《植树问题》

合集下载

五年级《植树问题》教学设计优秀7篇

五年级《植树问题》教学设计优秀7篇

五年级《植树问题》教学设计优秀7篇植树问题教学设计篇一教学目标:1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

一、谈话引入,明确课题母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。

其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。

今天这节课,我们就一起来研究“植树问题”。

(板书课题:植树问题)二、引导探究,发现“两端要种”的规律1.创设情境,提出问题。

①课件出示图片。

介绍:这是我县新修的一条公路。

公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。

一共需要多少棵树苗?②理解题意。

a、指名读题,从题中你了解到了哪些信息?b、理解“两端”是什么意思?指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

③算一算,一共需要多少棵树苗?④反馈答案。

方法一:1000÷5=200(棵)方法二:1000÷5=200(棵)200 +2=202(棵)方法三:1000÷5=200(棵)200 +1=201(棵)师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?2、简单验证,发现规律。

①画图实际种一种。

五年级数学上册单元讲练(人教版) 第七单元《植树问题》(解析)

五年级数学上册单元讲练(人教版) 第七单元《植树问题》(解析)

第七单元 植树问题(1)两端都种:棵数=间隔数+1(2)两端不种:棵数 = 间隔数-1(4)封闭图形:棵树 = 间隔数(3)一端种一端不种:棵数 =间隔数知识点一:两端都栽的植树问题植树问题基本解决思路:间隔数=总长÷间隔距离两端都栽:棵数=间隔数+1知识点二:两端都不栽的植树问题两端不栽:棵数=间隔数-1知识点三:封闭图形的植树问题一端栽一端不栽:棵数=间隔数在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于线段上一端栽一端不栽的情况。

【易错典例1】在一条长300米的公路两边种树,每隔5米种一棵(两端都种).一共种()棵树.A.61B.121C.122【思路引导】利用植树问题公式:如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘2,即:棵数=(段数+1)×2.根据植树棵数先求段数:300÷5=60(段),然后求植树棵数:(60+1)×2计算即可.【完整解答】解:(300÷5+1)×2=(60+1)×2=61×2=122(棵)答:一共种树122棵.故选:C.【考察注意点】本题主要考查植树问题,关键是分清段数和植树棵数的关系做题.【易错典例2】(•红安县期末)一个圆形水池的周长为150米,沿池边每隔37.5米安盏观景灯,一共要安装4盏观景灯.【思路引导】根据题意,在圆形上植树,植树的棵数与间隔数相等,直接用150除以37.5即可.【完整解答】解:根据题意可得:150÷37.5=4(盏)答:一共需要装4盏灯.故答案为:4.【考察注意点】在封闭线路上植树,棵数与间隔数相等,即:棵数=间隔数.【易错典例3】操场上等距离放了8张课桌,把相邻的两张课桌用一段绳子连接起来,一共要准备7段绳子.【思路引导】根据题意相当于两端都不植树的问题,用课桌的张数减去1,就是一共要准备的绳子的段数.【完整解答】解:8﹣1=7(段)答:一共要准备7段绳子.【考察注意点】如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数﹣1.【易错典例4】为庆祝“六一“儿童节,学校在48米长的走廊两边摆鲜花,现在从走廊的一头开始,每隔4米摆一盆鲜花,直至走廊另一头,一共要摆多少盆鲜花?【思路引导】先看一边,据题意可知,走廊长48米,每隔4米摆一盆花,也就是48米被平均分成4米长的若干小段,花摆在分点上;所以间隔数是48÷4=12个;又因为两端都摆花,所以盆数等于段数加1;然后再乘2就可求出两边的花盆数.【完整解答】解:(48÷4+1)×2=13×2=26(盆)答:一共要摆26盆鲜花.【考察注意点】此题属于植树问题.解答此类题(两端都植树)的关键要知道:植树的棵数应比要分的段数多1,即:棵数=间隔数+1.一.选择题1.(•眉山月考)一条马路长440米,在路的两旁每隔8米植一颗树,两端都要植,共植了()棵。

小学数学专项《应用题》经典植树问题基本知识-4星题(含解析)

小学数学专项《应用题》经典植树问题基本知识-4星题(含解析)

应用题-经典应用题-植树问题基本知识-4星题课程目标知识提要植树问题基本知识•植树问题的基本类型(1)不封闭的植树路线两端都植树——在直线上或者不封闭的曲线上植树,两端都植树两端都不植树——在直线上或者不封闭的曲线上植树,两端都不植树只有一端植树——在直线上或者不封闭的曲线上植树,只有一端植树(2)封闭的植树路线在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.•基本公式(1)不封闭的植树路线两端都植树:棵数=段数+1总长=株距×段数两端都不植树:棵数=段数−1总长=株距×段数只有一端栽(封闭曲线):棵数=段数总长=株距×段数(2)封闭路线总长=株距×段数精选例题植树问题基本知识1. 池塘周围栽了一些树,小明和小华一前一后朝着同一个方向绕着池塘走,边走边数池塘边树的棵树,小华数的第7棵在小明那里数到是第27棵,小明数的第7棵在小华那里数到是第87棵,那么池塘一共栽了棵数.【答案】100【分析】小华的第7棵树和第87棵树之间有87−7−1=79(棵)树,小明的第27棵树和第7棵树之间有27−7−1=19(棵)树,所以池塘一共栽了79+19+2=100(棵)树.2. 在高速公路的两旁每1千米设立一个大路标,每100米设立一个小路标,设立有大路标之处不再设立小路标.设立大路标每个花费1000元,设立小路标每个花费100元.一条50千米长的高速公路设立这两种路标共需花费多少元?(注意:公路的两侧及起、终点都要设立路标).【答案】192000【分析】设立大路标属于两端植树问题,共需大路标(50÷1+1)×2=102(个),在每两个大路标之间设立小路标属于两端不植树问题,共需小路标(1000÷100−1)×50×2= 900(个),两种路标共需花费102×1000+900×100=192000(元).3. 如果把一根木头截成3段要花8分钟,那么要把12根木头每根都截成6段,需要分钟.【答案】240【分析】因“刀数 + 1=段数”.根据题意列式:8÷(3−1)×(6−1)×12=240(分钟).4. 在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗面,黄旗面.【答案】50;150【分析】红旗:400÷8=50(面);黄旗:8÷2−1=3;3×50=150(面).5. 甲、乙、丙与他们的朋友们共25个,围着圆桌坐着,从甲开始数起,逆时针方向的第13个人是乙,顺时针方向的第17个人是丙.那么,乙和丙之间有个人.【答案】2或21【分析】从甲开始,乙是逆时针方向的第13个人,共25人,那么乙是顺时针方向的第25−(13−2)=14(人),那么乙和丙之间有2个人.因为是圆形,从另一个方向看乙、丙之间有25−2−2=21(人).6. 一个长60米,宽36米的长方形牧场的三面用篱笆围成,第四条边靠着一面长100米的墙,篱笆由木桩组成,包括与墙交界处每隔12米有一根木桩,那么这个牧场最少需要木桩根.【答案】12【分析】这三面的总长度至少为36+36+60=132(米),本题类似于“两端植树”问题,此时共需木桩132÷12+1=12(根).7. 有一个正方形池塘,在池塘边距离池边2米处围绕池塘种树,一共种了200棵,也围成一个正方形.若相邻两棵树之间的距离是2米,这个正方形池塘的边长是米.【答案】96【分析】一共种了200棵树,围成一个正方形,那么每一边上有(200+4)÷4=51(棵)树,相邻两棵树之间的距离是2米,那么每一边长(51−1)×2=100(米),所以正方形池塘的边长是100−2×2=96(米).8. 19名园林工人去植树,4人去A大街植树,其余15人去B大街植树.晚上下班,他们回到宿舍.工人甲说:“我们虽然人少,但和你们用的时间相同.”工人乙说:“虽然我们人多,但我们这条街的长度是你们那条街长度的4倍.”如果他们植树的间隔都一样且每人种的树都一样多,只在路一侧种树且在大街的两端都种,那么,这19名园林工人一共种了棵树.【答案】57【分析】本题默认大街两端均植树,且大街长度恰好是间隔的整数倍.假设植树间隔为1,设A大街长a,那么A大街共植树a+1棵;则B大街长4a,共植树4a+1棵,由于每个人种的树一样多,所以(a+1)÷4=(4a+1)÷15,解得a=11,所以共种树a+1+4a+1=5a+2=5×11+2=57(棵).9. 公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?【答案】20;40;2【分析】以6米为一段,圆形花坛一圈可分的段数,即是栽丁香花的株数:120÷6=20(株),栽月季花的株数是:2×20=40(株),每段上丁香花和月季花的总株数是:2+2=4(株),4株花栽在6米的距离中,有3段相等的距离,每两株之间的距离是:6÷(4−1)=2(米).10. 如图所示,有一个长方形的“田”字道路,整个长方形的长为100米、宽为70米.现在需要在所有道路上种树,相邻两棵树之间的距离都相等,而且可以拐弯的地点(顶点或中点)都要种上树,那么最少要种多少棵树?【答案】99棵.【分析】每棵树的距离相等,间隔最长是5米,每条横线上种100÷5+1=21棵,每条竖线上种70÷5+1=15,扣除重复的9棵,共种21×3+15×3−9=99棵.11. 一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?【答案】30;60;2【分析】共可栽芍药花:180÷6=30(棵);共种月季花:2×30=60(棵);两种花共:30+60=90(棵);两棵花之间距离:180÷90=2(米).12. 同学12人围着长480米的操场玩游戏,每两名同学间距离相等.如果在每两名同学间插入3名老师,使每两人间距离相等.请问:有多少名老师?每两人间距离是多少米?【答案】(1)36名;(2)10米.【分析】(1)12名同学相当于将环形分为12个间隔,每两名同学间插入3名老师相当于每个间隔插入3名老师,所以共需插入老师12×3=36名老师;(2)插入老师后,环形上共有12+36=48人,所以每两人之间的间隔是480÷48=10米.13. 马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【答案】9120米【分析】第一棵树到第153棵树中间共有153−1=152(个)间隔,每个间隔长8米,所以第一棵树到第153棵树的距离是:152×8=1216(米),汽车经过1216米用了4分钟,1分钟汽车经过:1216÷4=304(米),半小时汽车经过:304×30=9120(米),即小明的家距离学校9120米.14. 10个男生沿着300米的跑道站成一圈,并且和相邻两人之间的距离都相等.现在,每相邻两个男生之间又加入了两个女生,相邻两人之间的距离还是相等.请问:一共加入了多少个女生?加入女生后,相邻两人之间的距离又是多少米?【答案】20个;10米.【分析】开始有10个间隔,加入了10×2=20个女生.后来总共30人,30个间隔,每个间隔长300÷30=10米.15. 一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树,每两棵树之间距离相等)【答案】24【分析】从家门口走到第11棵树是走了11个间隔,走一个间隔所用时间是:11÷11=1(分),那么走24分钟应该走了间隔:24÷1=24(个),所以老爷爷应该走到了第24棵树.16. 有如图三条马路,现在要在马路的一侧种树,且每条马路的两端都种树.已知北路长40米,东路和西路分别长80米,每隔5米种一棵树,问共种几棵树?【答案】41棵.【分析】北路有40÷5+1=9棵树,东路和西路各有80÷5+1=17棵树.交点处的树被重复计算了,要扣除,共9+17+17−2=41棵树.17. 北京市国庆节参加游行的总人数有60000人,这些人平均分为25队,每队又以12人为一排列队前进.排与排之间的距离为1米,队与队之间的距离是4米,游行队伍全长多少米?【答案】5071【分析】(1)每队的人数是:60000÷25=2400(人);(2)每队可以分成的排数是:2400÷12=200(排);(3)200排的全长米数是:1×(200−1)=199(米);(4)25个队的全长米数是:199×25=4975(米);(5)25个队之间的距离总米数是:4×(25−1)=96(米);(6)游行队伍的全长是:4975+96=5071(米).18. 一个街心花园如图所示,它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?【答案】48;69【分析】大三角形三条边上共栽花:(9×2-1-1)×3=48(棵),中间画斜线小三角形三条边上栽花:(9-2)×3=21(棵),整个花坛共栽花:48+21=69(棵).19. 元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【答案】300分米【分析】一共挂了21只彩灯说明彩灯中间的间距有:21−1=20(个),每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,说明每个间距的长是:30÷2=15(分米),所以实验中学学校的大门宽度为:15×20=300(分米).20. 园林工人要在周长300米的圆形花坛边等距离地栽上树.他们先沿着花坛的边每隔3米挖一个坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一颗树.这样,他们还要挖多少个坑才能完成任务?【答案】54【分析】从第1个坑到第30个坑,共有(30−1)×3=87(米);改为“每5米栽一棵树”,有87÷15=5⋯12;5+1=6(个)坑仍然有用.改为“每5米栽一棵树”,一共应挖300÷5=60(个)坑;还要挖60−6=54(个).21. 甲、乙俩人对一根3米长的木棍涂色,首先甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为多少厘米?【答案】75厘米【分析】考虑60厘米长的一段木棍中,没有被涂黑的部分长度总和为:1+3+5+4+2=15(厘米)如下图,所以3米长的木棍中共有15×(300÷60)=75(厘米)长未被涂黑.22. 正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树).操场四周栽了多少棵树?【答案】48【分析】因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有9+4=13(棵).操场周围的树一共有:(13−1)×4=48(棵).23. 一条路的一边种树,并且两头都不种树,现要每隔12米种一棵树.(1)共种了6棵,请问马路长多少米?(2)若马路长120米,则要种多少棵树?【答案】(1)84米;(2)9棵.【分析】(1)因为两头不种,共种6棵树,所以共有7个间隔,每个间隔是12米,则长12×7=84米;(2)共有120÷12=10个间隔,两头不种,所以间隔比树多1,那么有10−1=9棵树.24. 周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【答案】28【分析】(40+30)×2=140(米),140÷5=28(棵).25. 马路的两边每相隔9米栽有一棵柳树.张军乘汽车3分钟两边共看到602棵树.问汽车每小时走多少千米?【答案】54【分析】3分钟汽车共走了:9×(602÷2−1)=2700(米),汽车每分钟走:2700÷3=900(米),汽车每小时走:900×60=54000(米),54000米=54千米,列综合式:9×(602÷2−1)÷3×60÷1000=54(千米).26. 马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?【答案】54【分析】5分钟汽车共走了:9×(501−1)=4500(米),汽车每分钟走:4500÷5=900(米),汽车每小时走:900×60=54000(米),54000米=54千米,列综合式:9×(501−1)÷5×60÷1000=54(千米).。

《植树问题》

《植树问题》
实例二
在一个圆形花坛里种植了15棵冬青树,每两棵冬青树之间的距离都是相等的。现 在我们知道整个花坛的面积是78.5平方米,那么每棵冬青树的占地面积是多少?
04
多边形植树问题
定义与描述
定义
多边形植树问题是指在多边形的各个顶点上种植树木的问题。这里的“多边形”是指平面上的一个封闭折线,而 “树木”则表示在每个顶点上种植的植物。
02
直线植树问题
定义与描述
直线植树问题是指在 一条直线上等距离种 植树木的问题。
这类问题在城市绿化 、道路两侧和农田中 都有广泛应用。
直线植树问题通常涉 及如何计算种植的树 木数量以及它们之间 的距离。
直线植树问题的求解方法
根据给定的条件,计算出每棵树之间的距离,以及在起点和终点各需要种植多少棵 树。
描述
多边形植树问题可以描述为在一个给定的多边形内,每个顶点上都种植了一棵树,我们需要确定这些树之间的距 离,以及它们与多边形边界之间的距离。
多边形植树问题的求解方法
01
求解方法一
使用几何方法求解。这种方法主要是基于多边形的几何性质和植树的规
则,通过计算得出每两棵树之间的距离以及它们与多边形边界之间的距
• 植树问题的基本概念包括:树木间距、种植数量、排列方式、 生长条件等。其中,树木间距是指相邻两棵树木之间的距离; 种植数量是指要种植的树木的数量;排列方式是指树木在空间 中的分布情况;生长条件是指影响树木生长的各种因素,如气 候、土壤等。
植树问题的应用场景
• 植树问题在现实生活中具有广泛的应用场景,例如城市绿化、公园建设、道路绿化等。通过解决植树问题,可以优化城市 环境和生态系统,提高人们的生活质量。此外,植树问题在农业生产中也有着重要的应用,例如农田防护林的建设等。

《植树问题》教学设计与反思优秀9篇

《植树问题》教学设计与反思优秀9篇

《植树问题》教学设计与反思优秀9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、规章制度、员工手册、创业计划、企划方案、心得体会、法律文书、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as summary reports, speeches, rules and regulations, employee manuals, entrepreneurial plans, planning plans, insights, legal documents, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!《植树问题》教学设计与反思优秀9篇作为一名人·民教师,时常需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

《植树问题》教学反思(18篇)

《植树问题》教学反思(18篇)

《植树问题》教学反思(通用18篇)《植树问题》教学反思篇1“植树问题”是四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。

我所执教的内容是两端都不栽的植树问题,这节课主要目标是向学生渗透简单问题从简洁入手的思想。

使学生有更多的时机从四周的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。

这节课我依据学生的认知规律,设计了四个环节。

一、我通过让学生举手的方法这一实例让学生感知点与间隔数。

二、以学生的手指为树两指之间为间隔数,营造突破全课教学重点及难点的高潮。

三、以生活中植树问题的应用为讨论对象,引导学生了解植树问题的实质。

四、多角度的应用练习,稳固和拓展学生对植树问题的熟悉。

我让学生实际观看体验点与间隔数之间的关系,由浅入深把简单的东西简洁化:让学生能够找到简洁植树问题的规律“间隔数-1=棵数”(两端都不种)的规律,称热打铁让学生做练习稳固加深对两端多不栽的习题。

一节课让学生自己发觉问题自己去解决,学生的学习积极性高涨教师也省劲,在反思中,我找到了教学中捷径的方法。

《植树问题》教学反思篇2植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。

其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、讨论问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

本课的教学,并非只是让学生会娴熟解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。

借助内容的教学进展学生的思维,提高学生肯定的思维力量。

我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透简单问题从简洁入手的思想。

使学生有更多的时机从四周的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。

因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经受生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。

人教版小学数学五年级上册《植树问题》ppt课件

人教版小学数学五年级上册《植树问题》ppt课件

树木种植应考虑实用性,选择具有遮 荫、防尘、降噪等功能的树种,为师 生提供舒适的学习和生活环境。
教育性原则
树木种植方案可结合学校教育教学需 求,设计具有教育意义的植物景观, 如纪念林、知识林等。
06
总结回顾与课堂互动环节
关键知识点总结回顾
植树问题的基本概念和原理
01
通过实例和讲解,使学生明确植树问题的含义和解决方法。
要点二
确定植树间距
根据题目要求,确定每两棵树之间的 间距。这个间距可能是固定的,也可 能是需要根据环形周长和树的总数来 计算的。
要点三
计算树的总数
使用环形周长除以每两棵树之间的间 距,可以计算出环形图形中可以种植 的树的总数。需要注意的是,由于环 形图形的起点和终点重合,因此实际 可种植的树的数量需要减去1。
具体公式为:棵数 = 路长 ÷ 株距 + 1。
由于两端都要植树, 所以植树的棵数等于 段数加1。
两端都不植树情况下求解方法
同样先确定植树的总路长和每两 棵树之间的距离,计算出可以植
树的段数。
由于两端都不植树,所以植树的 棵数等于段数减1。
具体公式为:棵数 = 路长 ÷ 株 距 - 1。
一端植树一端不植情况下求解方法
高城市绿化覆盖率。
多样性原则
绿化带的设计应注重植物配置的多 样性,采用乔、灌、草相结合的复 层绿化方式,营造丰富的植物景观 。
功能性原则
绿化带应具备一定的功能性,如提 供休闲空间、改善空气质量、降低 噪音等,以满足城市居民的需求。
农业生产中果园规划和布局技巧
因地制宜原则
果园规划应根据当地的气 候、土壤、水源等自然条 件,选择适宜的果树品种 和相应的栽培管理措施。

2024最新-《植树问题》教案(优秀5篇)

2024最新-《植树问题》教案(优秀5篇)

《植树问题》教案(优秀5篇)作为一名默默奉献的教育工作者,就难以避免地要准备教学设计,借助教学设计可以提高教学效率和教学质量。

怎样写教学设计才更能起到其作用呢?旧书不厌百回读,熟读精思子自知,以下是可爱的小编给大伙儿分享的5篇《植树问题》教案,欢迎阅读。

《植树问题》教案篇一教学目标1、借助围棋盘探讨封闭曲线(方阵)中的植树问题。

2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用。

教学重难点教学重点从封闭曲线(方阵)中探讨植树问题。

教学难点:用数学的方法解决实际生活中的简单问题。

教学过程一、复习旧知,情境导入(课件出示)(1)在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?(2)校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵?师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数—1)。

让学生说出每个算式所表示的意义。

你能说说棵数与间隔数之间的关系二、探索新知。

1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?板书课题:封闭图形的植树问题2、运用规律。

圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?(1)引导学生读题,理解题意。

独立完成。

(2)理解圆形的株数与间隔数相等,列出算式:12÷2=6(盆)3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数4、发现规律:在圆形的花坛上种树,棵数=间隔数。

圆形花坛的`一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?5、学习例题:(1)课件出示例题。

例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子?(2)生读题,独立列出算式学生小组合作,寻求解决问题的方法。

五年级上册数学教案 《 《植树问题》》人教版

五年级上册数学教案 《 《植树问题》》人教版

五年级上册数学教案《《植树问题》》人教版一. 教材分析《植树问题》是人教版五年级上册数学的一篇课文,主要讲述了植树问题的一些基本知识和解决方法。

通过本节课的学习,学生可以了解到植树问题的基本概念,掌握一些解决植树问题的方法,并能够运用到实际生活中。

二. 学情分析五年级的学生已经具备了一定的数学基础和逻辑思维能力,对于一些基本的数学概念和运算规则已经有所了解。

但是,对于植树问题这种实际应用问题,可能还比较陌生,需要通过实例和实际操作来理解和掌握。

三. 教学目标1.让学生了解植树问题的基本概念和解决方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生合作交流和思考问题的能力。

四. 教学重难点1.植树问题的基本概念和解决方法。

2.如何运用数学知识解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,通过引导学生思考、讨论和实际操作,让学生理解和掌握植树问题的解决方法。

六. 教学准备1.准备一些关于植树问题的实例和案例。

2.准备一些关于植树问题的图片和视频资料。

3.准备一些关于植树问题的练习题和作业。

七. 教学过程1.导入(5分钟)通过向学生展示一些关于植树的图片和视频资料,引导学生思考植树问题,激发学生的学习兴趣。

2.呈现(10分钟)向学生介绍植树问题的基本概念和解决方法,通过实例和案例来阐述植树问题的解决过程。

3.操练(10分钟)让学生分组进行讨论和实际操作,解决一些关于植树问题的练习题,巩固学生对植树问题的理解和掌握。

4.巩固(10分钟)让学生通过小组合作的方式,解决一些关于植树问题的实际案例,进一步巩固学生对植树问题的解决方法。

5.拓展(10分钟)引导学生思考如何将植树问题的解决方法运用到实际生活中,让学生尝试解决一些实际问题。

6.小结(5分钟)让学生总结本节课所学的内容,回顾植树问题的解决方法和实际应用。

7.家庭作业(5分钟)布置一些关于植树问题的作业,让学生巩固所学知识,并能够运用到实际生活中。

人教版《植树问题》教学设计(精选10篇)

人教版《植树问题》教学设计(精选10篇)

《植树问题》教学设计人教版《植树问题》教学设计(精选10篇)作为一名无私奉献的老师,就不得不需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

那么优秀的教学设计是什么样的呢?以下是小编整理的《植树问题》教学设计,欢迎阅读与收藏。

《植树问题》教学设计篇1教学内容:人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。

教学目标:1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

教学重难点:1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

教学、具准备:课件、表格、尺子等。

教学过程:一、教学“间隔”1.教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。

请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。

(手指数比间隔数多1或间隔数比手指少1。

)2.引入植树问题的学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。

今天这节课我们就一起来研究植树问题。

二、自主探究找出规律1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。

一共需要多少棵树苗?师:我们一起来读读题。

《植树问题》优秀课件

《植树问题》优秀课件
五年级数学上册
两棵小树十个杈, 不长叶子不开花, 能写会算还会画, 天天干活不说话。
(打一人体的组成部分)
新教学楼前有6几根根柱柱子子。? 6根柱子间有几5个个间间隔隔。?
12 3
4
56
学校要在一段小路的一旁种5棵树。 请按照要求设计一份植树方案,并说明理由。 画一画,种5棵树把小路分成了几个间隔?
2、园林工人沿公路一侧植树(两端都种),每 隔6米种一棵,一共种了36棵。从第1棵到最后一 棵的距离有多远?
先求间隔数: 36-1=35(个) 再求距离: 6×35=210(米)
答:从第1棵到最后一棵的距离有210米远。
小明从2楼到3楼需走18 级台阶,那么从1楼到5楼 需要走多少级台阶?
18×(5-1) = 72(级)
2千米=2000米 2000÷50+1=41(盏) 41×2=82(盏) 答:一共需要安装82盏路灯。
2、园林工人沿公路一侧植树(两端都种),每 隔6米种一棵,一共种了36棵。从第1棵到最后一 棵的距离有多远?
先求间隔数: 36-1=35 再求距离: 6×35=210(米)
答:从第1棵到最后一棵的距离有210米远。
演讲人:XXXXXX 时 间:XX年XX月XX日
100÷4 +1=26(棵)
答:一共需要26棵树苗。
在“植树问题”中,一定要是 “树”吗?
除了“树”,还能换成其它的事 物吗?
找一找生活中的植树问题,设 计一个数学问题,同桌之间互相交 流并解决问题。
1、岳阳市经开区要在2千米长的主道路的两侧安 装路灯(两端都要安装),每隔50米安装一盏, 一共需要安装多少盏路灯?
两端都种:
棵树 2
3
4
5

五年级上册数学教案 《 植树问题 》人教版

五年级上册数学教案 《 植树问题 》人教版

五年级上册数学教案《植树问题》人教版一. 教材分析《植树问题》是人教版五年级上册数学教材中的一部分,主要让学生掌握在特定情况下植树的问题的计算方法。

通过本节课的学习,学生将能够解决实际生活中的植树问题,提高解决实际问题的能力。

二. 学情分析五年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。

他们对数学产生兴趣,渴望通过自己的努力解决问题。

但在解决实际问题时,部分学生可能会遇到思路不清晰、计算方法不明确等问题。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们逐步掌握解题方法。

三. 教学目标1.知识与技能:学生会运用数学知识解决简单的植树问题,提高解决问题的能力。

2.过程与方法:学生通过自主探究、合作交流,掌握解决植树问题的方法。

3.情感态度与价值观:学生体验数学与生活的联系,培养学习数学的兴趣。

四. 教学重难点1.重点:学生能够运用数学知识解决植树问题。

2.难点:学生掌握在不同情况下植树问题的计算方法。

五. 教学方法1.情境教学法:教师通过创设生活情境,激发学生的学习兴趣。

2.启发式教学法:教师引导学生独立思考,发现问题,培养学生的解决问题的能力。

3.合作交流法:学生分组讨论,共同解决问题,提高沟通与合作能力。

六. 教学准备1.教学课件:教师制作课件,展示植树问题的相关情境。

2.练习题:教师准备不同类型的植树问题练习题,用于巩固所学知识。

七. 教学过程1. 导入(5分钟)教师通过展示课件,呈现一个生活中的植树情境,引导学生思考:“如果在你们的学校门口植树,应该如何计算植树的数量呢?”学生积极思考,回答问题。

2. 呈现(10分钟)教师提出不同类型的植树问题,让学生独立解决。

例如:“如果一个公园沿着一条路植树,每隔2米植一棵,共植了100棵树,那么路的长度是多少?”学生尝试解决问题,并与同桌交流解题过程。

3. 操练(10分钟)教师引导学生进行小组讨论,共同解决植树问题。

如:“一个小区计划植树,如果每隔3米植一棵,共植了50棵树,那么小区的绿化带有多长?”学生通过合作交流,找到解决问题的方法。

2020小学五年级上册数学《数学广角——植树问题》知识点及练习题

2020小学五年级上册数学《数学广角——植树问题》知识点及练习题

2020小学五年级上册数学《数学广角——植树问题》知识点及练习题知识点1、方法:化大为小或化繁为简,画图,列表,再总结应用2、植树问题:(1)、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1(类似问题有:竖电线杆,两端插旗......)(2)、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1(类似问题有:锯木头,剪铁丝......)(3)、一端栽一端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数;间隔数=棵数(类似问题有:敲钟听声,上楼时间.....)3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数4、方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4;单边边长=(最外层数目+4)÷4整个方阵的总数目是:边长×边长5、封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数。

6、过桥问题总长=车身长+车间距×车间隔数+桥(路长)速度=总长÷时间7、出租车计费(信件邮资、洗照片)等问题。

计算时分成两部分。

(1)标准部分。

已经知道总价的,不再计算,不知道总价需计算。

(2)超出部分。

超出数量×超出单价。

最后相加。

练习题1.在椭圆形鱼塘周围栽树,鱼塘的周长是1000m,如果每隔50m栽1棵,一共要栽多少棵树?1000÷50=20(棵)答:一共要栽20棵。

2.学校里有一个正方形的花坛,边长为50m,现在要在花坛四周栽树,四个角都要栽,每相邻两棵树之间的间隔是5m。

一共要栽多少棵树?50×4÷5=40(棵)答:一共要栽40棵。

3.建筑工程队要盖一栋楼,需要在长150m、宽60m的地基上打桩。

四个角都要打桩,每隔2.5m打一根桩。

小学数学《植树问题》练习题(含答案)

小学数学《植树问题》练习题(含答案)

小学数学《植树问题》练习题(含答案)(一)直线型植树问题解决植树问题,首先要牢记三要素:总路线长、间距(棵距)长、棵数.只要知道这三个要素中任意两个要素,就可以求出第三个.对于直线型的植树问题,包括三种情况:(1)在植树的线路两端都植树,则棵数比段数多1.把总长平均分成5段,但植树棵数是6棵.全长、棵数、株距三者之间的关系是:棵数=段数+1=全长÷株距+1;全长=株距×(棵数-1);株距=全长÷(棵数-1)(2)在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数.(3)如果植树路线的两端都不植树,则棵数就比(2)中还少1棵.棵数=段数-1=全长÷株距-1. 株距=全长÷(棵数+1).【例1】(★★)学而思学校旁边的一条路长20米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?分析:从图上可以看出,每隔4米种一棵树,20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:20÷4+1=5+1=6(棵).[拓展一]小袋鼠每跳一个距离是10米,在一条小路上,从头到尾共留下它的25对脚印,那么这条小路长多少米?分析:25对脚印,24个间隔,每个间隔10米,小路长度是:10×24=240(米).[拓展二]从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共53棵;现在改成每隔60米种一棵树.求可余下多少棵树?分析:该题含植树问题、相差关系两组数量关系.从小熊家到小猪家的距离是:45×(53-1)=2340(米),间隔距离变化后,两地之间种树:2340÷60+1=40(棵),所以可余下树: 53-40=13(棵) ,综合算式为:53-[45×(53-1)÷60+1]=13(棵).【例2】(★★★)学而思学校两栋教学楼之间有一排白杨树,一共有18棵,每两棵树之间以及树与教学楼的距离都是3米,请问这两栋教学楼之间的距离是多少米?分析:因为教学楼墙根不可能种树,所以教学楼之间一共有19个间隔,所以这两栋教学楼之间的距离是3×19=57(米).[拓展]两座楼房之间相距40米,每隔4米栽一棵雪松,一共能栽多少棵?分析:要以两棵雪松之间的距离用作分段的标准,两座楼房之间的距离可分成若干段.这道题不同于例1,两端不需要栽种(因为不能紧挨着楼房的墙根栽树),所以要栽的雪松数比分成的段数少1.以4米为一段,40米应分成的段数是:40÷4=10(段),栽雪松的棵数是:10-1=9(棵),所以,一共能栽9棵雪松.【例3】(★★★)小熊家门口有一条小路长50米,从门口开始在小路的一旁每隔5米栽一棵树,问一共栽了多少棵树?分析:门口不可能植树,所以这是一个一端种树一端不种的情况,棵树等于段数,所以一共栽树:50÷5=10(棵).[拓展]小猴皮皮爱吃桃子,它家门口有一条小路,从门口开始它每隔4米种一棵桃树,共种50棵;现在改成每隔5米种一棵树.求可余下多少棵树?分析:该题含植树问题、相差关系两组数量关系.这条小路的距离是:4×50=200(米),间隔距离变化后,两地之间种桃树:200÷5=40(棵),所以可余下桃树: 50-40=10(棵) .【例4】(★★★)在一条长1200米的马路两边每隔30米种一棵梧桐树,在每相邻的2棵梧桐树之间又补栽1棵香樟树.这条马路两边一共栽了多少棵树?分析:1200米里有几个30米就有几段,1200÷30=40(段),马路一边共有梧桐树40+1=41(棵),每段里补栽一颗香樟树,马路一边共有香樟树1×40=40(棵),马路一边共栽了41+40=81(棵)树,两边一共栽了81×2=162(棵).[拓展]国庆节到了,学而思学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问学而思学校的大门有多宽?分析:一共挂了21只彩灯说明彩灯中间的间距有:21-1=20(个),每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,说明每个间距的长是:30÷2=15(分米),所以学而思学校的大门宽度为:15×20=300(分米)【例5】(★★★)在学而思学校内一条小路的一侧植树,每隔5米种一棵,共种了21棵,这条路有多长?后来小路又加长了30米,仍然每隔5米种一棵树,一共补种了多少棵?分析:21棵树,共有20个间隔,每个间隔为5米,所以小路的长度就可以求出来了.加长以后在一侧应种树的棵数应为道路长度除以间隔再加1.所以小路原来的长度:5×(21-1)=100(米),加长后一侧应种的树的棵数:(100+30)÷5+1=27(棵),应补的棵数:27-21=6(棵).[拓展] 在一条小路的一侧植树,每隔5米种一棵,共种了21棵,后来小路又加长了30米,仍然每隔5米种一棵树,而且在路的另一侧补种,共补种了多少棵?分析:21棵树,共有20个间隔,每个间隔为5米,所以小路的长度可得,加长以后在一侧应种树的棵数应为道路长度除以间隔再加1.小路原来的长度:5×(21-1)=100(米),加长后一侧应种的树的棵数:(100+30)÷5+1=27(棵),应补的棵数:27×2-21=33(棵).[开心数学]一个小孩子,应该睡多长时间才算睡眠充足呢?大部分研究者认为:八至十岁,平均每天睡11个小时,十至十一岁,平均每天睡10个小时,十一至十三岁,平均每天睡9个小时,如果你每天都睡一个小时午觉,那么早上六点半起床的话,晚上几点睡觉最好呢?自己算一下吧.(二)封闭型植树问题封闭型植树问题是指在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

五年级《植树问题》教学设计优秀4篇

五年级《植树问题》教学设计优秀4篇

五年级《植树问题》教学设计优秀4篇《植树问题》教学设计优质版篇一教学目标:1、使孩子透过生活中的事例,初步体会解决植树问题的方法。

2、初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。

3、让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。

教学重点:用解决植树问题的方法解决实际问题。

教学难点:栽树的棵数与间隔数之间的关系。

教具准备:多媒体课件。

教学过程:一、谈话导入:师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。

在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。

还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)1、能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2、能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:1、出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。

一共需要多少棵树苗?(生读题)师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵][树?请你画线段图来看看。

②透过上面的分析,你能找出什么规律?和同桌或小组内说说。

③此刻你能算出一共需要多少棵树苗吗?④你还有别的想法吗,在小组内说说。

2、孩子自学探讨。

(师巡视)3、班内交流。

孩子回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:1、做一做:118页孩子独立完成。

订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

2.122页第2题。

独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)1、在一条长400米的马路的一边,从头到尾每隔8米种一棵树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学广角——植树问题
二、探究新知
同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。 一共要栽多少棵树?
二、探究新知
摆一摆 画一画 选取你想探究的长度,摆一摆、画一画, 然后说一说得到的结果
二、交流辨析,探究新知
100米
问题:1. 在两头都栽的情况下,棵数为什么会比间隔数多1呢? 这个1多在哪了?你能到图中指一指吗?
2000÷50=40(个) 40+1=41(盏) 41×2=82(盏) 答:一共要安装82盏路灯。
三、巩固练习,提升认识
3. 园林工人沿一条笔直的公路一侧植树,每隔6m种一棵, 一共种了36棵。从第1棵到最后一棵的距离有多远?
36-1=35(个) 35×6=210(米) 答:从第1棵到最后一棵的距离有210米。
三、巩固练习,提升认识
1. 5路公共汽车行驶路线全长12km 相邻两站之间的路程都是1km。 一共设有多少个车站?
12 ÷1=12(个) 12+1=13(个) 答:一共设有13个车站。
三、巩固练习,提升认识
2. 在一条全长2km的街道两旁安装路灯 (两端也要安装),每隔50m安一 盏,第1题、第3题。
相关文档
最新文档