲线C 2的直角坐标方程为x 2+(y -1)2=4,圆心为(0, 1),半径为2, 若曲线C 1,C 2有公共点,则有圆心到直线的距离|2-2a |1+22≤2,即|a -1|≤5, ∴1-5≤a ≤1+5,即实数a 的取值范围是[1-5,1+5]. 答案 [1-5,1+5]14.已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t (t 为参数),曲线C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析 ⎩⎨⎧x =2cos t ,y =2sin t ,两边平方相加得x 2+y 2=2,∴曲线C 是以(0,0)为圆心,半径等于2的圆.C 在点(1,1)处的切线l 的方程为x +y =2,令x =ρcos θ,y =ρsin θ, 代入x +y =2,并整理得ρcos θ+ρsin θ=2. 答案 ρcos θ+ρsin θ=215.已知点P (x ,y )在曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈R )上,则yx 的取值范围是________.解析 消去参数θ得曲线的标准方程为(x +2)2+y 2=1, 圆心为(-2,0),半径为1. 设yx =k ,则直线y =kx ,即kx -y =0,当直线与圆相切时,圆心到直线的距离d =|-2k |k 2+1=1,即|2k |=k 2+1,平方得4k 2=k 2+1,k 2=13,解得k =±33, 由图形知k 的取值范围是-33≤k ≤33, 即y x 的取值范围是⎣⎢⎡⎦⎥⎤-33,33.答案 ⎣⎢⎡⎦⎥⎤-33,3316.在平面直角坐标系xOy 中,曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).(1)将C 1的方程化为普通方程;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系.设曲线C 2的极坐标方程是θ=π3,求曲线C 1与C 2的交点的极坐标. 解 (1)C 1的普通方程为(x -2)2+y 2=4. (2)设C 1的圆心为A ,∵原点O 在圆上, 设C 1与C 2相交于O ,B ,取线段OB 的中点C , ∵直线OB 倾斜角为π3,OA =2, ∴OC =1,从而OB =2,∴O ,B 的极坐标分别为O (0,0),B ⎝⎛⎭⎫2,π3.17.已知曲线C 1:⎩⎪⎨⎪⎧x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |的值.18.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),已知过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t (t 为参数),直线l 与曲线C 分别交于M ,N 两点. (1)写出曲线C 和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 解 (1)y 2=2ax ,y =x -2.(2)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t(t 为参数),代入y 2=2ax ,得到t 2-22(4+a )t +8(4+a )=0,则有t 1+t 2=22(4+a ),t 1·t 2=8(4+a ), ∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2,即a 2+3a -4=0.解得a =1或a =-4(舍去). 19.在直角坐标系xOy 中,曲线M 的参数方程为⎩⎨⎧x =3cos α+sin αy =23sin αcos α-2sin 2α+2(α为参数),若以直角坐标系中的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线N 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=22t (t 为参数). (1)求曲线M 的普通方程和曲线N 的直角坐标方程; (2)若曲线N 与曲线M 有公共点,求t 的取值范围.解 (1)由x =3cos α+sin α得x 2=(3cos α+sin α)2=2cos 2α+23sin αcos α+1, 所以曲线M 可化为y =x 2-1,x ∈[-2,2], 由ρsin ⎝⎛⎭⎫θ+π4=22t 得22ρsin θ+22ρcos θ=22t , 所以ρsin θ+ρcos θ=t ,所以曲线N 可化为x +y =t .(2)若曲线M ,N 有公共点,则当直线N 过点(2,3)时满足要求,此时t =5,并且向左下方平行移动直到相切之前总有公共点,相切时仍然只有一个公共点,联立⎩⎪⎨⎪⎧x +y =t ,y =x 2-1,得x 2+x -1-t =0, 由Δ=1+4(1+t )=0,解得t =-54.综上可求得t 的取值范围是-54≤t ≤5.20.已知点P 的直角坐标是(x ,y ).以平面直角坐标系的原点为极坐标的极点,x 轴的正半轴为极轴,建立极坐标系.设点P 的极坐标是(ρ,θ),点Q 的极坐标是(ρ,θ+θ0),其中θ0是常数.设点Q 的平面直角坐标是(m ,n ). (1)用x ,y ,θ0表示m ,n ;(2)若m ,n 满足mn =1,且θ0=π4,求点P 的直角坐标(x ,y )满足的方程.解 (1)由题意知:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,和⎩⎪⎨⎪⎧m =ρθ+θ0,n =ρθ+θ0即⎩⎪⎨⎪⎧m =ρcos θcos θ0-ρsin θsin θ0,n =ρsin θcos θ0+ρcos θsin θ0, 所以⎩⎪⎨⎪⎧m =x cos θ0-y sin θ0,n =x sin θ0+y cos θ0.(2)由题意知⎩⎨⎧m =22x -22y ,n =22x +22y ,所以⎝⎛⎭⎫22x -22y ⎝⎛⎭⎫22x +22y =1.整理得x 22-y 22=1.。
2018版高考数学(文理通用新课标)一轮复习教师用书:选修4-4 坐标系与参数方程 Word版含解析
选修4-4⎪⎪⎪坐标系与参数方程 第一节 坐 标 系突破点(一) 平面直角坐标系下图形的伸缩变换基础联通 抓主干知识的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯通 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换典例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.解] 由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.方法技巧]应用伸缩变换公式时的两个注意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式本节主要包括2个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系. (2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.能力练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.解:设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2, 于是x ′=3×13=1,y ′=12×(-2)=-1,所以A ′(1,-1)为所求.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得到的直线l ′的方程.解:设直线l ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′, 所以y ′=x ′,即直线l ′的方程为y =x .3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标.解:设曲线C ′上任意一点P ′(x ′,y ′), 由题意,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见经变换后的曲线仍是双曲线, 则所求焦点坐标为F 1(-5,0),F 2(5,0).4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by 知⎩⎨⎧x =1aX ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.突破点(二) 极坐标系基础联通 抓主干知识的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.极坐标与直角坐标的互化1.极坐标方程化为直角坐标方程的步骤2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简单,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,根据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ; 第二步,根据角θ的正切值tan θ=yx (x ≠0)求出角θ(若正切值不存在,则该点在y 轴上),问题即解.例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,则直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈0,2π))的值.极坐标方程的应用例2] (2017·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值. 解] (1)ρ2-22ρcos ⎝⎛⎭⎫θ+π4-2=0,即ρ2-2ρcos θ+2ρsin θ-2=0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为(x -1)2+(y +1)2=4, 圆心C (1,-1),若直线l 被曲线C 截得的弦长最小,则直线l 与OC 垂直, 即k l ·k OC =-1,k OC =-1,因而k l =1,故直线l 的直角坐标方程为y =x .(2)因为M 是曲线C 上的动点,因而利用圆的参数方程可设⎩⎪⎨⎪⎧x =1+2cos φ,y =-1+2sin φ(φ为参数),则x +y =2sin φ+2cos φ=22sin ⎝⎛⎭⎫φ+π4,当sin ⎝⎛⎭⎫φ+π4=1时,x +y 取得最大值2 2.易错提醒]用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.能力练通 抓应用体验的“得”与“失”1.考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ+π4=2, 得2ρ⎝⎛⎭⎫22sin θ+22cos θ=2,由坐标变换公式,得直线l 的直角坐标方程为y +x =1,即x +y -1=0.由点A 的极坐标为⎝⎛⎭⎫22,7π4得点A 的直角坐标为(2,-2),所以点A 到直线l 的距离d =|2-2-1|2=22.2.考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcosθ-4=0.由坐标变换公式,得圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.3.考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0,曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5,所以圆心C 的坐标为(1,-2),半径r =5,所以圆心C 到直线的距离为|1+2+a |2=r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1.故实数a 的值为-5或-1.4.考点一、二](2017·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.解:(1)由ρ=2知ρ2=4,由坐标变换公式,得x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 由坐标变换公式, 得x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. 全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.2.(2015·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡 1.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C的极坐标方程为ρ=2cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离.解:因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 4.(2017·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解:(1)曲线C :ρ2=31+2sin 2θ,即ρ2+2ρ2sin 2θ=3,从而ρ2cos 2θ3+ρ2sin 2θ=1. ∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin ⎝⎛⎭⎫θ+π3, 当θ=π6时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.5.(2017·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:圆C 的极坐标方程可化为ρ=2k cos θ-2k sin θ, 即ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, 所以圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .直线l 的极坐标方程可化为ρsin θ·22-ρcos θ·22=4,所以直线l 的直角坐标方程为x -y +42=0,所以⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,所以⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ分别代入圆C 和直线l 的直角坐标方程得其极坐标方程为C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22.又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).7.(2017·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点, 得点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数), ∴点M 的轨迹的普通方程为(x -3)2+y 2=1.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值.解:(1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a cos θ(a 为半径), 将D ⎝⎛⎭⎫2,π3 代入,得2=2a ×12, ∴a =2,∴圆C 2的圆心的直角坐标为(2,0),半径为2, ∴C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ.∴ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0.∴1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54. 第二节 参数方程突破点(一) 参数方程1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).本节主要包括2个知识点: 1.参数方程;参数方程与极坐标方程的综合问题.(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).1.基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.普通方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤第一步,引入参数,但要选定合适的参数t ;第二步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入普通方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.例1] 将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1,∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t ,∴x ≠0. 当t ≥1时,0<x ≤1,当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中⎩⎨⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3). 易错提醒](1)将曲线的参数方程化为普通方程时务必要注意x ,y 的取值范围,保证消参前后的方程的一致性.(2)将参数方程化为普通方程时,要注意参数的取值范围对普通方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1第一步,把直线和圆锥曲线的参数方程都化为普通方程; 第二步,根据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.例2] (2017·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧ x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率.解] (1)将曲线C 的参数方程化为普通方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 因为|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.能力练通 抓应用体验的“得”与“失”1.考点一]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k 1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k 1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0, 因为y =6k 21+k 2=6-11+k 2,所以0<y <6, 所以所求的普通方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈0,2], 得所求的普通方程为y 2=2-x ,x ∈0,2].2.考点二](2017·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的普通方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的普通方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的普通方程x 24+y 2=1,得(2x -1)2+4(2y -3)2=4,∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4.3.考点二](2017·郑州模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数).(1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成普通方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0,即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、普通方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要注意:(1)解题时,易将直线与圆的极坐标方程混淆.要熟练掌握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要注意选取直角坐标系还是极坐标系,建立极坐标系要注意极点、极轴位置的选择,注意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的知识,列出等量关系式,特别是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和普通方程表示同一个曲线时,要注意其中x ,y 的取值范围,即注意两者的等价性.考点贯通 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题典例] (2017·长沙模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)判断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其普通方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 因为圆心(-1,0)到直线l 的距离d =11+k2≤1,所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2=1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. 方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.能力练通 抓应用体验的“得”与“失”1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的普通方程为(x-3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎪⎨⎪⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的普通方程为4x -3y +5=0.(2)因为直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a -5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2015·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32. 6.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t , (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2017·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值. 解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的普通方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的普通方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2017·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的普通方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的普通方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83,即x 20+2y 20=6,x 2+2y 2=6表示一椭圆,设直线l 1为y =x +m ,将y =x +m 代入x 22+y 2=1得,3x 2+4mx +2m 2-2=0,由Δ>0得-3<m <3,故点M 的轨迹是椭圆x 2+2y 2=6夹在平行直线y =x ±3之间的两段椭圆弧.4.(2017·江西百校联盟模拟)在平面直角坐标系xOy 中,C 1:⎩⎪⎨⎪⎧x =t ,y =k (t -1)(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 2:ρ2+10ρcos θ-6ρsin θ+33=0.(1)求C 1的普通方程及C 2的直角坐标方程,并说明它们分别表示什么曲线; (2)若P ,Q 分别为C 1,C 2上的动点,且|PQ |的最小值为2,求k 的值.解:(1)由⎩⎪⎨⎪⎧x =t ,y =k (t -1)可得其普通方程为y =k (x -1),它表示过定点(1,0),斜率为k 的直线.由ρ2+10ρcos θ-6ρsin θ+33=0可得其直角坐标方程为x 2+y 2+10x -6y +33=0,整理得(x +5)2+(y -3)2=1,它表示圆心为(-5,3),半径为1的圆.(2)因为圆心(-5,3)到直线y =k (x -1)的距离d =|-6k -3|1+k 2=|6k +3|1+k 2,故|PQ |的最小值为|6k +3|1+k 2-1,故|6k +3|1+k2-1=2,得3k 2+4k =0,解得k =0或k =-43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题15 坐标系与参数方程
选考内容
(一)坐标系与参数方程
1.坐标系
(1)理解坐标系的作用.
(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.
(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.
(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.
2.参数方程
(1)了解参数方程,了解参数的意义.
(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.
(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.
1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查与参数方程、极坐标方程相关的互化与计算
2.从考查内容来看,主要考查:(1)极坐标系中直线和圆的方程;(2)已知直线和圆的参数方程,判断直线和圆的位置关系.
考向一参数方程与普通方程的互化
样题1(2017新课标全国Ⅰ理科)在直角坐标系xOy中,曲线C的参数方程为
3cos,
sin,
x
y
θ
θ
=
⎧
⎨
=
⎩
(θ为
参数),直线l的参数方程为
4,
1,
x a t
t
y t
=+
⎧
⎨
=-
⎩
(为参数).
(1)若a=−1,求C与l的交点坐标;
(2)若C上的点到l a.
考向二极坐标方程与直角坐标方程的互化
样题2 已知极坐标方程
(1)求的直角坐标方程,并分别判断的形状;
(2)求交点间的距离
.
考向三 极坐标方程与参数方程的综合应用
样题3 已知直线l
的参数方程为1x t y =+=⎧⎪⎨⎪⎩(t 为参数).在以坐标原点O 为极点, x 轴的
正半轴为极轴的极坐标系中,曲线C
的极坐标方程为24cos sin 40ρρθθ--+=.
(1)求直线l 的普通方程和曲线C 的直角坐标方程;
(2)设直线l 与曲线C 交于,A B 两点,求OA OB ⋅.
【解析】(1)直线l
的普通方程是)1y x =-
,即y =.
曲线C
的直角坐标方程是22440x y x +--+=,即(
)(2223x y -+=. (2)直线l
C 的极坐标方程得:2540ρρ-+=, 所以4A B OA OB ρρ⋅==.
样题4 在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为
,过点的直线的参数方程为为
参数),直线与曲线相交于两点. (1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.。