巴特沃斯低通滤波器

合集下载

三阶巴特沃斯低通滤波

三阶巴特沃斯低通滤波

三阶巴特沃斯低通滤波巴特沃斯(Butterworth)滤波器是一种常见的无失真滤波器,可作为低通滤波器用于信号处理中。

它具有平坦的幅频特性和无尖锐过渡带的特点。

本文将介绍三阶巴特沃斯低通滤波器的设计原理和应用。

一、设计原理:三阶巴特沃斯低通滤波器是基于巴特沃斯滤波器的一种改进,通过改变滤波器的阶数可以实现更陡的下降斜率。

巴特沃斯滤波器的传递函数表达式为:H(s) = 1 / (1 + (s / ω_c)^2N)其中,s为复频域变量,ω_c为截止频率,N为滤波器的阶数。

由于本文是关于三阶巴特沃斯低通滤波器的介绍,所以将N取为3。

将传递函数转换为标准形式,可得:H(s) = 1 / (1 + 1.732(s / ω_c) + (s / ω_c)^2 + 1.732(s / ω_c)^3 + (s / ω_c)^6)根据滤波器的模拟原理,将复频域变量s替换为复变量z,并进行双线变换,可以得到巴特沃斯低通滤波器的差分方程:y[n] = (x[n] + 3x[n-1] + 3x[n-2] + x[n-3] - 3y[n-1] - 3y[n-2] - y[n-3]) / (1 + 2.6136 + 2.1585 + 0.6723)二、应用:三阶巴特沃斯低通滤波器在实际应用中具有广泛的用途,如音频信号处理、图像处理等。

1. 音频信号处理:音频信号常常包含高频噪声,通过将音频信号输入三阶巴特沃斯低通滤波器,可以达到去除高频噪声的效果。

比如,对不希望出现的尖锐噪声或杂音进行滤除,以提高音频质量。

2. 图像处理:在图像处理中,低通滤波器常被用来去除图像中的高频噪声,以提高图像的清晰度和质量。

三阶巴特沃斯低通滤波器通过限制图像的高频分量,可以有效滤除图像中的噪声,使图像更加平滑。

3. 信号平滑:信号的平滑是一种常见的信号处理操作,可以去除信号中的高频噪声,使信号变得平缓。

三阶巴特沃斯低通滤波器在信号平滑方面表现出色,具有平坦的幅频特性和较陡的下降斜率,可以滤除信号中不需要的高频成分。

巴特沃斯低通滤波器衰减曲线和归一化频率关系

巴特沃斯低通滤波器衰减曲线和归一化频率关系

巴特沃斯低通滤波器衰减曲线和归一化频率关系
巴特沃斯低通滤波器衰减曲线和归一化频率关系
巴特沃斯低通滤波器(Butterworth Low Pass Filter)是一种线性阶跃函数的滤波器,其衰减曲线越来越近似正弦曲线,因此称为“Butterworth滤波器”,也称为“理想低通滤波器”。

Butterworth滤波器的灵敏度曲线是常见的滤波器衰减曲线,它有一些特殊的性质,其中最重要的是它有一个固定的相位滞后,也就是说,在频率越来越高的情况下,它的衰减曲线越来越接近正弦曲线。

这种曲线的端点是在-3db处。

在此之前,任何低于端点的衰减幅度均是线性的,因此,端点也被称为低通滤波器的截止频率。

在低通滤波器截止频率之前,不管是低通滤波器,高通滤波器,还是带通滤波器,其衰减曲线都是线性的,没有衰减。

但是,当输入的频率等于或大于截止频率时,低通滤波器开始衰减,而高通滤波器则开始通过,而带通滤波器则可以实现从高通到低通的转换。

归一化频率(Normalized Frequency)指的是把输入信号的频率标定到一个固定的范围内,这个范围通常是[0,1]或[-1,1],特别是在巴特沃斯滤波器中,它把输入信号的频率标定到[0,1]范围内,它的衰减曲线与输入信号的该范围有关。

归一化频率的定义是:
Normalized Frequency = Actual Frequency / Highest Frequency
Butterworth滤波器的归一化频率与它的衰减曲线有关,在低于
截止频率的通频区域,衰减曲线接近于0db,而在超过截止频率的阻带区域,则衰减曲线以-20db/decade(十进制)的速度衰减,因此,Butterworth滤波器的衰减曲线与归一化频率是成比例关系的。

基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计

基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计

巴特沃斯低通、切比雪夫低通、高通IIR滤波器设计05941401 1120191454 焦奥一、设计思路IIR滤波器可以分为低通、高通、带通、带阻等不同类型的滤波器,而以系统函数类型又有巴特沃斯、切比雪夫等滤波器。

其中巴特沃斯较为简单,切比雪夫较为复杂;低阶比高阶简单,但却有着不够良好的滤波特性。

在满足特定的指标最低要求下,低阶、巴特沃斯滤波器能更大程度地节省运算量以及复杂程度。

滤波器在不同域内分为数字域和模拟域。

其中数字域运用最广泛。

在设计过程中,一般是导出模拟域的滤波器,之后通过频率转换变为数字域滤波器,实现模拟域到数字域的传递。

在针对高通、带通、带阻的滤波器上,可以又低通到他们的变换公式来进行较为方便的转换。

综上,IIR滤波器的设计思路是,先得到一个满足指标的尽可能简单的低通模拟滤波器,之后用频域变换转换到数字域。

转换方法有双线性变换法、冲激响应不变法等。

虽然方法不同,但具体过程有很多相似之处。

首先将数字滤波器的指标转换为模拟滤波器的指标,之后根据指标设计模拟滤波器,再通过变换,将模拟滤波器变换为数字滤波器,是设计IIR滤波器的最基本框架。

以下先讨论较为简单的巴特沃斯低通滤波器。

二、巴特沃斯低通滤波假设需要一个指标为0~4hz内衰减小于3db、大于60hz时衰减不小于30db的滤波器。

其中抽样频率为400hz。

以双线性变换方法来设计。

首先将滤波器转换到模拟指标。

T =1f f ⁄=1400Ωf ′=2ff f =8ff f =Ωf ′f =0.02fΩf ′=2ff f =120ff f =Ωf ′f =0.3f根据双线性变换Ω=2f tan ⁡(f 2) 得到Ωf =25.14Ωf =407.62这就得到了模拟域的指标。

由巴特沃斯的方程Α2(Ω)=|f f (f Ω)|2=11+(ΩΩf )2f20ff |f f (f Ω)|=−10ff [1+(ΩΩf)2f] {20ff |f f (f Ωf )|≥−320ff |f f (f Ωf )|≤−30ff得到{ −10ff [1+(Ωf Ωf)2f ]≥−3−10ff [1+(Ωf Ωf )2f]≤−30当N取大于最小值的整数时,解出N=2,因此为二阶巴特沃斯低通滤波器。

c++ 3阶巴特沃斯低通滤波算法

c++ 3阶巴特沃斯低通滤波算法

C++ 3阶巴特沃斯低通滤波算法在信号处理领域,巴特沃斯低通滤波算法是一种常用的数字滤波算法,它能够有效地去除信号中高频成分,保留低频成分,常用于音频处理、图像处理等领域。

C++作为一种高效的编程语言,能够很好地支持这一算法的实现。

本文将结合C++语言,深入探讨3阶巴特沃斯低通滤波算法的原理、实现和应用。

1. 巴特沃斯低通滤波算法概述巴特沃斯低通滤波器是一种能够通过滤波器将信号中高频成分抑制、低频成分保留的数字滤波器。

其传输函数具有一定的特点,采用巴特沃斯低通滤波器可以实现对信号的平滑处理,去除高频噪声,保留低频信号。

3阶巴特沃斯低通滤波器具有更加优化的特性,能够更好地滤除高频噪声,保留低频信号,因此在实际应用中具有广泛的价值。

2. 3阶巴特沃斯低通滤波算法原理3阶巴特沃斯低通滤波算法是建立在巴特沃斯低通滤波器基础上的改进版本,其核心原理是通过多级滤波器级联的方式,增强滤波效果,同时减少不必要的波纹和相位失真。

其数学模型和传输函数较为复杂,需要通过C++编程语言实现。

3. C++实现3阶巴特沃斯低通滤波算法在C++中实现3阶巴特沃斯低通滤波算法,需要充分利用C++语言的面向对象特性、模板编程等特点。

可以采用模块化的设计思路,将滤波器的设计、参数设置、滤波处理等功能进行封装,从而提高代码的可复用性和可维护性。

C++的性能优势也能够保证算法的高效性。

4. 应用案例分析3阶巴特沃斯低通滤波算法在信号处理领域具有广泛的应用,比如在音频去噪、图像平滑处理、信号恢复等方面均有重要作用。

通过具体的应用案例分析,可以更好地展现算法的效果和实用性,也有助于读者深入理解算法的具体应用场景。

5. 个人观点和总结作为一种经典的数字滤波算法,3阶巴特沃斯低通滤波算法在实际应用中能够发挥重要作用。

在C++语言中实现该算法,既能够充分发挥C++语言的优势,也能够更好地与实际应用结合,为信号处理领域的工程实践提供技术支持。

在未来的发展中,可以进一步优化算法的性能、扩展算法的适用范围,从而更好地满足不同领域的需求。

巴特沃斯低通滤波器传递函数

巴特沃斯低通滤波器传递函数

巴特沃斯低通滤波器传递函数一、引言巴特沃斯滤波器是一种常见的滤波器,它可以用于信号处理、图像处理等领域。

其中,低通滤波器是最基本的一种。

本文将详细介绍巴特沃斯低通滤波器传递函数的计算方法。

二、巴特沃斯低通滤波器1. 巴特沃斯低通滤波器概述巴特沃斯低通滤波器是一种对频率响应有要求的低通滤波器,其传递函数为:H(s) = 1 / (1 + (s/wc)^2n)^0.5其中,s为Laplace变换中的复频率变量,wc为截止频率,n为阶数。

2. 巴特沃斯低通滤波器传递函数推导(1)将传递函数H(s)转化为标准形式:H(s) = 1 / (1 + (s/wc)^2n)^0.5= 1 / [(s/wc)^2n + 1]^0.5= 1 / [(s^2n + wc^2n) / wc^2n]^0.5= wc^n / [(s^2n + wc^2n)^0.5](2)将复平面上的频率变量s转化为极坐标形式:s = σ + jω= r * e^(jθ)其中,σ为实部,ω为虚部,r为模值,θ为相位角。

(3)将传递函数H(s)中的s用极坐标表示:H(s) = wc^n / [(s^2n + wc^2n)^0.5]= wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5](4)将传递函数H(s)中的分母进行有理化:H(s) = wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5] = wc^n * (r^2n * e^(j2nθ) - wc^2n)^-0.5(5)将传递函数H(s)中的极坐标形式转化为直角坐标形式:H(s) = wc^n * cos(nθ) - jwc^n * sin(nθ)----------------------------------(r^2n - wc^2n)^0.5(6)根据频率响应要求,令模值等于1时的频率为截止频率wc,则有:1 = |H(jwc)| = wc^n / (wc^2n - wc^2n)^0.5=> 1 = (wc/wc)^n=> n = 1 / [ln(1/√R)] / [ln(tan(π/4 + fc/fs/2))]其中,R为通带最大衰减,fc为通带截止频率,fs为采样频率。

巴特沃斯低通滤波器的设计精编资料

巴特沃斯低通滤波器的设计精编资料

巴特沃斯低通滤波器的设计巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。

式中N 为整数,是滤波器的阶次。

巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。

巴特沃斯低通滤波器的振幅特性如图a 所示。

滤波器的特性完全由其阶数N 决定。

当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。

滤波器的振幅特性对参数N 的依赖关系如图a 所示。

设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N Np jH j C pλλ==+-p 图a 巴特沃斯低通滤波器的振幅特性由于221()()()1()a a jsNcH s H s AsjΩ=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。

2、常用设计巴特沃斯低通滤波器指标pλ:通带截止频率;pα:通带衰减,单位:dB;sλ:阻带起始频率;sα:阻带衰减,单位:dB。

说明:(1)衰减在这里以分贝(dB)为单位;即222110lg10lg1()NCH jαλλ⎡⎤==+⎣⎦(2)当3dBα=时p CΩ=Ω为通常意义上的截止频率。

(3)在滤波器设计中常选用归一化的频率/Cλ=ΩΩ,即1,p sp sp pλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。

(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。

巴特沃斯低通滤波器

巴特沃斯低通滤波器
0.1a p 0.1a s s sp
带最小衰减α =30dB,按照以上技术指标设计巴特沃斯低通滤波器。 0.1a s
1a p
1a s
2.4
0242 4.25, 2.4
2.4 10 1 2 f lg 0.0242 lg 0.0242 NN 2 4.25, 55 lgf 2.4 4.25, N N s sp lg 2.4 2.4 2 f p
H( a s)
N c
(s s
k 0
N 1
k
)
7 j 3
• 例如N=3, 通过下式可以计算出6个极点 5 2 4 j j j j s 3 c 3 s 2 c 3 s 0 c 3 s1 c
s 4 c
j2
s 5 c
要求
f i g u r e ; p l o t ( Q , H a s ) ; a x i s ( [ 0 5]);xlabel('f(kHz)'),ylabel('20lg(abs(H_{a}(j{\Omega})))(dB)');
3 0
- 7 0
• • • • •
L=length(Ha); Yt=Xt(1:L).*Ha; figure;plot(Q,abs(Yt));axis([0 60 0 150]); yt=ifft(Yt); figure;plot(Q,yt);
• 模拟低通滤波器的设计指标 • 构造一个逼近设计指标的传输函数Ha(s) • Butterworth(巴特沃斯)低通逼近
模拟低通滤波器的设计指标及逼近方法(续)
• 模拟低通滤波器的设计指标有αp, Ωp,αs和Ωs。 • Ωp;通带截止频率 • Ωs:阻带截止频率

巴特沃斯数字低通滤波器要点说明

巴特沃斯数字低通滤波器要点说明

目录1. 题目 ..................................................................... ........................................ .2 2. 要求 ..................................................................... .......................................... 2 3.设 理................................. 2 计 原3.1 数 字 滤波器 基本概念................23.2 数字滤波器 工作原理 ................23.3巴特 沃斯滤波器设计原理 ........23.4 法 .............脉冲响应不 (4)3.5 实验 所用MATLAB 函 数 说明 (5)............4. 设计思路............ (6)5 、实验内容............ (6)5.1 实验程序 ....... (6)5.2 实验结果分析...... (10)6. 心得体会............ (10)7. 参考文献............ (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。

并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t), 其中f1=50HZ,f2=200HZ。

用此信号验证滤波器设计的正确性。

三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器数字巴特沃斯滤波器是一种常用的数字信号处理滤波器,可用于滤波和去噪等应用。

本文将介绍一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

1.原理概述一阶归一化数字巴特沃斯低通滤波器是一种理想滤波器。

其设计目标是实现信号在截止频率以下的完美衰减,而在截止频率以上则不进行滤波。

该滤波器的频率响应特点可用模拟巴特沃斯低通滤波器的频率响应特点进行近似。

2.设计步骤实现一阶归一化数字巴特沃斯低通滤波器的设计,可以按照以下步骤进行:步骤一:确定截止频率根据滤波器的应用需求,选择合适的截止频率。

截止频率是指滤波器开始滤波的频率点,一般以赫兹为单位。

步骤二:计算模拟巴特沃斯低通滤波器的阶数根据所选截止频率,使用模拟巴特沃斯低通滤波器的阶数公式计算阶数。

对于一阶滤波器,阶数为1。

步骤三:计算截止频率对应的模拟巴特沃斯低通滤波器的增益根据所选截止频率,使用模拟巴特沃斯低通滤波器的增益公式计算增益。

对于一阶滤波器,增益为-3dB。

步骤四:进行归一化在设计数字巴特沃斯滤波器时,需要对模拟滤波器进行归一化。

归一化处理可将截止频率与折返频率映射到数字滤波器的单位圆上。

步骤五:数值实现根据归一化的模拟滤波器参数,使用双线性变换将其转换为数字滤波器的差分方程。

假设我们需要设计一个一阶归一化数字巴特沃斯低通滤波器,截止频率选取为1kHz。

根据步骤一,确定截止频率为1kHz。

根据步骤二,计算阶数为1。

根据步骤三,计算增益为-3dB。

在步骤四中,进行归一化处理,将1kHz映射到单位圆上。

最后,在步骤五中,根据归一化的模拟滤波器参数,使用双线性变换转换为数字滤波器的差分方程。

本文介绍了一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

通过明确的设计步骤,我们可以根据所需的截止频率实现滤波器设计。

在应用中,可以根据实际需求调整截止频率和滤波器的阶数,以获得更好的滤波效果。

巴特沃斯低通滤波器

巴特沃斯低通滤波器

巴特沃斯低通滤波器简介巴特沃斯低通滤波器(Butterworth low-pass filter)是一种常用的模拟滤波器,被广泛应用于信号处理和电子系统中。

它的设计原则是在通带中具有平坦的幅频特性,而在截止频率处具有最大衰减。

这种滤波器的设计目的是能够尽可能滤除高频噪声,而保留低频信号。

巴特沃斯滤波器的特性巴特沃斯低通滤波器具有以下特性:•通带幅度为1:在通带中,滤波器的增益保持不变,也就是幅度为1。

•幅度频率响应的过渡带是由通带到停带的渐变区域,没有任何波纹。

•幅度频率响应在通带之外都有指数衰减。

•巴特沃斯滤波器是最平滑的滤波器之一,没有任何截止角陡峭度。

巴特沃斯滤波器的传递函数巴特沃斯低通滤波器的传递函数由下式给出:H(s) = 1 / (1 + (s / ωc)^2n)^0.5其中,H(s)为滤波器的传递函数,s为复变量,ωc为截止频率,n为滤波器的阶数。

阶数决定了滤波器的过渡带宽度和滤波特性。

巴特沃斯滤波器设计步骤巴特沃斯滤波器的设计步骤如下:1.确定所需滤波器的阶数和截止频率。

2.根据阶数和截止频率选择巴特沃斯滤波器的标准传递函数,可以从经验图表或计算公式中得到。

3.将标准传递函数的复频域变量进行频率缩放,以得到实际的传递函数。

4.将传递函数进行因式分解,得到一系列一阶巴特沃斯滤波器的传递函数。

5.根据一阶传递函数设计电路原型。

6.将一阶电路原型按照阶数进行级联或并联,构成所需的滤波器电路。

巴特沃斯滤波器的优点和缺点巴特沃斯低通滤波器具有以下优点:•平坦的传递特性:在通带中,滤波器的增益保持不变,不会引入频率响应的波纹或衰减。

•平滑的过渡带:巴特沃斯滤波器的过渡带具有指数衰减特性,没有任何波纹或突变。

•简单的设计:巴特沃斯滤波器的设计步骤相对简单,可以通过标准传递函数和电路原型进行设计。

然而,巴特沃斯滤波器也具有一些缺点:•较大的阶数:为了达到较陡的阻带衰减,巴特沃斯滤波器需要较高的阶数,导致电路复杂度增加。

低通数字滤波器代码

低通数字滤波器代码

低通数字滤波器代码低通数字滤波器是一种常见的信号处理器件,它可以将输入信号中高频成分滤除,只保留低频成分。

在实际应用中,低通数字滤波器被广泛应用于音频处理、图像处理、通信系统等领域。

本文将介绍一种基于巴特沃斯滤波器设计的低通数字滤波器,并详细解释其原理和实现方法。

巴特沃斯低通滤波器是一种典型的无失真滤波器,它的特点是在截止频率附近的频率响应非常平坦,而且在截止频率之外的频率响应急剧下降。

这使得巴特沃斯低通滤波器在实际应用中具有很高的性能。

巴特沃斯滤波器的设计是基于一个重要的概念——极点。

极点是指滤波器的传输函数中使得函数取无穷大的点。

对于巴特沃斯滤波器来说,这些极点位于单位圆上,并且均匀分布在单位圆上。

通过调整这些极点的位置和数量,可以实现不同的滤波器特性。

巴特沃斯低通滤波器的设计步骤如下:1. 确定滤波器的截止频率:截止频率是指滤波器在该频率处的输出功率下降到输入功率的一半。

根据应用需求,选择合适的截止频率。

2. 根据截止频率计算滤波器的阶数:阶数是指滤波器的极点数量。

阶数越高,滤波器的陡峭度越高。

一般来说,阶数越高,滤波器的性能越好,但同时也会增加计算复杂度。

3. 计算滤波器的极点位置:根据截止频率和阶数,计算滤波器的极点位置。

巴特沃斯低通滤波器的极点位于单位圆上,可以通过公式计算得到。

4. 根据极点位置计算滤波器的系数:根据极点位置,计算滤波器的系数。

系数可以通过多项式展开得到,然后归一化处理。

5. 实现滤波器:将计算得到的滤波器系数应用于巴特沃斯滤波器的差分方程,即可实现滤波器。

巴特沃斯低通滤波器的实现可以使用各种编程语言进行。

以下是使用C语言实现巴特沃斯低通滤波器的示例代码:```c#include <stdio.h>#include <stdlib.h>#include <math.h>#define ORDER 4 // 滤波器阶数#define SAMPLING_RATE 44100 // 采样率#define CUTOFF_FREQ 2000 // 截止频率double coef[ORDER+1]; // 滤波器系数void butterworth_lowpass_filter(double* input, double* output, int length) {int i, j;double history[ORDER+1] = {0}; // 输入历史数据for (i = 0; i < length; i++) {// 更新输入历史数据for (j = ORDER; j > 0; j--) {history[j] = history[j-1];}history[0] = input[i];// 计算输出output[i] = 0;for (j = 0; j <= ORDER; j++) {output[i] += coef[j] * history[j];}}}void calculate_filter_coef() {int i;double wc = 2 * M_PI * CUTOFF_FREQ / SAMPLING_RATE; // 截止频率对应的角频率// 计算滤波器的极点位置double s[ORDER];for (i = 0; i < ORDER; i++) {double real = -sinh(wc) * sin(M_PI*(2*i+1)/(2*ORDER));double imag = cosh(wc) * cos(M_PI*(2*i+1)/(2*ORDER)); s[i] = real + imag * I;}// 计算滤波器的系数for (i = 0; i <= ORDER; i++) {coef[i] = creal(s[0] * s[1] * s[2] * s[3] * ... * s[i-1] * s[i+1] * ... * s[ORDER]) / pow(cabs(s[i]), ORDER);}}int main() {// 生成输入信号int length = 1000;double* input = (double*)malloc(length * sizeof(double)); // ...// 计算滤波器系数calculate_filter_coef();// 应用滤波器double* output = (double*)malloc(length * sizeof(double)); butterworth_lowpass_filter(input, output, length);// 输出滤波后的信号for (int i = 0; i < length; i++) {printf("%lf\n", output[i]);}free(input);free(output);return 0;}```以上代码实现了一个4阶巴特沃斯低通滤波器。

八阶巴特沃斯低通滤波器的设计方法

八阶巴特沃斯低通滤波器的设计方法

八阶巴特沃斯低通滤波器的设计方法设计八阶巴特沃斯低通滤波器可以通过以下步骤进行:
1. 确定滤波器的规格:首先确定滤波器的截止频率和通带衰减。

截止频率是指滤波器开始降低信号幅度的频率,通带衰减是指滤波器在通带内允许的最大幅度变化。

2. 计算极点位置:使用巴特沃斯滤波器的公式可以计算出滤波器极点的位置。

对于八阶低通滤波器,共有四对共轭极点。

这些极点会决定滤波器的频率响应。

3. 进行归一化:对于滤波器的极点位置,需要对其进行归一化处理,将其转换为标准低通滤波器的情况。

4. 进行极点频率转换:通过将归一化后的极点位置转换为实际的截止频率,即可得到实际滤波器的极点位置。

5. 构造传递函数:使用极点位置构造滤波器的传递函数,可以表示为巴特沃斯多项式的形式。

6. 计算滤波器系数:通过将传递函数展开并与标准低通滤波器的传递函数进行比较,可以计算滤波器的系数。

7. 实施滤波器:将计算得到的滤波器系数应用于数字滤波器的差分方程中,从而实现滤波器的效果。

需要注意的是,设计巴特沃斯滤波器需要一定的信号处理和滤波器设计知识。

如果不熟悉滤波器设计或数字信号处理的相关概念,建议咨询专业的工程师或使用现成的滤波器设计软件来完成滤波器设计任务。

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

关于“巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理”的详细说明。

1.巴特沃斯低通滤波器公式
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:
其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

2.巴特沃斯低通滤波器设计原理
巴特沃斯型低通滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的
所有电容元件值来实现的。

巴特沃斯滤波器设计

巴特沃斯滤波器设计

巴特沃斯滤波器设计1、巴特沃斯滤波器设计原理低通滤波器的幅值响应如下图所示。

maxA 为通带内允许最大衰减;minA 为阻带内允许最小衰减,c ω为通带角频率,s ω为阻带角频率。

一个n 阶低通巴特沃斯滤波器的幅频函数为:1-7阶巴特沃斯多项式如下:常数ε的作用是调整通带内允许的最大衰减,使其可小于3dB。

逼近过程中,A 需要确定的参数为ε和巴特沃斯多项式的阶数n,其中,通带内允许最大衰减maxA。

首先,推导确定了ε的大小;阶数n的大小取决于阻带内允许的最小衰减minε。

习惯上,多用衰减(分贝数)表示幅频特性。

因此,巴特沃斯低通响应为:ωω时,产生通带内最大衰减,即当=c解上式,可得:ωω时,产生阻带内最小衰减当=s上式可写为:对上式求解,可得:把 的表达式带入,可得:例子:用matlab 重复以上计算过程:wp=90*pi; ws=150*pi; Rp=3; Rs=10;N_true=(10^(Rp/10)-1)/(10^(Rs/10)-1);%真数 Num_Base=wp/ws;%底数N=ceil(log10(N_true)/log10(Num_Base)/2); wc=ws/((10^(Rs/10)-1)^(1/(2*N)));附加:Matlab 计算对数的时候,没有以a 为底b 的对数的函数,因此需要通过lgblog lg b a a改为以10为底的对数或者自然对数进行计算。

来源:https:///view/06e71fc5c67da26925c52cc58bd63186bceb92ca.html2、matlab 的巴特沃斯滤波器设计matlab 中提供了函数进行巴特沃斯滤波器设计同样对应上边的例子,通带90πHz ,通带最大衰减3dB ,阻带150πHz ,阻带最小衰减10 dB 。

Matlab 计算方法如下:229010lg 1315010lg 110nc nc πωπω⎧⎡⎤⎛⎫⎪⎢⎥+= ⎪⎪⎢⎥⎝⎭⎪⎣⎦⎨⎡⎤⎪⎛⎫⎢⎥+=⎪⎪⎢⎥⎝⎭⎪⎣⎦⎩20.32901010.995261501019nc nc πωπω⎧⎛⎫⎪=-= ⎪⎪⎝⎭⎨⎛⎫⎪=-= ⎪⎪⎝⎭⎩两式相除有:2290150900.99526/0.110581509nncc πππωωπ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 整理得:()20.60.11058n=因此,0.110580.61log 2.15532n ==取3n =,带入215010lg 110n c πω⎡⎤⎛⎫⎢⎥+= ⎪⎢⎥⎝⎭⎣⎦,即21509nc πω⎛⎫= ⎪⎝⎭计算得:1/6150326.7388/9c rad s πω== 3n =,查表得对应的巴特沃斯滤波器,并去归一化:7323232711 3.488210221653.5 2.135 3.488210221c c c s s s s s s s s s ωωω⨯==++++++⨯⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Matlab 代码如下: wp=90*pi; ws=150*pi; Rp=3; Rs=10;[N,wc]=buttord(wp,ws,Rp,Rs,'s');[B,A]=butter(N,wc,'s');f=1:300;w=2*pi*f;H=freqs(B,A,w);figure(1)plot(f,20*log10(abs(H)));grid on,xlabel('频率(Hz)'),ylabel('幅度(dB)')title('巴特沃斯模拟滤波器')设计滤波器幅值响应如下:3、pscad和matlab关于滤波器的配合设计的滤波器的系数经常很大,连续的滤波器在pscad中用s的传递函数实现,pscad中该元件系数有限制要在-810之间,实际的滤波器不满足该条件。

巴特沃斯低通滤波器归一化参数表

巴特沃斯低通滤波器归一化参数表

巴特沃斯低通滤波器归一化参数表(原创实用版)目录1.巴特沃斯低通滤波器的概念和特点2.巴特沃斯低通滤波器的归一化参数表3.巴特沃斯低通滤波器的应用场景4.如何使用巴特沃斯低通滤波器5.总结正文一、巴特沃斯低通滤波器的概念和特点巴特沃斯低通滤波器是一种电子滤波器,它的主要特点是通频带内的频率响应曲线尽可能平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。

这种滤波器可以有效地去除信号中的高频噪声,保留信号的低频成分,适用于许多信号处理领域。

二、巴特沃斯低通滤波器的归一化参数表巴特沃斯低通滤波器的归一化参数表是指在单位圆上,滤波器的截止频率和通带衰减的取值范围。

在这个表中,截止频率通常用角度表示,通带衰减则用分贝表示。

巴特沃斯低通滤波器的归一化参数表可以方便地用于设计和分析滤波器,因为它可以直观地反映滤波器的性能。

三、巴特沃斯低通滤波器的应用场景巴特沃斯低通滤波器广泛应用于各种信号处理领域,例如音频处理、图像处理、通信系统等。

例如,在音频处理中,巴特沃斯低通滤波器可以用来去除音频信号中的高频噪声,提高音质的清晰度;在图像处理中,巴特沃斯低通滤波器可以用来降低图像的频谱噪声,提高图像的质量;在通信系统中,巴特沃斯低通滤波器可以用来抑制信号中的干扰,提高通信的稳定性。

四、如何使用巴特沃斯低通滤波器要使用巴特沃斯低通滤波器,首先需要根据信号的特性和应用场景选择合适的滤波器参数,然后根据这些参数设计出巴特沃斯低通滤波器。

在实际应用中,通常需要使用巴特沃斯低通滤波器计算器来计算滤波器的参数,然后使用这些参数来设计和实现滤波器。

使用巴特沃斯低通滤波器计算器可以方便地得到滤波器的参数,从而简化滤波器的设计和实现过程。

五、总结巴特沃斯低通滤波器是一种性能优良的电子滤波器,它的特点是通频带内的频率响应曲线尽可能平坦,没有起伏,而在阻频带则逐渐下降为零。

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计引言巴特沃斯阶跃阻抗低通滤波器是一种常用于信号处理和电子电路设计中的滤波器类型。

它的设计原理是通过调整滤波器的阶数和截止频率,来实现对输入信号的频率成分进行筛选和衰减。

本文将详细介绍巴特沃斯阶跃阻抗低通滤波器的设计方法及其在实际应用中的一些注意事项。

巴特沃斯阶跃阻抗低通滤波器概述巴特沃斯阶跃阻抗低通滤波器是一种I IR(无无限冲激响应)滤波器,具有平坦的通带、陡峭的衰减特性以及相对较低的群延迟。

它广泛应用于音频处理、通信系统等领域。

巴特沃斯滤波器的设计步骤1.确定滤波器的阶数(n):阶数决定了滤波器的衰减程度和复杂度,一般取偶数值。

2.确定滤波器的截止频率(f c):截止频率即信号通过滤波器时频率衰减到原来的1/√2,是决定滤波器频率特性的关键参数。

3.计算滤波器的极点位置:根据巴特沃斯滤波器的特性方程,计算极点位置。

4.标准化滤波器:对计算得到的极点位置进行标准化处理,使得滤波器的截止频率为1。

巴特沃斯滤波器设计实例以下是一个以设计一个4阶巴特沃斯阶跃阻抗低通滤波器为例的设计过程。

步骤1:确定滤波器的阶数我们选择设计一个4阶的巴特沃斯阶跃阻抗低通滤波器。

步骤2:确定滤波器的截止频率假设我们需要将信号的截止频率设置在1k H z。

步骤3:计算滤波器的极点位置根据巴特沃斯滤波器的特性方程,我们可以计算出滤波器的极点位置。

对于一个4阶的巴特沃斯低通滤波器,其极点位置可以通过下式计算得到:p_k=-s in h(π*fc)*s in(π*(2k-1)/(2n)),k=1,2,...,n式中,f c是截止频率,n是滤波器阶数。

步骤4:标准化滤波器标准化滤波器是将计算得到的极点位置通过变换使得滤波器的截止频率为1。

标准化后的滤波器的特性方程为:H(s)=1/((s+p1)(s+p2)...(s+pn))巴特沃斯滤波器的应用注意事项-在实际设计中,应根据需要调整滤波器的阶数和截止频率,以满足对信号的频率特性要求。

原型低通滤波器的巴特沃斯多项式

原型低通滤波器的巴特沃斯多项式

原型低通滤波器指的是在数字信号处理中用来滤除高频噪声或者限制信号带宽的一种滤波器。

巴特沃斯多项式是一种用来设计低通滤波器的常见方法,它可以通过调节多项式的阶数和截止频率来实现对滤波器性能的灵活控制。

1. 巴特沃斯多项式的特点:巴特沃斯多项式是一种特殊的多项式函数,它在频率域内具有平滑的衰减特性,能够实现对信号频率的有效滤除同时尽量保持信号的原始相位信息。

在滤波器设计中,巴特沃斯多项式常用于设计低通滤波器,具有良好的通带平坦度和陡峭的衰减特性。

其数学形式为:H(s) = 1 / [1 + (s / ωc)^2n]其中H(s)为传递函数,s为复频域变量,ωc为截止频率,n为多项式的阶数。

2. 巴特沃斯多项式的设计方法:(1) 确定截止频率:首先需要确定滤波器的截止频率,即在滤波器中允许通过的最高频率。

截止频率的选择需根据实际应用和信号特性进行合理确定。

(2) 确定多项式阶数:接下来需要确定巴特沃斯多项式的阶数,阶数越高,则频率衰减越陡。

但是阶数过高会导致滤波器结构复杂、计算量增大,因此需要在平滑度和计算成本之间进行平衡。

(3) 计算多项式系数:最后根据确定的截止频率和多项式阶数可以计算出巴特沃斯多项式的系数,从而得到滤波器的传递函数。

3. 巴特沃斯多项式的应用:巴特沃斯多项式设计的低通滤波器在信号处理中具有广泛的应用,例如在通信领域中用于抑制通道噪声和抗干扰能力强;在生物医学领域中用于生物信号滤波和脑电信号处理等。

由于巴特沃斯多项式设计的低通滤波器在通带内具有平坦特性,对信号的相位畸变较小,对于需要保持信号原始相位信息的应用场景非常适用。

4. 巴特沃斯多项式的局限性:巴特沃斯多项式设计的滤波器在实际应用中也存在一些局限性,如对零相位特性的追求、在通带和阻带之间的过渡带特性等方面可能无法满足一些特定需求。

在实际设计中需根据具体的信号特性和应用场景综合考虑,选择合适的滤波器设计方法。

总结:巴特沃斯多项式是一种常见的低通滤波器设计方法,具有平滑的频率特性和良好的通带平坦度。

巴特沃斯低通滤波器

巴特沃斯低通滤波器

《数字信号处理》课程设计报告设计课题滤波器设计与实现专业班级姓名学号报告日期 2012年12月《数字信号处理》课程设计任务书题目滤波器设计与实现学生姓名学号专业班级设计内容与要求一、设计内容:见所选题目。

二、设计要求1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。

2 报告内容(1)设计题目及要求(2)设计原理 (包括滤波器工作原理、涉及到的matlab函数的说明) (3)设计内容(设计思路,设计流程、仿真结果)(4)设计总结(收获和体会)(5)参考文献(6)程序清单起止时间2012年 12 月 3日至 2011年 12月11 日指导教师签名2011年 12月 2日系(教研室)主任签名年月日学生签名年 月 日《数字信号处理》课程设计报告一、设计题目及要求设计题目 基于MATLAB 的巴特沃斯低通滤波器的设计设计要求1. 通过实验加深对巴特沃斯低通滤波器基本原理的理解。

2.学习编写巴特沃斯低通滤波器的MATLAB 仿真程序3. 滤波器的性能指标如下:设计一个模拟低通巴特沃斯滤波器,技术指标:通带截止频率10000/rad s ,通带最大衰减3dB ;阻带起始频率30000/rad s,阻带最小衰减40dB ,画出其幅度谱和相位谱。

二、设计原理1. 巴特沃斯低通滤波器简介:巴特沃斯滤波器是电子滤波器的一种,特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth )在1930年发表在英国《无线电工程》期刊的一篇论文中提出的,可以构成低通、高通、带通和带阻四种组态,是目前最为流行的一类数字滤波器 ,经过离散化可以作为数字巴特沃思滤波器 ,较模拟滤波器具有精度高、稳定、灵活、不要求阻抗匹配等众多优点 ,因而在自动控制、语音、图像、通信、雷达等众多领域得到了广泛的应用,是一种具有最大平坦幅度响应的低通滤波器。

巴特沃斯滤波器基本原理及相关参数计算(初稿)

巴特沃斯滤波器基本原理及相关参数计算(初稿)

Vo ( s ) = Va ( s ) (1+
Vo ( s ) = - Vo ( s ) sR3C1 (1+
Vo ( s ) [1+ sR3C1 (1+
V ( s ) R2 R2 R + sR2C2 + 2 )]= - i ; R1 R3 R1 R1 R2 )]= - Vi ( s ) R2 ; R3
2.积分器
其中,积分器的原理图如下图 2 所示:
图 2 积分器原理图 根据运算放大器的“虚短”和“虚断”法则可得:
Vi ( s ) = - Vo ( s ) sC ; R
故积分器的传递函数 H1 ( s ) 为:
H 2 (s) =
Vo ( s ) 1 1 == - H ,其中 H ; Vi ( s ) sRC s RC

解之得: R1
2 2 2nf 0 AC1 (2nf 0 AC1 ) 2 16n 2 f 02 A 2 ( A 1)C1 Q 2 8n 2 f 02 A 2 C1 Q

2nf 0 AC1 (2nf 0 AC1 ) 2 [1 4( A 1)Q 2 / n] 1 1 4Q 2 ( A 1) / n = ; R1 2 4f 0 AC1Q 8n 2 f 02 A 2 C1 Q
巴特沃斯滤波器的原理与计算
由于二阶巴特沃斯低通滤波器是由 RC 低通级和积分级组成, 所以在此先对 对有源一阶 RC 低通滤波器、积分器以及两者之间的区别与联系做简要介绍:
1.有源一阶 RC 低通滤波器
其中,有源一阶 RC 低通滤波器的原理图如下图 1 所示:
图 1 有源一阶 RC 低通滤波器原理图 根据运算放大器的“虚短”和“虚断”法则可得:

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器设计

L1'
2
600 1.304 104
0.7654H
5.61mH
C2
1 c RS
C2'
2
1 1.304 104
600
1.8478F
0.038uF
L3
RS c
L'3
2
600 1.304 104
1.8478H
13.53mH
C4
1 c RS
C4'
2
1 1.304 104
600
0.7654F
0.016uF
设计实现电路
巴特沃斯低通滤波器迅速设计总结
一:根据滤波器性
能指标(通带内旳
最大衰减 c ,阻带
内旳最小衰减 s ,
截至频率 c ,阻带
起始频率 s )利用
公式
N
lg
1
s2
-1
2 lg s / c
求巴特沃斯低通滤波 器旳阶次N。
二:根据阶次N和考尔 型电路
RS' 1
L1' 0.7654
L'3 1.8478
一般情况下,电路是在匹配情况下工作,所以取
信源内阻 Rs 和负载电阻 RL 相等。
此时满足
Ha ( j0)
RL RS RL
1 2
根据反射系数公式
(s)
(
s)=1- 4RS RL
s' s
H
a
s
H
a
-s
j
达林顿电路构造
Rs 源电阻 RL 负载电阻
RS
I1
Es
V1
1
2
LC
I2
无损
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》课程设计报告设计课题滤波器设计与实现专业班级姓名学号报告日期 2012年12月《数字信号处理》课程设计任务书题目滤波器设计与实现学生姓名学号专业班级设计内容与要求一、设计内容:见所选题目。

二、设计要求1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。

2 报告内容(1)设计题目及要求(2)设计原理 (包括滤波器工作原理、涉及到的matlab函数的说明) (3)设计内容(设计思路,设计流程、仿真结果)(4)设计总结(收获和体会)(5)参考文献(6)程序清单起止时间2012年 12 月 3日至 2011年 12月11 日指导教师签名2011年 12月 2日系(教研室)主任签名年月日学生签名年 月 日《数字信号处理》课程设计报告一、设计题目及要求设计题目 基于MATLAB 的巴特沃斯低通滤波器的设计设计要求1. 通过实验加深对巴特沃斯低通滤波器基本原理的理解。

2.学习编写巴特沃斯低通滤波器的MATLAB 仿真程序3. 滤波器的性能指标如下:设计一个模拟低通巴特沃斯滤波器,技术指标:通带截止频率10000/rad s ,通带最大衰减3dB ;阻带起始频率30000/rad s,阻带最小衰减40dB ,画出其幅度谱和相位谱。

二、设计原理1. 巴特沃斯低通滤波器简介:巴特沃斯滤波器是电子滤波器的一种,特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth )在1930年发表在英国《无线电工程》期刊的一篇论文中提出的,可以构成低通、高通、带通和带阻四种组态,是目前最为流行的一类数字滤波器 ,经过离散化可以作为数字巴特沃思滤波器 ,较模拟滤波器具有精度高、稳定、灵活、不要求阻抗匹配等众多优点 ,因而在自动控制、语音、图像、通信、雷达等众多领域得到了广泛的应用,是一种具有最大平坦幅度响应的低通滤波器。

2.巴特沃斯低通滤波器的设计原理:巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。

巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。

巴特沃思滤波器的低通模平方函数表示()ΩΩ+=Ωc N/22a 11)(j H N=1,2,…… (2-6)下面归纳了巴特沃斯滤波器的主要特征 a 对所有的N ,()1a j H 20=Ω=Ω。

b 对所有的N ,()707.0aj 2c=ΩΩH =Ω即()dB3a lg 20j H c=Ω=ΩΩc()ΩjH a2是Ω的单调下降函数。

d()ΩjH a2随着阶次N的增大而更接近于理想低通滤波器。

如下图2所示,可以看出滤波器的幅频特性随着滤波器阶次N的增加而变得越来越好,在截止频率Ωc处的函数值始终为1/2的情况下,通带内有更多的频带区的值接近于1;在阻带内更迅速的趋近于零。

图2 巴特沃思低通滤波平方幅频特性函数3、系统函数设巴特沃斯的系统函数为H a(s),则:4、函数说明1buttord函数(1)[N,wc]=buttord(wp,ws,αp,αs)用于计算巴特沃斯数字滤波器的阶数N和3dB截止频率wc。

其中,调用参数wp,ws分别为数字滤波器的通带、阻带截止频率的归一化值,要求:0≤wp≤1,0≤ws≤1(1表示数字频率pi)。

当ws≤wp时,为高通滤波器;当wp和ws为二元矢量时,为带通或带阻滤波器,这时wc也是二元向量。

αp,αs分别为通带最大衰减和组带最小衰减(dB)。

N,wc为butter函数的调用参数。

(2)[N,Ωc]=buttord(Ωp,Ωs,αp,αs,‘s’)用于计算巴特沃斯模拟滤波器的阶数N和3dB截止频率Ωc。

其中,Ωp,Ωs,Ωc均为实际模拟角频率。

说明:buttord函数使用阻带指标计算3dB截止频率,这样阻带会刚好满足要求,而通带会有富余。

2 butter函数(1)[b,a]=butter(N,wc,‘ftype’)计算N阶巴特沃斯数字滤波器系统函数分子、分母多项式的系数向量b、a。

其中,调用参数N和wc分别为巴特沃斯数字滤波器的阶数和3dB截止频率的归一化值(关于pi归一化),一般是调用buttord(1)格式计算N和wc。

系数b、a是按照z-1的升幂排列。

(2)[B,A]=butter(N,Ωc,‘ftype’,‘s’)计算巴特沃斯模拟滤波器系统函数的分子、分母多项式系数向量ba、aa。

其中,调用参数N和Ωc分别为巴特沃斯模拟滤波器的阶数和3dB截止频率(实际角频率),可调用buttord(2)格式计算N和Ωc。

系数B、A按s的正降幂排列。

tfype为滤波器的类型:○1ftype=high时,高通;Ωc只有1个值。

○2ftype=stop时,带阻阻;此时Ωc=[Ωcl,Ωcu],分别为带阻滤波器的通带3dB下截止频率和上截止频率。

○3ftype缺省时,若Ωc只有1个值,则默认为低通;若Ωc有2个值,则默认为带通;其通带频率区间Ωcl < Ω < Ωcu。

所设计的带通和带阻滤波器系统函数是2N阶。

因为带通滤波器相当于N阶低通滤波器与N阶高通滤波器级联。

三、设计内容1.设计思路巴特沃斯低通滤波器的设计步骤大致为:(1)通过p Ω,p α,s Ω和s α的值,用公式spsplg lgk-N λ=算出滤波器的阶数0N 。

(2)根据公式1-N 1,0k p N21k 221j k,,)(==++π,求出归一化极点k p ,将k p 代入 ∏==1-N 0k kap-p 1p H )()(中,得出归一化传输函数)(p H a。

(3)将)(p H a 去归一化。

将p=s/Ωc 代入)(p H a之中,从而得到实际的滤波器传输函数)(s H a。

2.设计流程巴特沃思低通滤波技术指标关系式为 a p >-20log|H a (j Ω)|,Ω<ΩP a s <-20log|H a (j Ω)|,Ω>Ωs其中:Ωp 为通带边界频率,Ωs 为阻带边界频率。

代入式1.4.1可得:经过化简整理可得:取满足上式的最小整数N 作为滤波器的阶数。

再将N 代入可得:或查表求得归一化传输函数H(s),令s/Ωc 代替归一化原型滤波器系统函数中的s,即得到实际滤波器传输函数。

3.仿真结果wp=10000;ws =30000;Rp=3;As=40; [N,wc]=buttord(wp,ws,Rp,As,'s'); [B,A]=butter(N,wc,'s');k=0:511;fk=0:80000/512:80000;wk=2*pi*fk; Hk=freqs(B,A,wk); subplot();plot(fk/1000,20*log10(abs(Hk)));grid on xlabel('频率(kHz)');ylabel('幅度(dB)')axis([0,55,-80,5])subplot();plot(fk/1000,angle(Hk));grid on xlabel('频率(kHZ)');ylabel('相位') axis([0,55,-5,5])四、设计总结经过本次课程设计,让我熟悉了数字信号处理的基本知识和MATLAB的m语言,把课上的理论知识运用到实际中去,更近一步地巩固了课堂上所学的理论知识,并能很好地理解与掌握数字信号处理中的基本概念、基本原理、基本分析方法。

因为学过数字信号处理这门课,但这只是理论知识,通过实验我们才能真正理解其意义。

经过这次的课程设计,让我有机会将自己学到的理论知识运用到实际中,提高了自己的动手能力和思维能力。

在课程设计中发现自己的不足,所以在今后的学习和生活中我们要更加努力,学习好我们的专业知识并要能运用到实际。

五、参考文献《数字信号处理》(第三版)高西全丁美玉编著西安电子科技大学出版社六、程序清单wp=10000;ws =30000;Rp=3;As=40;[N,wc]=buttord(wp,ws,Rp,As,'s');[B,A]=butter(N,wc,'s');k=0:511;fk=0:80000/512:80000;wk=2*pi*fk;Hk=freqs(B,A,wk);subplot(2,2,1);plot(fk/1000,20*log10(abs(Hk)));grid onxlabel('频率(kHz)');ylabel('幅度(dB)')axis([0,55,-80,5])subplot(2,2,2);plot(fk/1000,angle(Hk));grid onxlabel('频率(kHZ)');ylabel('相位')axis([0,55,-5,5])。

相关文档
最新文档