测控系统原理与设计
测控系统原理与设计6_测量数据处理
图4-3-2锅炉报警电路原理
二、锅炉报警系统程序设计
• 1、报警参数和标志存放地址的分配: • ①设一个报警标志单元如20H单元,无报警时 •
• • •
20H清0,有报警时20H置“1”; ②水位、温度、压力三个参数采样值分别存放在 SAMP为首地址的内存单元中; ③5个报警点分别存放在30H~34H内部RAM中。 水位上、下限用MAX1、MIN1表示;温度上、下 限用MAX2、MIN2表示,蒸汽压力用MIN3表示, 依次存于30H~34H单元。 2、报警程序框图――如图4-3-3所示。 子程序清单详见教材。
调整电位器RP1,使其与电阻R1的并联电阻值
正好达10kΩ,就可使
U x 1A 10k (273 t ) (2730 10t )mV
Ux 由上式可见,t=0℃时,
U a 2730 mV
。
ICL7106输入低端电压为
R3 RP 2 U b 1.235 V (1 ) R2
2、电桥调零电路
Rp1为调零电位器,调整它可使温度为0℃时,电桥输出电压为零。
3、放大器输入偏移调零电路
放大器输入电压
U x U a xSx
(4-1-9)
式中,Ua为前级测量电路的零位输出。Ux 为使输出电压U0在x=0时为零。 在图(a)中,须调整Ub,使Ub=Ua
在图(b)中,须调整Ub和R2,使Ua/R1=Ub/R2 在图(c)中,须调整Ub使Ub=Ua。
3.安全性
• 由于每次测量并不都从最高量程开始,而是在
选定量程上进行,因此不可避免的会发生测量
超过选定量程的最大测量范围,甚至达到仪器
的最大允许值。这种过载现象须经过一次测量 后才能发觉。因此,量程输入电路必须具有过 载保护能力。过载发生时,至少在一次测量过 程中仍应能正常工作,并且不会损坏。
测控系统原理及设计
测控系统原理及设计测控系统原理及设计是一种将测量和控制过程结合起来的技术系统,它通过采集和处理数据,实时监测和控制被测对象的状态和参数,并根据设定的规则和算法,进行反馈控制,以实现预期的控制目标。
测控系统的原理主要包括传感器、信号采集、信号处理、控制器和执行机构等组成部分。
传感器是测控系统的感知器件,它能将被测对象的状态和参数转化为电信号,如温度、压力、流量等。
信号采集模块将传感器输出的模拟信号进行采样和量化转换,转化为数字信号,以便进行数字信号处理。
信号处理模块对采集到的数字信号进行滤波、增益和滤波等处理,提取出有效信息,并进行参数计算和特征提取。
控制器是测控系统的决策和执行器,根据信号处理模块提供的参数和目标值,生成控制规则和控制算法,并输出控制信号。
执行机构是测控系统的执行器,将控制信号转化为物理作用力,实现对被测对象的控制。
测控系统的设计需要考虑多个因素,包括被测对象的特性,控制目标的要求,系统的可靠性和稳定性等。
首先需要选择合适的传感器,根据被测对象的特性和参数要求,选择适当的传感器类型和规格。
其次,需要设计合理的信号采集和处理电路,确保信号的准确性和稳定性。
在控制器设计中,要根据控制目标的要求,选择合适的控制算法和调节策略,使系统能够快速响应和稳定控制。
此外,系统的可靠性和稳定性是设计中需要重点考虑的因素,需要做好故障检测和容错处理,确保系统在异常情况下能够保持正常工作。
总之,测控系统原理及设计是一门涉及多学科的综合性学科,需要了解传感器原理、信号处理技术和控制理论等方面的知识。
通过合理选取传感器、设计有效的信号采集和处理电路,以及选择合适的控制算法和策略,可以实现对被测对象的准确测量和精确控制,满足各种应用场景的需求。
测控系统原理及设计现代测控技术简介
6.5.1 嵌入式系统的定义 嵌入式系统 ( Embedded Systems ) 是指以 应用为中心、以计算机技术为基础、软件硬件可裁 剪、适应应用系统对功能、可靠性、成本、体积、 功耗严格要求的专用计算机系统。是将应用程序和 操作系统与计算机硬件集成在一起的嵌入在宿主设 备中的控制系统。
嵌入式计算机
5.4.4 基于计算机的网络控制 80年代后期,计算机控制开始采用开放式通 讯系统,可以和以太网接口,图示功能增强,组 态更加直观、灵活,基于计算机的网络控制系统 性能日益完善、应用逐渐普及。 1. 计算机集散控制系统DCS DCS(Distributed Control System)是以多个微 处理机为基础,利用现代网络技术、现代控制技 术、图形显示技术和冗余技术等实现对分散工艺 对象的控制、监视管理的控制系统。
6.1.1 现代测控技术的定义 现代测控技术隶属于现代信息技术,是以电 子、测量及控制等学科为基础,融合了电子技术、 计算机技术、网络技术、信息处理技术、测试测 量技术、自动控制技术、仪器仪表技术等多门技 术,利用现代最新科学研究方法和成果,对测控 系统进行设计和实现的综合性技术。 现代测控系统中的每一个环节都有新技术的 影子,如:新型传感器;专用集成芯片;以计算 机为核心;构建网络等。
6.3.2 虚拟仪器
虚拟仪器是测试技术和计算机技术结合的产物。
80年代后期
虚拟仪器(Virtual Instrument)
以通用计算机为基础,加上特定的硬件接口设 备和为实现特定功能而编制的软件而形成的一 种新型仪器。
1. 虚拟仪器的基本概念
所谓虚拟仪器(VI,Virtual Instrument),就 是在以计算机为核心的测控硬件和专用软件的平台 上,由用户设计定义测控功能、虚拟面板,由测控 软件实现的一种计算机仪器系统。
测控系统原理与设计3主机及接口
图3-3-4 软件译码静态显示器接口实例
START:
SETB P1.7
MOV R1,#06H MOV R0,#00H MOV DPTR,#TAB
; 开放显示器传送控制
;字型码首地址偏移量
LOOP:
MOV A,R0 MOVC A,@A+DPTR MOV SBUF,A TI,WAIT TI R0 ;指向下一个字型码 ;关闭显示器传送控制 ;取出字型码 ;发送 ;等待一帧发送完毕
字8的字形代码为813FH,字符M
的字形代码为0A36H。
o n m l k j i h dp × f e d c b a
发光二极管在适当的驱动电流作用下,才能得 到需要的亮度。LED是恒压元件,正向电压一般为 1.2~2.4V。调整驱动电路即选取限流电阻R,应使 LED的工作电流在10~20mA。也可用试验方法, 改变限流电阻,得到适合亮度。发光二极管的驱动 方式有两种。静态驱动方法:对要显示段始终通以 额定电流。动态驱动方法:对要显示段通以矩形脉 冲电流。为保证足够的显示亮度,应施加脉冲电流 幅度为额定电流的数倍。为实现这种显示方式,各 位LED数码管的段选端应并接在一起,由同一个8 位I/O口或锁存器/驱动器控制,而各位数码管的位 选端分别由相应的I/O口线或锁存器控制。
MC14433与8031的接口
A/D接口程序设计
1. 等待延时方式
取数据区首址和 第一个通道地址
启动转换 延时等待 读取数据并存储 数据区指针加1 取下一通道地址
否
全部通道转换结束? 是
2. 中断方式
主程序 设数据区首址和 第一个通道地址
中断服务程序 读取数据并存储 存储数据 取下一通道地址
消耗功率就越大,且对比度也变差,所以宜采用低频工作。低
测控系统原理与设计
测控系统原理与设计测控系统是指通过一定的传感器、执行器和控制器等设备,对被测对象进行监测和控制的系统。
它在工业生产、科学研究、环境监测等领域发挥着重要作用。
本文将从测控系统的基本原理、设计要点和发展趋势等方面进行探讨。
首先,测控系统的基本原理是通过传感器获取被测对象的信息,经过信号处理后,由控制器进行分析和判断,再通过执行器对被控对象进行调节。
传感器是测控系统的核心部件,它能够将被测对象的物理量、化学量等转换成电信号,为系统提供输入。
控制器则是系统的智能核心,它能够根据传感器获取的信息做出相应的控制决策。
执行器则是根据控制器的指令,对被控对象进行调节,实现系统的闭环控制。
其次,测控系统的设计要点包括传感器的选择、信号处理、控制算法和执行器的选型等。
在传感器的选择上,需要根据被测对象的特点和测量要求,选择合适的传感器类型和参数。
信号处理是保证系统准确性和稳定性的关键环节,它能够对传感器采集的信号进行放大、滤波、线性化等处理,以保证控制器能够得到准确的输入。
控制算法是控制器的核心,它能够根据传感器获取的信息,实时调整执行器的输出,以实现系统的自动控制。
执行器的选型需要考虑被控对象的特性和控制要求,选择合适的执行器类型和参数。
最后,测控系统的发展趋势主要体现在智能化、网络化和多功能化等方面。
随着人工智能、物联网等技术的发展,测控系统将更加智能化,能够实现自主学习和决策。
网络化是指测控系统将更加便于远程监测和控制,实现远程操作和数据共享。
多功能化则是指测控系统将具备更多的功能和应用场景,能够适应更多的复杂环境和控制要求。
综上所述,测控系统作为一种重要的技术手段,在工业生产、科学研究等领域发挥着重要作用。
它的原理和设计要点决定了系统的性能和稳定性,而发展趋势则决定了系统的未来发展方向。
因此,对测控系统的原理和设计进行深入理解和研究,对于提高系统的性能和应用水平具有重要意义。
测控系统原理与设计21_输入
图中五个部件的噪声可以视做采集电路内部五个不相关的噪声源, 它们本身的等效输入噪声分别为: 、 VIN 3 0 V 9 V VIN 1 0.085V 、VIN 1 0.085VVIN 2 、 (可忽略不计)
VIN 4 7 V VIN 5 177 V
五个部件的放大倍数分别为:
●数字可编程控制增益:PGA202的增益倍数为 1,10,100,1000;PGA203的增益倍数为1,2,4, 8
返 回 上 页 下 页
●增益误差:G<1000 0.05%~0.15%, G=1000 0.08%~0.1%; ●非线性失真:G=1000 0.02%~0.06%。 ●快速建立时间:2μs。 ●快速压摆率:20V/μs ●共模抑制比:80~94dB。 ●频率响应:G<1000 1MHz;G=1000 250kHz。 ●电源供电范围:±6~±18V。
在测控系统中,一台微机往往要同时测量 几个被测量,因而测控系统的输入通道常常是 多路的。按照各路输入通道是共用一个采集通 道还是每个通道各用一个,输入通道可分为集 中采集式和分散采集式。
一、输入通道的分类
集中采集式之分时采集结构:
传感器 传感器 调理电路 调理电路 模 拟 多 路 切 换 开 关 采集电路
的传感器。
对传感器的主要技术要求
• 具有将被测量转换为后续电路可用电量的功能,转换范围 与被测量实际变化范围相一致。 • 符合整机对传感器精度(通常为系统精度的十倍)和速度 的要求; • 满足被测介质和使用环境的要求(如耐高温、耐高压、防 腐、抗振、防爆、抗电磁干扰、体积小、质量轻和不耗电 或耗电少等); • 满足可靠性和可维护性的要求。
传感器 传感器
调理电路 调理电路
测控系统原理与设计重点题型
1、微机化测控系统分拿几类?微机化检测系统、微机化控制系统、微机化测控系统 2、模拟量输入通道由那几部分组成?以及各部分的作用? 传感器:将非电量转换为电量 调理电路:放大、滤波采集电路:将模拟信号转换为数字信号 3、模拟量输出通道由哪几部分组成?输出数据寄存器、D/A 转换器、调理电路(模拟显示器、模拟记录器、模拟执行机构) 4、前置放大器:判断信号大小准则?所放位置前后的判断?放大倍数如何确定? 判断信号大小准则输出噪声: 电路在没有信号输入时,输出端输出一定幅度的波动电压.等效输入噪声: 把电路输出端测得的噪声有效值VON 折算到该电路的输入端KV V ON IN=判断依据:是否被淹没?如果加在某电路输入端的信号幅度小到比该电路的等效输入噪声还要低.IS V <KV V ON IN =前置放大器的作用:总输出噪声:2200')()(K V K K V V IN IN ON+=总的等效增效输入噪声:2020'')(K V V K K V V IN IN ON IN+==为使:IN INV V <'须满足以下条件:20011K V V IN IN -<位置上,在滤波器的前面 OR 后面在测控领域,被测信号的频率通常比较低,滤波器大多采用RC 有源滤波器。
由于电阻元件是电路噪声的主要根源,因此RC 滤波器产生的电路噪声比较大。
如果把放大器放在滤波器后面,滤波器的噪声将会被放大器放大,使电路输出信噪比降低.21202021')()(IN IN IN IN IN V V KK V K V V +=+=滤波器1、隔直电容的作用――使调理电路的零漂电压不会随被测信号一起送到采集电路。
2、高通滤波器――滤除低频干扰3、陷波器――抑制交流电干扰。
4、低通滤波器――滤除高频干扰,“去混淆”5、采集电路的四种方案?PGA S\H的作用?采集电路的设计(实现模拟信号到数字信号的电路、AD芯片的选择是核心)测模拟信号恒定或变化缓慢的场合被测模拟信号随时间变化的场合6、前置与主放大器的区别以及适用情况?主放大器为了避免弱信号采样电压在A/D转换时达不到要求的转换精度,将MUX输出的子样电压放大到接近A/D满量程,使数字转换精度提高K倍。
基于FPGA的测控系统设计与实现
基于FPGA的测控系统设计与实现一、引言随着科技的发展,现代工程领域对于高精度、高速度、高可靠性的测控设备的需求也越来越大。
其中,基于FPGA的测控系统具有极高的灵活性和可扩展性,能够满足不同领域的测控需求。
本文将介绍基于FPGA的测控系统设计与实现,主要包括系统架构、硬件设计、软件编程等方面。
二、系统架构设计基于FPGA的测控系统一般由FPGA芯片、外设模块、存储设备和通信接口等部分组成。
其中,FPGA芯片作为核心部分,负责控制整个系统的运行。
外设模块提供不同功能的接口,如模拟采集、数字转换、时钟输入、GPIO等。
存储设备用于存储测量数据和程序代码。
在系统架构设计时,需要根据实际需求选择适合的外设模块和通信接口,以及合适的存储设备。
此外,还需要考虑不同模块之间的数据传输和控制信号,确定系统的总体布局和数据流图。
三、硬件设计基于FPGA的测控系统的硬件设计主要包括电路原理图设计、PCB设计和硬件调试等部分。
在电路原理图设计时,需要根据系统架构设计绘制不同模块的电路图,并考虑电路参数的选择和优化。
在PCB设计时,需要将电路原理图转化为布局图和线路图,并按照标准的PCB设计流程进行布线、加强电路抗干扰性、防止电磁辐射等操作。
在硬件调试过程中,需要用示波器、万用表等工具对电路进行调试和测试,确保电路稳定运行。
四、软件编程基于FPGA的测控系统的软件编程主要包括FPGA芯片的Verilog/VHDL编程、上位机程序的编写等内容。
在FPGA芯片的Verilog/VHDL编程中,需要根据不同外设模块的接口来编写对应的硬件描述语言代码,如时钟控制、数据输入输出、状态控制等。
在上位机程序编写中,需要使用不同编程语言(如C/C++、Python等)来编写程序,实现与FPGA芯片的通信、测控算法的实现、数据可视化等功能。
五、系统应用与实现基于FPGA的测控系统应用广泛,如测量、控制、自动化、通信等领域。
在实际应用中,需要根据具体的应用场景和需求来设计相应的测控系统,并进行相关智能算法的设计和调试。
测控系统原理与设计
测控系统原理与设计1. 引言测控系统是指用于测量和控制各种物理量和工艺过程的系统。
它在工业自动化、科学研究、医学诊断、环境监测等领域起着重要的作用。
本文将介绍测控系统的原理和设计过程,并探讨一些常用的技术和方法。
2. 测控系统的基本原理测控系统的基本原理可以概括为测量、采样、处理和控制四个过程。
2.1 测量测量是测控系统的核心过程,它用于获取被测量的物理量或工艺参数。
常用的测量方法包括传感器测量、光学测量、电磁测量等。
传感器是测控系统中最常见的测量设备,它能够将被测量的物理量转化为电信号,供后续的采样和处理。
2.2 采样采样是将连续的模拟信号转化为离散的数字信号的过程。
采样过程中需要确定采样频率和采样精度。
采样频率应根据被测量物理量的变化情况进行选择,采样精度则取决于采样器的分辨率和噪声水平。
2.3 处理采样得到的数字信号需要经过处理才能得到有用的信息。
处理过程可以包括滤波、放大、数字化等操作。
滤波可以去除噪声和杂散信号,放大可以增强信号的强度,数字化可以将模拟信号转化为数字形式,方便存储和处理。
2.4 控制控制是根据测量得到的信息对被控对象进行调节和控制的过程。
控制可以分为开环控制和闭环控制两种。
开环控制是在没有反馈信号的情况下进行的控制,而闭环控制则通过测量系统输出与期望值的差异进行调节。
3. 测控系统的设计过程测控系统的设计过程可以分为需求分析、系统设计、硬件设计、软件设计和系统测试等环节。
3.1 需求分析需求分析是测控系统设计的第一步,它需要明确系统的功能需求、性能要求和运行环境等。
在需求分析过程中,需要对被测量的物理量、测量范围、系统响应时间等进行详细的分析和规定。
3.2 系统设计在系统设计阶段,需要确定系统的整体架构和各个组件之间的关系。
系统设计需要综合考虑硬件和软件两方面的因素,选择合适的传感器、采样器、控制器等设备,并设计合理的数据传输和处理流程。
3.3 硬件设计硬件设计是测控系统设计的核心环节,它包括电路设计、布线设计和硬件模块的选型和搭建等。
测控系统原理与设计
3.4.2 51单片机 用于频率测量
3.4 脉冲信号的采集
3.4.4 V/F转换
3.5.1 开关量输入信号的调 理
3.5.3 开关量输入信号与光 耦的连接
3.5.5 数字量输入信号的采 集
3 检测信号采集技术
3.5 开关量信号的采集
3.5.2 光电耦合器
3.5.4 开关量输入信号与 CPU的连接
3.6.1 VI的 结构
B
4.3.3 调制解调器集 成电路
C
4.3 数字信号的频带传输
4.4.1 发射电路
4.4.3 采用CC2400的收发 器电路
4.4.5 蓝牙技木
4 数据通信技术
4.4 数字信号的无线传输
4.4.2 接收电路
4.4.4 采用nRF24E2的发射 电路
4.4.6 实现远程数据无线通 信的一种方案
05
测控系统原理与设计
演讲人
2 0 11 - 11 - 11
01
1 概述
1 概述
01
02
03
04
1.1 测控系 统的分类与 组成
1.2 智能测 控系统
1.3 嵌入式 系统
习题与思考 题
1.1.1 测控系统的分类
1.1.3 测控系统的基本概念
1.1.5 测控系统的建模
1 概述
1.1 测控系统的分类与组成
1.1.2 测控系统的组成
1.1.4 测控系统的性能指标
1.1.6 测控技术的发展
1 概述
1.1 测控系统的分类与组成
1.1.7 控制策略与算法的发展
1 概述
1.2.1 智能测控 系统的概念
1.2.3 智能测控系统 的主要功能特征
《测控系统原理与设计》第3版习题解答
分布式的特点是每一路信号都有一个S/H和A/D,因而也不再需要模拟多路切换器MUX。每一个S/H和A/D只对本路模拟信号进行数字转换即数据采集,采集的数据按一定顺序或随机地输入计算机。
答:
据题知, , ,代入公式(2-1-38)计算得该地震仪的A/D转换器的转换周期为 ,为提高勘探分辨率欲将采样周期改为1ms,则信号道数应减小为 ,否则A/D转换器就转换不过来。
据题知, , ,代入公式(2-1-17)计算得C=5,将C=5和TS=1ms代入公式(2-1-17)计算得,抗混叠滤波器截止频率应减小为 ,将 代入公式(2-1-18)计算得 ,这将使地震仪可记录的最高地震信号频率达到250Hz,因而,可使地震仪的勘探分辨率提高一倍。如果只是减少采样周期而不改变抗混叠滤波器截止频率,将 代入公式(2-1-18)计算得 ,使地震仪可记录的最高地震信号频率仍然被限制在125Hz,因而地震仪的勘探分辨率仍然不能提高,这就使减少采样周期的优越性发挥不出来。
①减小Ri,为此模拟多路切换器MUX前级应采用电压跟随器;
②MUX选用Ron极小、Roff极大的开关管;
③选用寄生电容小的MUX。
④据公式(2-1-51),减少MUX输入端并联的开关数N,可减小串音。若采用分布式数据采集,则可从根本上消除串音干扰。因N=1代入公式(2-1-51)计算得 。
6、主放大器与前置放大器有什么区别?设置不设置主放大器、设置哪种主放大器依据是什么?
3、图2-1-14(a)所示采集电路结构只适合于什么情况?为什么?
答:
图2-1-14(a) 所示采集电路仅由A/D转换器和前面的模拟多路切换器MUX构成,只适合于测量恒定的各点基本相同的信号。因为恒定信号不随时间变化,无须设置S/H, 各点基本相同的信号无需设置PGA。
测控系统原理与设计1_绪论
即: 同一个硬件系统,软件不同,就可
得到功能完全不同的测量仪器
软件系统是虚拟仪器的核心
返 回
上 页
下 页
目前较流行的虚拟仪器软件环境
如:C、Lab Windows/CVI, 文本式的编程语言 Visual Basic, Visual C++
图形化编程语言
如:LabView、HPVEE
虚拟仪器的优点:
的功能与测量范围 单片机 DSP的广泛应用 ASIC、FPGA/CPLD技术 LabVlEW等图形化软件技术 网络与通信技术
1、传感器技术
为适应智能仪器发展的需要,各种新型传感 器不断涌现。 聋哑传感器(Dumb Sensor) 智能传感器(Smart Sensor) 网络化传感器(Networked Sensor)
虚拟仪器
返 回
上 页
下 页
三大组成模块
虚拟仪器
计算机 仪器模块 各种传感器 信号调理器 模数转换器 数据采集器 软件
个人计算机 (各种通用计算机)
数据分析 过程通讯 图形用户界面等软件
返 回
上 页
下 页
虚拟仪器
计算机和仪器模块组成了虚拟仪器硬件测 试平台,完成被测输入信号的采集、放大、模 数转换以及输出信号的数模转换等。当硬件确 定后,用户可以通过不同测试功能的软件模块 (如数据分析、过程通讯以及图形用户界面等 软件)的组合实现不同的功能。
测量精度高、速度快、可重复性好、开关、 电缆少、系统组建时间短、测量功能易于扩展等 优点,有最终取代大量的传统仪器成为仪器领域 主流产品的趋势 。
NI的PCI-GPIB卡
操 作 系 统 : DOS, Windows2000/9x/NT 最大I/0速度:
测控系统原理及设计概论
西安卫星 测控中心
测控系统原理及设计概论
中国于2000年10月开始发射“ 北斗”定位卫星,可提供高精度的 定位、测速和授时服务,中国计划 在2015年形成覆盖全球的卫星导航 定位系统。
测控仪器和测控系统是检测技术的具体实 现 ,是获取信息的工具。
测控系统原理及设计概论
1.2 测控技术的发展
传统的测量仪器仪表用以测量、观察、监视 、验证、记录各种物理量、物质成分、物性参数 等。如压力表、测长仪、显微镜等。
随着工业的发展,测量和分析、计算、控制 常常融为一体。因此,现代仪器仪表还包括计算 、分析、控制、报警、信号传递和数据处理等功 能。
计算机测控系统
测控系统原理及设计概论
第1章 计算机测控系统概述
测控系统原理及设计概论
1.2 测控技术与仪器专业的定位
测控技术与仪器专业是多个仪器仪表类专业 合并而成的大专业,“测控技术与仪器”是指对 信息进行采集、测量、存贮、传输、处理和控制 的手段与设备。包含测量技术、控制技术和实现 这些技术的仪器仪表及系统。其内涵如所示。
测控系统原理及设计概论
课程名称
电路
模拟电子技术(I)
数字电子技术
微机原理与接口技术
自动控制原理
单片机原理与应用
可编程逻辑器件原理与设计
传感器原理
数字化测试技术
传感器技术课设
可编程逻辑器件课设
单片机技术课设
测控系统原理及设计概论
学分 5
3.5 3.5 3.5
4 4 3 4 4 1 1 1
本课程是测控专业的专业课,本课程 以 模拟电路、数字电路、传感器技术和微机 技术为前提,不同于先修课程,本课程主 要学习如何将各个功能模块组装起来构成 一个完整的测控系统,换言之,先修课程 是从微观上学习各模块自身的原理及构成, 而测控系统这门课程是从宏观上学习各个 模块之间的连接及影响,学习如何将各个 功能模块组合起来实现测试和控制的功能。
测控系统培训课程设计
测控系统培训课程设计一、课程目标知识目标:1. 理解测控系统的基本原理,掌握测控系统各组成部分的功能及相互关系。
2. 掌握测控系统常用的传感器及其工作原理,了解其在实际应用中的选型方法。
3. 学会分析测控系统的性能指标,了解影响系统性能的因素。
技能目标:1. 能够运用所学知识,设计简单的测控系统,并进行仿真实验。
2. 掌握测控系统调试与故障排除的基本方法,具备实际操作能力。
3. 能够使用相关软件对测控系统进行数据采集、处理和分析,提高实际应用能力。
情感态度价值观目标:1. 培养学生对测控技术浓厚的兴趣,激发其探索精神和创新意识。
2. 增强学生的团队合作意识,培养其在实际工程项目中与他人协同工作的能力。
3. 引导学生关注测控技术在国家经济建设和国防事业中的应用,培养其社会责任感和使命感。
课程性质:本课程为理论与实践相结合的课程,旨在培养学生的实际操作能力和创新能力。
学生特点:学生具备一定的物理、数学和电子基础知识,对测控技术有一定了解,但实际操作能力较弱。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和创新能力。
在教学过程中,注重启发式教学,引导学生主动思考,培养其解决问题的能力。
同时,关注学生的情感态度价值观培养,使其成为具有社会责任感和使命感的优秀人才。
通过分解课程目标为具体学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 测控系统概述:介绍测控系统的基本概念、发展历程、应用领域,使学生了解测控技术的重要性。
教材章节:第一章 测控系统概述内容:测控系统基本概念、发展历程、应用领域。
2. 测控系统硬件组成:讲解传感器、执行器、信号调理电路等硬件组成部分,使学生掌握各部分功能及选型方法。
教材章节:第二章 测控系统硬件组成内容:传感器、执行器、信号调理电路、数据采集卡。
3. 测控系统软件设计:介绍测控系统软件设计方法,包括数据采集、处理、分析等,提高学生的实际应用能力。
滚动直线导轨副运动精度测控系统的设计原理与应用技术
滚动直线导轨副运动精度测控系统的设计原理与应用技术一、系统概述在机械制造领域中,直线导轨被广泛运用于各种设备和机器中,用于实现匀速、准确的直线运动。
而滚动直线导轨副则是其中一种重要的导轨类型,具有高精度、高刚度和寿命长的特点。
为了确保滚动直线导轨副运动系统的精度和稳定性,设计一套合理的测控系统显得至关重要。
本文将介绍滚动直线导轨副运动精度测控系统的设计原理与应用技术。
二、系统设计原理1. 传感器选择:在测控系统中,传感器起着关键作用,用于实时监测导轨副的位置、速度和加速度等参数。
常用的传感器包括光电编码器、线性位移传感器等,根据具体情况选择合适的传感器进行安装。
2. 控制器设计:控制器是整个系统的核心部件,负责接收传感器反馈的信号并进行信号处理、运算,最终输出控制指令。
控制器的设计需要考虑到系统的实时性、稳定性和精度要求,通常采用嵌入式系统或PLC等控制方案。
3. 规划运动轨迹:在设计过程中,需要事先规划好导轨副的运动轨迹,包括起始位置、目标位置和运动速度等参数。
通过对轨迹进行优化设计,可以提高系统的运动效率和精度。
4. 反馈控制:系统中采用闭环控制方式,通过实时监测导轨副的运动状态,及时调整控制指令,以实现精准运动控制。
反馈控制可以有效提高系统的稳定性和精度。
三、系统应用技术1. 自动化生产线:滚动直线导轨副运动精度测控系统广泛应用于自动化生产线中,实现各种设备之间的精准对接和运动控制。
通过系统的设计和优化,可以提高生产效率和产品质量。
2. 机械加工设备:在数控机床、车床等机械加工设备中,滚动直线导轨副运动精度测控系统可以实现工件的高精度加工和复杂轮廓加工。
系统稳定可靠,能够满足高精度加工的需求。
3. 机器人领域:在工业机器人领域,滚动直线导轨副运动精度测控系统也扮演着重要角色,用于实现机械臂的灵活运动和高精度定位。
系统设计合理、稳定性好,能够满足机器人各种应用场景的需求。
四、结语滚动直线导轨副运动精度测控系统的设计原理和应用技术对于提高机械设备的运动精度和稳定性具有重要意义。
测控通信系统的工作原理
测控通信系统的工作原理测控通信系统是指一种用于采集、传输、处理和控制实时数据的系统。
它包括了传感器、数据采集设备、通信设备、计算机处理和控制单元等多个部分。
测控通信系统的工作原理可以通过以下几个方面来详细说明。
首先,在测控通信系统中,传感器是非常重要的组成部分。
传感器可以通过感知物理量的变化,将其转换为对应的电信号。
常见的传感器包括温度传感器、压力传感器、湿度传感器等。
传感器是整个系统的源头,其准确性和可靠性对整个系统的性能至关重要。
其次,数据采集设备是用于采集传感器输出的电信号,并将其转换为数字信号的设备。
数据采集设备通常包括模数转换器(ADC)和信号调理电路。
模数转换器将模拟信号转换为数字信号,信号调理电路则对信号进行放大、滤波等处理,以提高信号质量和可靠性。
数据采集设备的设计能够确保传感器的输出准确、稳定和可靠。
然后,通信设备是用于传输采集到的数字信号的设备。
通信设备可以使用有线或无线通信技术,实现数据的传输。
常见的有线通信技术包括以太网、RS-232、RS-485等,而无线通信技术包括Wi-Fi、蓝牙、ZigBee等。
通信设备的选择依据系统的要求和实际应用环境来确定。
接下来,计算机处理和控制单元是测控通信系统中的核心部件。
它负责接收、存储、处理和分析采集到的数据。
计算机可以使用专用的硬件设备,也可以通过软件实现。
在处理数据时,计算机可以进行数据分析、绘图、报警、控制命令等操作。
计算机处理和控制单元的性能和稳定性直接影响到系统的实时性和可靠性。
最后,人机界面是测控通信系统中与用户进行交互和监控的接口。
人机界面可以采用各种形式,如计算机界面、触摸屏、显示器等。
通过人机界面,用户可以实时监视系统的状态、设置参数、查看数据曲线等。
人机界面的友好性和易用性是测控通信系统的一个重要考虑因素。
综上所述,测控通信系统通过传感器采集物理量的变化,通过数据采集设备将模拟信号转换为数字信号,然后使用通信设备传输数据。
深空测控通信系统设计原理与方法
深空测控通信系统设计原理与方法嘿,朋友们!今天咱来聊聊深空测控通信系统设计原理与方法,这可真是个超级有趣又超级重要的事儿呢!你想想看,那遥远的深空,就好像是一个巨大的神秘宝库,等着我们去探索和发现。
而深空测控通信系统呢,就像是我们伸向这个宝库的一双神奇的手,能让我们和那些遥远的星球、航天器啥的“沟通交流”。
咱先说这设计原理哈,就好比盖房子得先有个牢固的根基一样。
深空测控通信系统的原理就是要保证信号能准确无误地传过去,又能准确无误地传回来。
这可不是一件容易的事儿啊!就像你跟远方的朋友喊话,声音得够大,还不能被风吹跑了,对吧?这就需要各种厉害的技术和设备来帮忙啦。
比如说,要有超级强大的天线,就像一个巨大的耳朵,能灵敏地捕捉到来自深空的微弱信号。
这天线可得精心设计,角度啦、尺寸啦,都得恰到好处,不然怎么能“听”得清楚呢?还有那些复杂的信号处理技术,就像是给信号做了一场神奇的“变身”,让它们能在漫长的旅途中保持清晰。
再来说说方法。
这就像是走一条路,得知道从哪儿开始走,往哪儿走,中间遇到问题怎么解决。
设计深空测控通信系统也是一样啊,得考虑好多好多因素呢。
比如说,距离那么远,信号会衰减啊,这就得想办法增强信号。
还有啊,太空里可不是风平浪静的,各种干扰多得很,这就得有办法把这些干扰给挡在外面。
就像我们走路会遇到小石子、小水坑一样,设计这个系统也会遇到各种各样的难题。
但咱不能怕呀,得勇敢地去面对,去解决。
你想想,如果没有这个深空测控通信系统,我们怎么能知道火星上有没有水呢?怎么能看到那些遥远星球的美丽模样呢?那我们对宇宙的探索不就只能停留在想象中了吗?那多可惜呀!所以说呀,深空测控通信系统设计原理与方法真的是太重要啦!它就像是一把打开宇宙大门的钥匙,让我们能更深入地了解宇宙的奥秘。
咱中国在这方面可也是很厉害的哟!我们的科学家们一直在努力钻研,不断创新,让我们的深空测控通信系统越来越先进。
这可真是让人骄傲和自豪呢!朋友们,让我们一起期待未来,期待着通过这个神奇的系统,我们能发现更多宇宙的精彩吧!原创不易,请尊重原创,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、微机化测控系统分拿几类?
微机化检测系统、微机化控制系统、微机化测控系统
2、模拟量输入通道由那几部分组成?以及各部分的作用?
传感器:将非电量转换为电量
调理电路:放大、滤波
采集电路:将模拟信号转换为数字信号
3、模拟量输出通道以及各部分的作用?
数模转换、调理电路、模拟显示、记录、执行机构
4、前置放大器:判断信号大小准则?所放位置前后的判断?
5、采集电路的四种方案?PGA S\H的作用?
6、前置与主放大器的区别以及适用情况?
7、D\A+保持器;数据保持器及模拟保持器的机构与优缺点?
8、开关量输入输出通道。
技术指标:抗干扰、可靠性
9、单元电路级联设计:电器匹配方案(3种)、信号耦合方式?
步进电机的正反转控制
10、主机电路组合方式:内插式、外接式、组合式
11、CPU的读取方式:定时、中断、查询
12、接口电路:3-2-1:3-2-2
13、A\D计算(P20)
14、D\A接口
15、单缓冲、双缓冲方式适用情况?分析
16、人机接口程序(4例题)
17、测量数据处理包括哪些?
18、灵敏度误差、零位误差?
19、软件校正方法?
20、量程自动切换(为什么、实现)
21、标度变换(为什么);软件实现方法计算题
22、数字滤波类型?以及原理?
23、什么叫PID
24、位置式与增量式公式以及优缺点?计算题
25、不完全PID改进(不完全微分法、抗饱和积分法)计算题
26、无扰动切换?如何对位平衡操作?
27、自检方式?自检算法?
28、噪声形成要素以及抑制?
29、噪声耦合方式?
30、噪声的干扰模式原因及抑制?
31、硬件抗干扰:接地方式
32、屏蔽技术类型?。