因式分解,习题1

合集下载

经典因式分解练习题(附答案)

经典因式分解练习题(附答案)

经典因式分解练习题(附答案) 因式分解练题1.填空题:2.(a-3)(3-2a) = (3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=1,b=2;15.当m=3时,x2+2(3-3)x+25是完全平方式。

2.因式分解:1.m2(p-q)-p+q = (m-p)(m+p-q);2.a(ab+bc+ac)-abc = a(a-b)(b-c);3.x4-2y4-2x3y+xy3 = (x-y)(x+y)(x2+y2-2xy-2x3y);4.abc(a2+b2+c2)-a3bc+2ab2c2 = (ab+bc+ca)(a2+b2+c2-ab-bc-ca);5.a2(b-c)+b2(c-a)+c2(a-b) = (a-b)(b-c)(c-a);6.(x2-2x)2+2x(x-2)+1 = (x2-x+1)2;7.(x-y)2+12(y-x)z+36z2 = (x-3z+y)2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx) = (ax+by+ay-bx)2;10.(1-a2)(1-b2)-(a2-1)2(b2-1)2 = (1-a2-b2+a2b2)(1+a2b2);11.(x+1)2-9(x-1)2 = -8x2+20x-8;13.ab2-ac2+4ac-4a = a(b-c)2+4(c-a);15.(x+y)3+125 = (x+y+5)(x2-5x+25);17.x6(x2-y2)+y6(y2-x2) = (x2-y2)(x6-y6);8.x2-4ax+8ab-4b2 = (x-2a)2-4b2;12.4a2b2-(a2+b2-c2)2 = (2ab+a2+b2-c2)(2ab-a2-b2+c2);14.x3n+y3n = (x+y)(x2-xy+y2)(xn-1-xn-2y+。

+yn-1); 16.(3m-2n)3+(3m+2n)3 = 54m3+54mn2;18.8(x+y)3+1 = (2x+2y+1)(4x2+4y2+4xy-2x-2y+1);19.(a+b+c)3-a3-b3-c3 = 3(a+b)(b+c)(c+a);20.x2+4xy+3y2 = (x+3y)(x+y);21.x2+18x-144 = (x+12)(x-6);22.x4+2x2-8 = (x2-2)(x2+4);23.-m4+18m2-17 = -(m2-1)(m2-17);24.x5-2x3-8x = (x-2)(x+2)(x2+2x+2)(x2-2x-2);25.x8+19x5-216x2 = (x2-3x-6)(x2+3x-6)(x2+6);26.(x2-7x)2+10(x2-7x)-24 = (x2-7x-4)(x2-7x+6);27.5+7(a+1)-6(a+1)2 = -6a2+5a+6;28.(x2+x)(x2+x-1)-2 = (x2+x-1)2;29.x2+y2-x2y2-4xy-1 = (x-y)2(x+y-xy-1);30.(x-1)(x-2)(x-3)(x-4)-48 = (x2-5x+4)(x2-5x-8);3.证明(求值):1.已知a+b=0,代入a3-2b3+a2b-2ab2得到a3+2ab2,再代入a+b=0得到a3,所以a3-2b3+a2b-2ab2 = a3;2.设四个连续自然数为n-1,n,n+1,n+2,则它们的积为(n-1)n(n+1)(n+2),加1后变为(n2+n-1)2,是完全平方数;3.(ac-bd)2+(bc+ad)2 = a2c2+b2d2+2abcd+b2c2+a2d2-2abcd = (a2+b2)(c2+d2);4.a2+b2+c2+2ab-2bc-2ac = 6k2+12k+10,代入a=k+3,b=2k+2,c=3k-1得到a2+b2+c2+2ab-2bc-2ac = 6k2+12k+10;5.由题得m+n=-4,代入x2+mx+n的因式分解式(x-3)(x+4)得到m+n=7,所以(m+n)2=49;6.由题得7y-24 = 7(y-3)-3,所以x2+7xy+ay2-5x+43y-24 = (x+7y-3)(x+y-8)。

30道因式分解题及答案

30道因式分解题及答案

30道因式分解题及答案题目1:将3x2−2xy+x−4y因式分解。

答案1:3x2−2xy+x−4y可以因式分解为(x−4y)(3x+1)。

题目2:将2x2−5x−12因式分解。

答案2:2x2−5x−12可以因式分解为(x−4)(2x+3)。

题目3:将4x2−4x−3因式分解。

答案3:4x2−4x−3可以因式分解为(2x−3)(2x+1)。

题目4:将x2+7x+12因式分解。

答案4:x2+7x+12可以因式分解为(x+3)(x+4)。

题目5:将4x2−9y2因式分解。

答案5:4x2−9y2可以因式分解为(2x+3y)(2x−3y)。

题目6:将x3−8因式分解。

答案6:x3−8可以因式分解为(x−2)(x2+2x+4)。

题目7:将2x3−8y3因式分解。

答案7:2x3−8y3可以因式分解为2(x−y)(x2+xy+y2)。

题目8:将x4−16因式分解。

答案8:x4−16可以因式分解为(x2+4)(x2−4)。

题目9:将2x5+32y5因式分解。

答案9:2x5+32y5可以因式分解为2(x+2y)(x4−2x2y2+4y4)。

题目10:将x6−64因式分解。

答案10:x6−64可以因式分解为(x2−8)(x4+8x2+64)。

题目11:将4a2+b2−4ab−a−2b因式分解。

答案11:4a2+b2−4ab−a−2b可以因式分解为(4a−b)(a−b−1)。

题目12:将2a3+2a2−a−1因式分解。

答案12:2a3+2a2−a−1可以因式分解为(2a+1)(a2+a−1)。

题目13:将x3−3x2−4x+12因式分解。

答案13:x3−3x2−4x+12可以因式分解为(x−3)(x2+1)(x−2)。

题目14:将x4+x3−7x2−x+6因式分解。

答案14:x4+x3−7x2−x+6可以因式分解为(x−1)(x+2)(x+3)(x−1)。

题目15:将4x4+8x3+6x2+2x因式分解。

答案15:4x4+8x3+6x2+2x可以因式分解为2x(2x+1)(x2+1)。

因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题(一)姓名:1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A .x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0;(5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9;(7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0;(9)2x 2-8x =7; (10)(x +5)2-2(x +5)-8=0.5.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.6.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗?。

解一元二次方程(因式分解法)习题精选附答案

解一元二次方程(因式分解法)习题精选附答案

解一元二次方程(因式分解法) 习题精选(一)(时间60分钟,满分100分)(一)基础测试:(每题3分,共18分)1.x x 52-因式分解结果为 ,)3(5)3(2---x x x 因式分解结果为 . 2.96202-+x x 因式分解结果为 ,096202=-+x x 的根为 .3.一元二次方程(1)x x x -=的解是 .4.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____.5.若关于x 的方程250x x k -+=的一个根是0,则另一个根是 .6.经计算整式1+x 与4-x 的积为432--x x ,则0432=--x x 的所有根为( )A .4,121-=-=x xB .4,121=-=x xC .4,121==x xD .4,121-==x x(二)能力测试:(7,8,9,10题每题3分,11题每个方程7分,共47分)7.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个三角形.8.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 9.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A . 1B . -1C . 1或-1D . 1210.将4个数a b c d ,,,排成2行、2列,两边各 加一条竖直线记成a b c d,定义a b c d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = .11.用因式分解法解下列方程:(1)035122=+-x x (2)04)13(2=--x (3)0)32(2)32(32=---x x (4)22)52(16)2(9-=+x x (5)06)3(5)3(2=++-+x x (三)拓展测试:(12,13,14每题5分,15,16每题10分,共35分)12.若04)3)((2222=--++b a b a ,则=+22b a .13.关于x 的一元二次方程052=+-p x x 的两实根都是整数,则整数p 的取值可以有( )A .2个B .4个C .6个D .无数个14.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( )A .-5B .5C .-1D .115.如果方程062=--bx ax 与方程01522=-+bx ax 有一个公共根是3,求b a ,的值,并分别求出两个方程的另一个根. 16.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.参考答案 1.(50),(3)(250)x x x x --- 2.4,24),4)(24(21=-=-+x x x x3.1,021==x x 4.0 5.5 6.S 7.直角1 8.6或10或129.B 10.2±11.(1)7,521==x x (2)31,1-==x x1114,526)4(611,23)3(21====x x x x1,0)5(21-==x x12.4 13.D 14.C15.,1==b a 另一根为-5.16.(1)a b -4x 2;(2)正方形的边长为。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案在初中数学学习中,因式分解是一个重要的概念和技巧。

因式分解是将一个代数式写成若干个因式的乘积的过程,对于解决代数方程、简化复杂的代数式以及寻找多项式的零点都有重要的作用。

为了帮助大家更好地掌握因式分解的方法和技巧,以下是一些因式分解的练习题及答案。

练习题1:因式分解基础1. 将代数式完全分解:a) 4x^2 - 9b) x^2 - 6x + 9c) 2x^3 - 8x^2 + 8x - 322. 将代数式因式分解:a) x^2 - 5x + 6b) 9x^2 - 16c) x^3 + 83. 判断以下代数式是否可以进一步因式分解:a) 3x^2 - 3x + 1b) 4x^3 + 2x^2 + 4x + 2c) x^4 - 81练习题2:因式分解中的公式1. 利用差平方公式,将以下代数式因式分解:a) x^2 - 16b) 4x^2 - 9c) 16x^2 - 4y^22. 利用完全平方公式,将以下代数式因式分解:a) x^2 + 2x + 1b) x^2 - 10x + 25c) 4x^2 + 12x + 93. 利用立方差公式,将以下代数式因式分解:a) 27 - 8x^3b) 8x^3 - 27答案:练习题1:1. a) (2x + 3)(2x - 3)b) (x - 3)^2c) 2(x - 4)(x^2 + x + 4)2. a) (x - 2)(x - 3)b) (3x - 4)(3x + 4)c) (x + 2)(x^2 - 2x + 4)3. a) 不可以进一步因式分解b) 不可以进一步因式分解c) (x^2 + 9)(x - 3)(x + 3)练习题2:1. a) (x - 4)(x + 4)b) (2x - 3)(2x + 3)c) 4(x + y)(4x - y)2. a) (x + 1)^2b) (x - 5)^2c) (2x + 3)^23. a) (3 - 2x)(9 + 4x + 2x^2)b) (2x - 3)^3通过这些练习题和答案,你可以更好地掌握因式分解的方法和技巧。

因式分解练习题40道

因式分解练习题40道

因式分解练习题40道因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a36.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3第1页(共25页)2x+7)27.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.第2页(共25页)13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分化因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.第3页(共25页)19.把以下各式因式分化:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣324.分化因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2第4页(共25页)25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y ﹣x).27.阅读下面的问题,然后回答,分化因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.第5页(共25页)29.因式分解:(1)a3﹣2a2+a(2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分化(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a第6页(共25页)(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.第7页(共25页)36.因式分化①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)37.分化因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y阐发:该多项式不克不及间接利用提取公因式法,公式法举行因式分化.因而细致窥察多项式的特性.甲发觉该多项式前两项有公因式2x,后两项有公因式﹣3,划分把它们提出来,剩下的是不异因式(x+y),能够连续用提公因式法分化.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.第8页(共25页)解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分化法并非一种自力的因式分化的办法,而是经由过程对多项式举行恰当的分组,把多项式转化为能够使用“根本办法”分化的布局方式,使之具有公因式,大概吻合公式的特性等,从而到达能够利用“根本办法”举行分化因式的目标.【学致利用】:测验考试活动分组分化法解答以下题目:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分化因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.第9页(共25页)40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.第10页(共25页)2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分化:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m(x﹣2y);第11页(共25页)2x+7)](2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分化:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)第12页(共25页)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+9.分化因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x ﹣y);)(x﹣).(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分化(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);第13页(共25页)(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分化因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)第14页(共25页)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分化因式:第15页(共25页)(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分化因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).第16页(共25页)21.分化因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分化:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分化因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2=(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;第17页(共25页)(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)2 26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4第18页(共25页)=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)第19页(共25页)=a(a﹣1)2;(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.第20页(共25页)【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x ﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分化:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分化因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2 第21页(共25页)③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2 =[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)第22页(共25页)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【办法总结】:对不克不及间接利用提取公因式法,公式法举行分化因式的多项式,我们可斟酌把被分化的多项式分红多少组,划分按“根本办法”即提取公因式法和第23页(共25页)运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展晋升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;第24页(共25页)(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y (x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)] =(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案篇一:因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)][C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是A.a2+b2B.-a2+b2C.-a2-b2D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是A.-12B.±24C.12D.±126.把多项式an+4-an+1分解得A.an(a4-a)B.an-1(a3-1)C.an+1(a-1)(a2-a+1)D.an+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为[][][][][]A.8B.7C.10D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为A.x=1,y=3B.x=1,y=-3C.x=-1,y=3D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得A.(m+1)4(m+2)2B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得A.(x-10)(x+6)B.(x+5)(x-12)C.(x+3)(x-20)D.(x-5)(x +12)11.把3x2-2xy-8y2分解因式,得A.(3x+4)(x-2)B.(3x-4)(x+2)C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得[][][][][][]A.(x2-2)(x2-1)B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1)D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为[]A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是[]A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有[]A.1个B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y +3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是[]A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b 的关系为A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式B.有因式x2+2x+2C.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为A.(a2+b2+ab)2B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab)D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果A.3x2+6xy-x-2yB.3x2-6xy+x-2yC.x+2y+3x2+6xyD.x+2y-3x2-6xy23.64a8-b2因式分解为A.(64a4-b)(a4+b)B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b)D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为[][][][]篇二:因式分解练习题加200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14=整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2。

(完整)因式分解习题及答案

(完整)因式分解习题及答案

一、选择题 (每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.计算(-a )3·(a 2)3·(-a )2的结果正确的是( )(A )a 11 (B )a 11 (C )-a 10 (D )a 132.下列计算正确的是( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =13.4m ·4n 的结果是( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n4.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( )(A )5 (B )25(C)25 (D )105.下列算式中,正确的是( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91 (C )(0.00001)0=(9999)0 (D)3.24×10-4=0。

0000324 6.(-a +1)(a +1)(a 2+1)等于( )(A )a 4-1 (B)a 4+1 (C )a 4+2a 2+1 (D )1-a 4 7.若(x +m )(x -8)中不含x 的一次项,则m 的值为( )(A )8 (B )-8 (C)0 (D )8或-8 8.已知a +b =10,ab =24,则a 2+b 2的值是( )因式分解(A )148 (B )76 (C )58 (D )529.已知多项式ax ²+bx +c 因式分解的结果为(x -1)(x +4),则abc 为…( )A .12B .9C .-9D .-1210.如图:矩形花园中ABCD,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK.若LM =RS =c,则花园中可绿化部分的面积为( ) A 。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1)a2(x﹣y)+16(y﹣x)分析:首先将括号内的项变为相反数,再利用平方差公式进行二次分解即可。

解答:a2(x﹣y)+16(y﹣x)=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)。

4.分解因式:1)2x2﹣x;(2)16x2﹣1y2分析:(1)先提取公因式x,再利用平方差公式进行二次分解即可;2)先利用完全平方公式将16x2拆分,再利用差平方公式进行二次分解即可。

解答:(1)2x2﹣x=x(2x﹣1);2)16x2﹣1y2=(4x)2﹣(1y)2=(4x+1y)(4x﹣1y)。

5.因式分解:1)2am2﹣8a;(2)3a3﹣6a2b+3ab2.分析:(1)先提取公因式2a,再利用平方差公式进行二次分解即可;2)先提取公因式3ab,再利用完全平方公式进行二次分解即可。

解答:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);2)3a3﹣6a2b+3ab2=3ab(a﹣2b+1)。

6.将下列各式分解因式:1)3x﹣12x3;(2)(x2+y2)2﹣4x2y2分析:(1)先提取公因式3x,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x2+y2)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);2)(x2+y2)2﹣4x2y2=(x2﹣2xy+y2)(x2+2xy+y2)﹣(2xy)2=(x﹣y)(x+y)(x﹣yi)(x+yi),其中i是虚数单位。

7.因式分解:1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2分析:(1)先将各项变为同类项,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x+2y)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)x2y﹣2xy2+y3=xy(x﹣2y+y2)=xy(x﹣y)2;2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y)。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案因式分解是指将一个复杂的代数表达式分解为一组较简单的乘积或乘积的形式。

因式分解是解决多项式方程的重要步骤,对于解决数学问题和简化计算过程都有很大的帮助。

下面是一些因式分解练习题及其答案。

练习题1:1. 将表达式 $x^2 - 4x + 4$ 进行因式分解。

解答:这个表达式是一个二次多项式,可以使用配方法来进行因式分解。

首先,找到一个乘积等于首项系数与常数项乘积的两个数。

在这个例子中,首项系数是1,常数项是4,所以可以找到两个数为2和2。

然后,将表达式进行配方法的运算:$x^2 - 4x + 4 = (x-2)(x-2) = (x-2)^2$所以表达式 $x^2 - 4x + 4$ 的因式分解形式为 $(x-2)^2$。

2. 将表达式 $2x^2 + 8x - 10$ 进行因式分解。

解答:这个表达式是一个二次多项式,可以使用配方法来进行因式分解。

首先,将首项系数和常数项纳入考虑,找到一个乘积等于首项系数与常数项乘积的两个数。

在这个例子中,首项系数是2,常数项是-10,所以可以找到两个数为5和-2。

然后,将表达式进行配方法的运算:$2x^2 + 8x - 10 = 2(x^2 + 4x - 5) = 2(x+5)(x-1)$所以表达式 $2x^2 + 8x - 10$ 的因式分解形式为$2(x+5)(x-1)$。

3. 将表达式 $4x^2 - 25$ 进行因式分解。

解答:这个表达式是一个差的平方形式,可以使用差平方公式进行因式分解。

差平方公式是 $(a-b)(a+b)=a^2-b^2$。

在这个例子中,$a$ 是 $2x$,$b$ 是 5。

根据差平方公式,可以将表达式进行分解:$4x^2 - 25 = (2x)^2 - 5^2 = (2x-5)(2x+5)$所以表达式 $4x^2 - 25$ 的因式分解形式为 $(2x-5)(2x+5)$。

练习题2:1. 将表达式 $3x^2 + 9x - 6$ 进行因式分解。

初中数学因式分解技巧及练习题附答案解析(1)

初中数学因式分解技巧及练习题附答案解析(1)

初中数学因式分解技巧及练习题附答案解析(1)一、选择题1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.2.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .3.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.4.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.5.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.6.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.9.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2 【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .11.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.12.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.13.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.14.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.15.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.16.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x+16=(x ﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.计算(-2)2015+(-2)2016的结果是 ( )A .-2B .2C .22015D .-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。

因式分解练习题及答案

因式分解练习题及答案

因式分解练习题及答案因式分解是代数学中的一个重要概念,它在解决数学问题时起着至关重要的作用。

因式分解可以将一个复杂的代数式分解为简单的乘积形式,从而更好地理解和分析问题。

本文将介绍一些因式分解的练习题及其答案,帮助读者更好地掌握这一概念。

练习题一:将代数式x² + 5x + 6进行因式分解。

解答一:我们可以观察到这个代数式是一个二次多项式,因此我们可以尝试将其分解为两个一次多项式的乘积形式。

我们需要找到两个一次多项式,使得它们的乘积等于x² + 5x + 6。

首先,我们可以将x² + 5x + 6写成(x + a)(x + b)的形式,其中a和b是待定系数。

展开这个乘积,我们可以得到x² + (a + b)x + ab。

根据题目中的代数式,我们可以得到以下等式:a +b = 5ab = 6我们可以通过求解这个方程组来确定a和b的值。

观察到ab = 6,我们可以列举出所有可能的a和b的组合:(1, 6), (2, 3), (-1, -6), (-2, -3)。

然后,我们可以通过求解a + b = 5来排除一些组合。

通过计算,我们可以得到a = 2,b = 3。

因此,x² + 5x + 6可以被分解为(x + 2)(x + 3)。

练习题二:将代数式x³ - 8进行因式分解。

解答二:这个代数式是一个立方多项式,我们需要找到一个一次多项式和一个二次多项式的乘积形式来进行因式分解。

首先,我们可以观察到x³ - 8可以写成(x - a)(x² + bx + c)的形式,其中a、b和c是待定系数。

展开这个乘积,我们可以得到x³ + (b - a)x² + (c - ab)x - ac。

根据题目中的代数式,我们可以得到以下等式:b - a = 0c - ab = 0-ac = -8从第一个等式中,我们可以得到b = a。

数学因式分解练习题

数学因式分解练习题

数学因式分解练习题数学因式分解练习题篇1一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.以下各式的因式分解结果中,正确的选项是A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x +1)C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a +2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n -2)(m-1)3.在以下等式中,属于因式分解的是A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-84.以下各式中,能用平方差公式分解因式的是A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是A.-12 B.±24 C.12 D.±126.把多项式an+4-an+1分解得A.an(a4-a) B.an-1(a3-1) C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为A.8 B.7 C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x -5)(x+12)11.把3x2-2xy-8y2分解因式,得A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x +a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12 C.x2-4x-12或x2+4x-12 D.以上都可以16.以下各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有A.1个 B.2个 C.3个 D.4个17.把9-x2+12xy-36y2分解因式为A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3) 18.以下因式分解错误的选项是A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x +3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式 B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是以下哪个多项式的分解结果A.3x2+6xy-x-2y B.3x2-6xy+x-2yC.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的选项是A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y)30.分解因式2a2+4ab+2b2-8c2,正确的选项是A.2(a+b-2c) B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;、15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;数学因式分解练习题篇2一、分解因式1.2x4y2-4x3y2+10xy4。

专项训练--因式分解(全)

专项训练--因式分解(全)

因式分解专项练习题(一)提取公因式一、分解因式1、2x2y-xy2、6a2b3-9ab23、 x(a-b)+y(b-a)4、9m2n-3m2n25、4x2-4xy+8xz6、-7ab-14abx+56aby7、6m2n-15mn2+30m2n28、-4m4n+16m3n-28m2n9、x n+1-2x n-1 10、a n-a n+2+a3n11、p(a-b)+q(b-a) 12、a(b-c)+c-b13、(a-b)2(a+b)+(a-b)(a+b)2= 14、ab+b2-ac-bc15、3xy(a-b)2+9x(b-a) 16、(2x-1)y 2+(1-2x)2y17、6m(m-n)2-8(n-m)3 18、15b(2a-b)2+25(b-2a)319、a 3-a 2b+a 2c-abc 20、2ax +3am -10bx -15bm21、m (x -2)-n (2-x )-x +2 22、(m -a )2+3x (m -a )-(x +y )(a -m )23、 ab(c 2+d 2)+cd(a 2+b 2) 24、(ax+by)2+(bx-ay)225、-+--+++a x abx acx ax m m m m 2213 26、a a b a b a ab b a ()()()-+---32222 二、应用简便方法计算1、4.3×199.8+7.6×199.8-1.9×199.82、9×10100-101013、2002×20012002-2001×200220024、1368987521136898745613689872681368987123⨯+⨯+⨯+⨯三、先化简再求值(2x +1)2(3x -2)-(2x +1)(3x -2)2-x (2x +1)(2-3x )(其中,32x =)四、在代数证明题中的应用例:证明:对于任意正整数n ,323222n n n n ++-+-一定是10的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档