Workload characterization of Java server applications on two PowerPC processors
Java-2实用教程(第5版)习题解答
习题解答之马矢奏春创作习题1(第1章)一、问答题1.Java语言的主要贡献者是谁?2.开发Java应用法式需要经过哪些主要步伐?3.Java源文件是由什么组成的?一个源文件中必需要有public类吗?4.如果JDK的装置目录为D:\jdk, 应当怎样设置path和classpath的值?5.Java源文件的扩展名是什么?Java字节码的扩展名是什么?6.如果Java应用法式主类的名字是Bird, 编译之后, 应当怎样运行该法式?7.有哪两种编程风格, 在格式上各有怎样的特点?1.James Gosling2.需3个步伐:1)用文本编纂器编写源文件.2)使用javac编译源文件,获得字节码文件.3)使用解释器运行法式.3.源文件由若干个类所构成.对应用法式, 必需有一个类含有public static void main(String args[])的方法, 含有该方法的类称为应用法式的主类.纷歧定, 但至多有一个public类. 4.set classpath=D:\jdk\jre\lib\rt.jar;.;5. java和class6. java Bird7.独行风格(年夜括号独有行)和行尾风格(左年夜扩号在上一行行尾, 右年夜括号独有行)二、选择题1.B.2.D.1.下列哪个是JDK提供的编译器?2.下列哪个是Java应用法式主类中正确的main方法?A)public void main (String args[ ])B)static void main (String args[ ])C)public static void Main (String args[])D)public static void main (String args[ ])三、阅读法式阅读下列Java源文件, 并回答问题.public class Person {void speakHello() {System.out.print("您好, 很高兴认识您");System.out.println(" nice to meet you");}}class Xiti {public static void main(String args[]) {Person zhang = new Person();zhang.speakHello();}}(a)上述源文件的名字是什么?(b)编译上述源文件将生成几个字节码文件?这些字节码文件的名字都是什么?(c)在命令行执行java Person获得怎样的毛病提示?执行java xiti获得怎样的毛病提示?执行java Xiti.class获得怎样的毛病提示?执行java Xiti获得怎样的输出结果?1.(a)Person.java.(b)两个字节码, 分别是Person.class 和Xiti.class.(c)获得“NoSuchMethodError”, 获得“NoClassDefFoundError: Xiti/class”, 获得“您好, 很高兴认识您 nice to meet you”习题2(第2章)一、问答题1.什么叫标识符?标识符的规则是什么?false是否可以作为标识符.2.什么叫关键字?true和false是否是关键字?请说出6个关键字.3.Java的基本数据类型都是什么?4.float型常量和double型常量在暗示上有什么区别?5. 怎样获取一维数组的长度,怎样获取二维数组中一维数组的个数.1.用来标识类名、变量名、方法名、类型名、数组名、文件名的有效字符序列称为标识符.标识符由字母、下划线、美元符号和数字组成, 第一个字符不能是数字.false不是标识符.2.关键字就是Java语言中已经被赋予特定意义的一些单词, 不成以把关键字作为名字来用.true和false不是关键字.6个关键字:class implements interface enum extends abstract. 3.boolean, char, byte, short, int, long, float, double. 4.float常量必需用F或f为后缀.double常量用D或d为后缀, 但允许省略后缀.5.一维数组名.length.二维数组名.length.二、选择题2.下列哪三项是正确的float变量的声明?adfA. float foo = -1;B. float foo = 1.0;C. float foo = 42e1;D. float foo = 2.02f;E. float foo = 3.03d;F. float foo = 0x0123;3.下列哪一项叙述是正确的?bA. char型字符在Unicode表中的位置范围是0至32767B. char型字符在Unicode表中的位置范围是0至65535C. char型字符在Unicode表中的位置范围是0至65536D. char型字符在Unicode表中的位置范围是-32768至32767 4.以下哪两项是正确的char型变量的声明?beA. char ch = "R";B. char ch = '\\'C. char ch = 'ABCD';D. char ch = "ABCD";E. char ch = '\ucafe';F. char ch = '\u10100'5.下列法式中哪些【代码】是毛病的?2345public class E {public static void main(String args[]) {int x = 8;byte b = 127; //【代码1】b = x; //【代码2】x = 12L; //【代码3】long y=8.0; //【代码4】float z=6.89 ; //【代码5】}}6.对int a[] = new int[3];下列哪个叙述是毛病的?bA. a.length的值是3.B. a[1]的值是1.C. a[0]的值是0.D. a[a.length-1]的值即是a[2]的值.1.C.2.ADF.3.B.4.BE.5.【代码2】【代码3】【代码4】【代码5】.6.B.三、阅读或调试法式1.属于把持题, 解答略.2.属于把持题, 解答略.3.属于把持题, 解答略.4.下列法式标注的【代码1】, 【代码2】的输出结果是什么?public class E {public static void main (String args[ ]){long[] a = {1,2,3,4};long[] b = {100,200,300,400,500};b = a;System.out.println("数组b的长度:"+b.length); //【代码1】System.out.println("b[0]="+b[0]); //【代码2】}}5.下列法式标注的【代码1】, 【代码2】的输出结果是什么?public class E {public static void main(String args[]) {int [] a={10,20,30,40},b[]={{1,2},{4,5,6,7}};b[0] = a;b[0][1] = b[1][3];System.out.println(b[0][3]); //【代码1】System.out.println(a[1]); //【代码2】}}4.【代码1】:4.【代码2】:b[0]=1.5.【代码1】:40.【代码2】:7四、编写法式1.编写一个应用法式, 给出汉字‘你’、‘我’、‘他’在Unicode表中的位置.2.编写一个Java应用法式, 输出全部的希腊字母.1. public class E {public static void main(String args[]) {System.out.println((int)'你');System.out.println((int)'我');System.out.println((int)'他');}}2. public class E {public static void main (String args[ ]) {char cStart='α',cEnd='ω';for(char c=cStart;c<=cEnd;c++)System.out.print(" "+c);}}习题3(第3章)一、问答题1.关系运算符的运算结果是怎样的数据类型?2.if语句中的条件表达式的值是否可以是int型?3.while语句中的条件表达式的值是什么类型?4.switch语句中必需有default选项码?5.在while语句的循环体中, 执行break语句的效果是什么?6.可以用for语句取代while语句的作用吗?1.boolean2.不成以3.boolean4. 不是必需的5.结束while语句的执行6.可以二、选择题1.下列哪个叙述是正确的?aA. 5.0/2+10的结果是double型数据.B.(int)5.8+1.0的结果是int型数据.C.'苹'+ '果'的结果是char型数据.D.(short)10+'a'的结果是short型数据.2.用下列哪个代码替换法式标注的【代码】会招致编译毛病?cA.m-->0 B.m++>0 C.m = 0 D.m>100&&truepublic class E {public static void main (String args[ ]) {int m=10,n=0;while(【代码】) {n++;}}}3.假设有int x=1;以下哪个代码招致“可能损失精度, 找到int 需要char”这样的编译毛病. cA.short t=12+'a'; B.char c ='a'+1; C.char m ='a'+x; D.byte n ='a'+1;1.A. 2.C. 3.C.三、阅读法式1.下列法式的输出结果是什么?public class E {public static void main (String args[ ]) { char x='你',y='e',z='吃';if(x>'A'){y='苹';z='果';}elsey='酸';z='甜';System.out.println(x+","+y+","+z);}}序的输出结果是什么?public class E {public static void main (String args[ ]) { char c = '\0';for(int i=1;i<=4;i++) {switch(i) {case 1: c = 'J';System.out.print(c);case 2: c = 'e';System.out.print(c);break;case 3: c = 'p';System.out.print(c);default: System.out.print("好"); }}}}3.下列法式的输出结果是什么?public class E {public static void main (String []args) { int x = 1,y = 6;while (y-->0) {x--;}System.out.print("x="+x+",y="+y);}}x=0,y=5x=-1,y=4x=-2,y=3x=-3,y=2x=-4,y=1x=-5,y=0x=-5,y=-11.你,苹,甜2.Jeep好好3.x=-5,y=-1四、编法式题1.编写应用法式求1!+2!+…+10!.2.编写一个应用法式求100以内的全部素数.3.分别用do-while和for循环计算1+1/2!+1/3!+1/4!……的前20项和.4.一个数如果恰好即是它的因子之和, 这个数就称为“完数”.编写应用法式求1000之内的所有完数.5.编写应用法式, 使用for循环语句计算8+88+888…前10项之和.6.编写应用法式, 输出满足1+2+3…+n<8888的最年夜正整数n. 1.public class Xiti1 {public static void main(String args[]) {double sum=0,a=1;int i=1;while(i<=20) {sum=sum+a;i++;a=a*i;}System.out.println("sum="+sum);}}2.public class Xiti2{public static void main(String args[]) { int i,j;for(j=2;j<=100;j++) {for(i=2;i<=j/2;i++) {if(j%i==0)break;}if(i>j/2) {System.out.print(" "+j);}}}}3.class Xiti3 {public static void main(String args[]) {double sum=0,a=1,i=1;do { sum=sum+a;i++;a=(1.0/i)*a;}while(i<=20);System.out.println("使用do-while循环计算的sum="+sum);for(sum=0,i=1,a=1;i<=20;i++) {a=a*(1.0/i);sum=sum+a;}System.out.println("使用for循环计算的sum="+sum);}}4.publicclass Xiti4 {public static void main(String args[]) {int sum=0,i,j;for(i=1;i<=1000;i++) {for(j=1,sum=0;j<i;j++) {if(i%j==0)sum=sum+j;}if(sum==i)System.out.println("完数:"+i);}}}5.public class Xiti5 {public static void main(String args[]) {int m=8,item=m,i=1;long sum=0;for(i=1,sum=0,item=m;i<=10;i++) {sum=sum+item;item=item*10+m;}System.out.println(sum);}}6.public class Xiti6{public static void main(String args[]) {int n=1;long sum=0;while(true) {sum=sum+n;n++;if(sum>=8888)break;}System.out.println("满足条件的最年夜整数:"+(n-1));}}习题4(第4章)一、问答题1.面向对象语言有哪三个特性?2.类名应当遵守怎样的编程风格?3.变量和方法的名字应当遵守怎样的编程风格?4.类体内容中声明成员变量是为了体现对象的属性还是行为?5.类体内容中界说的非构造方法是为了体现对象的属性还是行为?6.什么时候使用构造方法?构造方法有类型吗?7.类中的实例变量在什么时候会被分配内存空间?8.什么叫方法的重载?构造方法可以重载吗?9.类中的实例方法可以把持类变量(static变量)吗?类方法(static方法)可以把持实例变量吗?可以.不成以.10.类中的实例方法可以用类名直接调用吗?8.一个类中可以有多个方法具有相同的名字, 但这些方法的参数必需分歧, 即或者是参数的个数分歧, 或者是参数的类型分歧.可以.9.10.不成以.11.简述类变量和实例变量的区别.12.this关键字代表什么?this可以呈现在类方法中吗?1. 封装、继承和多态.2.当类名由几个单词复合而成时, 每个单词的首字母使用年夜写. 3.名字的首单词的首字母使用小写, 如果变量的名字由多个单词组成, 从第2个单词开始的其它单词的首字母使用年夜写.4.属性5.行为6.用类创立对象时.没有类型7.用类创立对象时.8.一个类中可以有多个方法具有相同的名字, 但这些方法的参数必需分歧, 即或者是参数的个数分歧, 或者是参数的类型分歧.可以.9.可以.不成以.10.不成以.11.一个类通过使用new运算符可以创立多个分歧的对象, 分歧的对象的实例变量将被分配分歧的内存空间.所有对象的类变量都分配给相同的一处内存, 对象共享类变量.12.代表调用以后方法的对象.不成以.二、选择题1.下列哪个叙述是正确的? bA.Java应用法式由若干个类所构成, 这些类必需在一个源文件中.B.Java应用法式由若干个类所构成, 这些类可以在一个源文件中, 也可以分布在若干个源文件中, 其中必需有一个源文件含有主类.C.Java源文件必需含有主类.D.Java源文件如果含有主类, 主类必需是public类.2.下列哪个叙述是正确的? dA.成员变量的名字不成以和局部变量的相同.B.方法的参数的名字可以和方法中声明的局部变量的名字相同.C.成员变量没有默认值.D.局部变量没有默认值.3.对下列Hello类, 哪个叙述是正确的?dA.Hello类有2个构造方法.B.Hello类的int Hello()方法是毛病的方法.C.Hello类没有构造方法.D.Hello无法通过编译, 因为其中的hello方法的方法头是毛病的(没有类型).class Hello {Hello(int m){}int Hello() {return 20;}hello() {}}4.对下列Dog类, 哪个叙述是毛病的?dA.Dog(int m)与Dog(double m)互为重载的构造方法.B.int Dog(int m)与void Dog(double m)互为重载的非构造方法.C.Dog类只有两个构造方法, 而且没有无参数的构造方法.D.Dog类有3个构造方法.class Dog {Dog(int m){}Dog(double m){}int Dog(int m){return 23;}void Dog(double m){}}构造方法是一种特殊的方法, 与一般的方法分歧是:1.构造方法的名字必需与界说他的类名完全相同, 没有, 甚至连void 也没有.2.构造方法的调用是在创立一个对象时使用new把持进行的.构造方法的作用是初始化对象.3.不能被static、final、synchronized、abstract和native修饰.构造方法不能被子类继承.5.下列哪些类声明是毛病的?cdA)class AB)public class AC)protected class AD)private class A6.下列A类中【代码1】~【代码5】哪些是毛病的?1 4 class Tom {private int x=120;protected int y=20;int z=11;private void f() {x=200;System.out.println(x);}void g() {x=200;System.out.println(x);}}public class A {public static void main(String args[]) {Tom tom=new Tom();tom.x=22; //【代码1】tom.y=33; //【代码2】tom.z=55; //【代码3】tom.f(); //【代码4】tom.g(); //【代码5】}}7.下列E类的类体中哪些【代码】是毛病的.4class E {int x; //【代码1】long y = x; //【代码2】public void f(int n) {int m; //【代码3】int t = n+m; //【代码4】}}1.B.2.D.3.D.4.D.5.CD.6.【代码1】【代码4】.7.【代码4】.三、阅读法式1.说出下列E类中【代码1】~【代码3】的输出结果.class Fish {int weight = 1;}class Lake {Fish fish;void setFish(Fish s){fish = s;}void foodFish(int m) {fish.weight=fish.weight+m;}}public class E {public static void main(String args[]) {Fish redFish = new Fish();System.out.println(redFish.weight); //【代码1】 Lake lake = new Lake();lake.setFish(redFish);lake.foodFish(120);System.out.println(redFish.weight); //【代码2】 System.out.println(lake.fish.weight); //【代码3】}}2.请说出A类中System.out.println的输出结果. class B {int x=100,y=200;public void setX(int x) {x=x;}public void setY(int y) {this.y=y;}public int getXYSum() {return x+y;}}public class A {public static void main(String args[]) {B b=new B();b.setX(-100);b.setY(-200);System.out.println("sum="+b.getXYSum());}}3.请说出A类中System.out.println的输出结果. class B {int n;static int sum=0;void setN(int n) {this.n=n;}int getSum() {for(int i=1;i<=n;i++)sum=sum+i;return sum;}}public class A {public static void main(String args[]) {B b1=new B(),b2=new B();b1.setN(3);b2.setN(5);int s1=b1.getSum();int s2=b2.getSum();System.out.println(s1+s2);}}4.请说出E类中【代码1】,【代码2】的输出结果n的输出结果. class A {double f(int x,double y) {return x+y;}int f(int x,int y) {。
Java_Service详解
Binder
Bider机制的组成 1. Binder驱动 /dev/binder 是Android内核的一个字符驱动设备,它是IPC的核心部分。客户端发送请 求最终就是通过它来传递到服务端,而服务端的返回结果也是通过它来传给客户端。内核 源码:binder.c 2. Service Manager 顾名思义,它是负责管理服务。服务端有服务的话就得向它注册,而客户端需要向它 查询、获得服务。 3. 提供服务的Server (Service) 提供服务的Server, 对普通的应用开发来讲,咱们用到的就是Service, 具体的工作 Android都帮忙做了封装,所以开发变得很容易。 4. 调用对象代理的Client (Activity) 普通的应用开发来讲就是 Activity 通过代理对象去请求调用服务,注意:这个过程是 同步的,所以如果估计这个服务调用很耗时,那么需要考虑启新线程来调用,而不能用UI 主线程。
3
Service的启动
Service有两种启动方式: 1.第一种是通过调用Context.startService()启动,调用Context.stopService()结束, startService()可以传递参数给Service。 2.第二种方式是通过调用Context.bindService()启动,调用Context.unbindservice()结束, 还可以通过ServiceConnection访问Service。 二者可以混合使用,比如说我可以先startService再bindService。
2
Service简介
服务是运行在后台的一段代码。它可以运行在它自己的进程,也可以运行在其他应用 程序进程的上下文(context)里面,这取决于自身的需要。其它的组件可以绑定到一个服 务(Service)上面,通过远程过程调用(RPC)来调用这个方法。例如媒体播放器的服务, 当用户退出媒体选择用户界面,仍然希望音乐依然可以继续播放,这时就是由服务 (service)来保证当用户界面关闭时音乐继续播放的。 它跟Activity的级别差不多,但是它不能自己运行,需要通过某一个Activity或者其他 Context对象来调用。
java webservice几种调用方式
Java WebService几种调用方式一、介绍Java WebService是一种基于SOAP协议的远程方法调用技术,可以实现跨评台、跨语言的通信。
在实际应用中,我们可以使用多种方式来调用Web服务,本文将介绍Java WebService几种常见的调用方式。
二、基于JAX-WS的调用方式JAX-WS(Java API for XML Web Services)是一种用于创建和调用Web服务的Java标准。
通过使用JAX-WS,我们可以方便地创建客户端和服务端,并进行方法调用。
在客户端,我们可以通过使用wsimport命令生成客户端的Java代码,并使用Java代码来调用Web服务的方法。
在服务端,我们可以通过使用@WebService注解来发布服务,并使用Java代码实现方法的具体逻辑。
三、基于Axis的调用方式Apache Axis是一个流行的开源Java Web服务框架,它支持SOAP协议,可以用于创建和调用Web服务。
在基于Axis的调用方式中,我们可以使用WSDL2Java工具生成客户端的Java代码,然后使用Java代码来调用Web服务的方法。
在服务端,我们可以使用Java代码实现方法的逻辑,并使用Axis框架来发布服务。
四、基于CXF的调用方式Apache CXF是另一个流行的开源Java Web服务框架,它也支持SOAP协议,并提供了丰富的特性和扩展性。
在基于CXF的调用方式中,我们可以使用wsdl2java工具生成客户端的Java代码,然后使用Java代码来调用Web服务的方法。
在服务端,我们可以使用Java代码实现方法的逻辑,并使用CXF框架来发布服务。
五、总结在本文中,我们介绍了Java WebService几种常见的调用方式,包括基于JAX-WS、Axis和CXF。
通过这些调用方式,我们可以方便地创建和调用Web服务,实现跨评台、跨语言的通信。
个人观点和理解作为Java开发人员,我认为Java WebService是一种非常重要的技术,它可以帮助我们实现分布式系统之间的通信,为企业级应用的开发提供了很大的便利。
java webservice 字符串参数
文章标题:深入探讨Java WebService中的字符串参数传递在Java WebService中,字符串参数的传递是非常常见的操作。
通过本文,我将深入探讨Java WebService中的字符串参数传递的相关知识和技术,以帮助读者更好地理解和应用这一重要概念。
1. 了解Java WebServiceJava WebService是指基于Java语言开发的、用于实现各种网络服务和应用的技术框架。
它能够让不同评台和不同语言的应用程序之间进行通信,实现数据传递和交互操作。
在Java WebService中,字符串参数的传递是非常常见的操作,下面我们将深入探讨这一重要主题。
2. 字符串参数传递的基本方法在Java WebService中,字符串参数的传递可以通过多种方式实现。
最常用的方法是通过SOAP和RESTful两种协议来进行传递。
SOAP 是一种基于XML的通信协议,它能够将字符串参数封装为XML格式的消息进行传递。
而RESTful则是一种更加轻量级和灵活的协议,它能够通过URL参数或HTTP请求体来传递字符串参数。
3. 深入理解字符串参数传递的原理在Java WebService中,字符串参数的传递涉及到多个技术和原理。
我们需要了解XML和JSON这两种常用的数据格式,它们在字符串参数传递中起着重要的作用。
我们还需要理解SOAP和RESTful协议的工作原理,以及它们在字符串参数传递中的应用方式。
我们还需要掌握Java中字符串参数的处理和操作方法,以确保传递的字符串参数能够被准确接收和处理。
4. 个人观点和理解在我看来,Java WebService中的字符串参数传递是非常重要的技术,它能够实现不同应用程序之间的数据交换和互联操作。
通过掌握字符串参数传递的相关知识和技术,我们能够更好地开发和应用Java WebService,提高系统的互操作性和扩展性。
总结回顾通过本文的讨论,我们深入探讨了Java WebService中的字符串参数传递。
Java Runtime Systems Characterization and Architectural Implications
Java Runtime Systems: Characterization and Architectural ImplicationsRamesh Radhakrishnan,Member,IEEE,N.Vijaykrishnan,Member,IEEE, Lizy Kurian John,Senior Member,IEEE,Anand Sivasubramaniam,Member,IEEE,Juan Rubio,Member,IEEE,and Jyotsna SabarinathanAbstractÐThe Java Virtual Machine(JVM)is the cornerstone of Java technology and its efficiency in executing the portable Java bytecodes is crucial for the success of this technology.Interpretation,Just-In-Time(JIT)compilation,and hardware realization are well-known solutions for a JVM and previous research has proposed optimizations for each of these techniques.However,each technique has its pros and cons and may not be uniformly attractive for all hardware platforms.Instead,an understanding of the architectural implications of JVM implementations with real applications can be crucial to the development of enabling technologies for efficient Java runtime system development on a wide range of platforms.Toward this goal,this paper examines architectural issues from both the hardware and JVM implementation perspectives.The paper starts by identifying the important execution characteristics of Javaapplications from a bytecode perspective.It then explores the potential of a smart JIT compiler strategy that can dynamically interpret or compile based on associated costs and investigates the CPU and cache architectural support that would benefit JVMimplementations.We also study the available parallelism during the different execution modes using applications from the SPECjvm98 benchmarks.At the bytecode level,it is observed that less than45out of the256bytecodes constitute90percent of the dynamic bytecode stream.Method sizes fall into a trinodal distribution with peaks of1,9,and26bytecodes across all benchmarks.Thearchitectural issues explored in this study show that,when Java applications are executed with a JIT compiler,selective translation using good heuristics can improve performance,but the saving is only10-15percent at best.The instruction and data cacheperformance of Java applications are seen to be better than that of C/C++applications except in the case of data cache performance in the JIT mode.Write misses resulting from installation of JIT compiler output dominate the misses and deteriorate the data cacheperformance in JIT mode.A study on the available parallelism shows that Java programs executed using JIT compilers haveparallelism comparable to C/C++programs for small window sizes,but falls behind when the window size is increased.Java programs executed using the interpreter have very little parallelism due to the stack nature of the JVM instruction set,which is dominant in the interpreted execution mode.In addition,this work gives revealing insights and architectural proposals for designing an efficient Java runtime system.Index TermsÐJava,Java bytecodes,CPU and cache architectures,ILP,performance evaluation,benchmarking.æ1I NTRODUCTIONT HE Java Virtual Machine(JVM)[1]is the cornerstone of Java technology,epitomizing theªwrite-once run-any-whereºpromise.It is expected that this enabling technology will make it a lot easier to develop portable software and standardized interfaces that span a spectrum of hardware platforms.The envisioned underlying platforms for this technology include powerful(resource-rich)servers,net-work-based and personal computers,together with resource-constrained environments such as hand-held devices,specialized hardware/embedded systems,and even household appliances.If this technology is to succeed,it is important that the JVM provide an efficient execution/ runtime environment across these diverse hardware plat-forms.This paper examines different architectural issues, from both the hardware and JVM implementation perspec-tives,toward this goal.Applications in Java are compiled into the bytecode format to execute in the Java Virtual Machine(JVM).The core of the JVM implementation is the execution engine that executes the bytecodes.This can be implemented in four different ways:1.An interpreter is a software emulation of the virtualmachine.It uses a loop which fetches,decodes,andexecutes the bytecodes until the program ends.Dueto the software emulation,the Java interpreter has anadditional overhead and executes more instructionsthan just the bytecodes.2.A Just-in-time(JIT)compiler is an execution modelwhich tries to speed up the execution of interpretedprograms.It compiles a Java method into nativeinstructions on the fly and caches the nativesequence.On future references to the same method,the cached native method can be executed directlywithout the need for interpretation.JIT compilers.R.Radhakrishnan,L.K.John,and J.Rubio are with the Laboratory forComputer Architecture,Department of Electrical and Computer Engineer-ing,University of Texas at Austin,Austin,TX78712.E-mail:{radhakri,ljohn,jrubio}@..N.Vijaykrishnan and A.Sivasubramaniam are with the Department ofComputer Science and Engineering,220Pond Lab.,Pennsylvania State University,University Park,PA16802.E-mail:{vijay,anand}@..J.Sabarinathan is with the Motorola Somerset Design Center,6263McNeil Dr.#1112,Austin,TX78829.E-mail:jyotsna@.Manuscript received28Apr.2000;revised16Oct.2000;accepted31Oct.2000.For information on obtaining reprints of this article,please send e-mail to:tc@,and reference IEEECS Log Number112014.0018-9340/01/$10.00ß2001IEEEhave been released by many vendors,like IBM[2],Symantec[3],and piling duringprogram execution,however,inhibits aggressiveoptimizations because compilation must only incura small overhead.Another disadvantage of JITcompilers is the two to three times increase in theobject code,which becomes critical in memoryconstrained embedded systems.There are manyongoing projects in developing JIT compilers thataim to achieve C++-like performance,such asCACAO[4].3.Off-line bytecode compilers can be classified intotwo types:those that generate native code and thosethat generate an intermediate language like C.Harissa[5],TowerJ[6],and Toba[7]are compilersthat generate C code from bytecodes.The choice of Cas the target language permits the reuse of extensivecompilation technology available in different plat-forms to generate the native code.In bytecodecompilers that generate native code directly,likeNET[8]and Marmot[9],portability becomesextremely difficult.In general,only applications thatoperate in a homogeneous environment and thosethat undergo infrequent changes benefit from thistype of execution.4.A Java processor is an execution model thatimplements the JVM directly on silicon.It not onlyavoids the overhead of translation of the bytecodesto another processor's native language,but alsoprovides support for Java runtime features.It can beoptimized to deliver much better performance than ageneral purpose processor for Java applications byproviding special support for stack processing,multithreading,garbage collection,object addres-sing,and symbolic resolution.Java processors can becost-effective to design and deploy in a wide rangeof embedded applications,such as telephony andweb tops.The picoJava[10]processor from SunMicrosystems is an example of a Java processor.It is our belief that no one technique will be universally preferred/accepted over all platforms in the immediate future.Many previous studies[11],[12],[13],[10],[14]have focused on enhancing each of the bytecode execution techniques.On the other hand,a three-pronged attack at optimizing the runtime system of all techniques would be even more valuable.Many of the proposals for improve-ments with one technique may be applicable to the others as well.For instance,an improvement in the synchronization mechanism could be useful for an interpreted or JIT mode of execution.Proposals to improve the locality behavior of Java execution could be useful in the design of Java processors,as well as in the runtime environment on general purpose processors.Finally,this three-pronged strategy can also help us design environments that efficiently and seamlessly combine the different techniques wherever possible.A first step toward this three-pronged approach is to gain an understanding of the execution characteristics of different Java runtime systems for real applications.Such a study can help us evaluate the pros and cons of the different runtime systems(helping us selectively use what works best in a given environment),isolate architectural and runtime bottlenecks in the execution to identify the scope for potential improvement,and derive design enhance-ments that can improve performance in a given setting.This study embarks on this ambitious goal,specifically trying to answer the following questions:.Do the characteristics seen at the bytecode level favor any particular runtime implementation?Howcan we use the characteristics identified at thebytecode level to implement more efficient runtimeimplementations?.Where does the time go in a JIT-based execution(i.e., in translation to native code or in executing thetranslated code)?Can we use a hybrid JIT-inter-preter technique that can do even better?If so,whatis the best we can hope to save from such a hybridtechnique?.What are the execution characteristics when execut-ing Java programs(using an interpreter or JITcompiler)on general-purpose CPU(such as theSPARC)?Are these different from those for tradi-tional C/C++programs?Based on such a study,canwe suggest architectural support in the CPU(eithergeneral-purpose or a specialized Java processor)thatcan enhance Java executions?To our knowledge,there has been no prior effort that has extensively studied all these issues in a unified framework for Java programs.This paper sets out to answer some of the above questions using applications drawn from the SPECjvm98[15]benchmarks,available JVM implementa-tions such as JDK1.1.6[16]and Kaffe VM0.9.2[17],and simulation/profiling tools on the Shade[18]environment. All the experiments have been conducted on Sun Ultra-SPARC machines running SunOS5.6.1.1Related WorkStudies characterizing Java workloads and performance analysis of Java applications are becoming increasingly important and relevant as Java increases in popularity,both as a language and software development platform.A detailed characterization of the JVM workload for the UltraSparc platform was done in[19]by Barisone et al.The study included a bytecode profile of the SPECjvm98 benchmarks,characterizing the types of bytecodes present and its frequency distribution.In this paper,we start with such a study and extend it to characterize other metrics, such as locality and method sizes,as they impact the performance of the runtime environment very strongly. Barisone et e the profile information collected from the interpreter and JIT execution modes as an input to a mathematical model of a RISC architecture to suggest architectural support for Java workloads.Our study uses a detailed superscalar processor simulator and also includes studies on available parallelism to understand the support required in current and future wide-issue processors. Romer et al.[20]studied the performance of interpreters and concluded that no special hardware support is needed for increased performance.Hsieh et al.[21]studied the cache and branch performance of interpreted Java code,C/C++version of the Java code,and native code generated by Caffine (a bytecode to native code compiler)[22].They attribute the inefficient use of the microarchitectural resources by the interpreter as a significant performance penalty and suggest that an offline bytecode to native code translator is a more efficient Java execution model.Our work differs from these studies in two important ways.First,we include a JIT compiler in this study which is the most commonly used execution model presently.Second,the benchmarks used in our study are large real world applications,while the above-mentioned study uses microbenchmarks due to the unavailability of a Java benchmark suite at the time of their study.We see that the characteristics of the application used affects favor different execution modes and,therefore,the choice of benchmarks used is important.Other studies have explored possibilities of improving performance of the Java runtime system by understand-ing the bottlenecks in the runtime environment and ways to eliminate them.Some of these studies try to improve the performance through better synchronization mechan-isms [23],[24],[25],more efficient garbage collection techniques [26],and understanding the memory referen-cing behavior of Java applications [27],etc.Improving the runtime system,tuning the architecture to better execute Java workloads and better compiler/interpreter perfor-mance are all equally important to achieve efficient performance for Java applications.The rest of this paper is organized as follows:The next section gives details on the experimental platform.In Section 3,the bytecode characteristics of the SPECjvm98are presented.Section 4examines the relative performance of JIT and interpreter modes and explores the benefits of a hybrid strategy.Section 5investigates some of the questions raised earlier with respect to the CPU and cache architec-tures.Section 6collates the implications and inferences that can be drawn from this study.Finally,Section 7summarizes the contributions of this work and outlines directions for future research.2E XPERIMENTAL P LATFORMWe use the SPECjvm98benchmark suite to study the architectural implications of a Java runtime environment.The SPECjvm98benchmark suite consists of seven Java programs which represent different classes of Java applica-tions.The benchmark programs can be run using three different inputs,which are named s100,s10,and s1.Theseproblem sizes do not scale linearly,as the naming suggests.We use the s1input set to present the results in this paper and the effects of larger data sets,s10and s100,has also been investigated.The increased method reuse with larger data sets results in increased code locality,reduced time spent in compilation as compared to execution,and other such issues as can be expected.The benchmarks are run at the command line prompt and do not include graphics,AWT (graphical interfaces),or networking.A description of the benchmarks is given in Table 1.All benchmarks except mtrt are single-threaded.Java is used to build applications that span a wide range,which includes applets at the lower end to server-side applications on the high end.The observations cited in this paper hold for those subsets of applications which are similar to the SPECjvm98bench-marks when run with the dataset used in this study.Two popular JVM implementations have been used in this study:the Sun JDK 1.1.6[16]and Kaffe VM 0.9.2[17].Both these JVM implementations support the JIT and interpreted mode.Since the source code for the Kaffe VM compiler was available,we could instrument it to obtain the behavior of the translation routines for the JIT mode in detail.Some of the data presented in Sections 4and 5are obtained from the instrumented translate routines in Kaffee.The results using Sun's JDK are presented for the other sections and only differences,if any,from the KaffeVM environment are mentioned.The use of two runtime implementations also gives us more confidence in our results,filtering out any noise due to the implementation details.To capture architectural interactions,we have obtained traces using the Shade binary instrumentation tool [18]while running the benchmarks under different execution modes.Our cache simulations use the cachesim5simulators available in the Shade suite,while branch predictors have been developed in-house.The instruction level parallelism studies are performed utilizing a cycle-accurate superscalar processor simulator This simulator can be configured to a variety of out-of-order multiple issue configurations with desired cache and branch predictors.3C HARACTERISTICSAT THEB YTECODE L EVELWe characterize bytecode instruction mix,bytecode locality,method locality,etc.in order to understand the benchmarks at the bytecode level.The first characteristic we examine is the bytecode instruction mix of the JVM,which is a stack-oriented architecture.To simplify the discussion,weRADHAKRISHNAN ET AL.:JAVA RUNTIME SYSTEMS:CHARACTERIZATION ANDARCHITECTURAL IMPLICATIONS 133TABLE 1Description of the SPECjvm98Benchmarksclassify the instructions into different types based on their inherent functionality,as shown in Table 2.Table 3shows the resulting instruction mix for the SPECjvm98benchmark suite.The total bytecode count ranges from 2million for db to approximately a billion for compress .Most of the benchmarks show similar distribu-tions for the different instruction types.Load instructions outnumber the rest,accounting for 35.5percent of the total number of bytecodes executed on the average.Constant pool and method call bytecodes come next with average frequen-cies of 21percent and 11percent,respectively.From an architectural point of view,this implies that transferring data elements to and from the memory space allocated for local variables and the Java stack paring this with the benchmark 126.gcc from the SPEC CPU95suite,which has roughly 25percent of memory access operations when run on a SPARC V.9architecture,it can be seen that the JVM places greater stress on the memory system.Consequently,we expect that techniques such as instruction folding proposed in [28]for Java processors and instructioncombining proposed in [29]for JIT compilers can improve the overall performance of Java applications.The second characteristic we examine is the dynamic size of a method.1Invoking methods in Java is expensive as it requires the setting up of an execution environment and a new stack for each new method [1].Fig.1shows the method sizes for the different benchmarks.A trinodal distribution is observed,where most of the methods are either 1,9,or 26bytecodes long.This seems to be a characteristic of the runtime environment itself (and not of any particular application)and can be attributed to a frequently used library.However,the existence of single bytecode methods indicates the presence of wrapper methods to implement specific features of the Java language like private and protected methods or interfaces .These methods consist of a control transfer instruction which transfers control to an appropriate routine.Further analysis of the traces shows that a few unique bytecodes constitute the bulk of the dynamic bytecode134IEEE TRANSACTIONS ON COMPUTERS,VOL.50,NO.2,FEBRUARY 2001TABLE 2Classification ofBytecodesTABLE 3Dynamic Instruction Mix at the BytecodeLevel1.A java method is equivalent to a ªfunctionºor ªprocedureºin a procedural language like C.stream.In most benchmarks,fewer than 45distinct bytecodes constitute 90percent of the executed bytecodes and fewer than 33bytecodes constitute 80percent of the executed bytecodes (Table 4).It is observed that memory access and memory allocation-related bytecodes dominate the bytecode stream of all the benchmarks.This also suggests that if the instruction cache can hold the JVM interpreter code corresponding to these bytecodes (i.e.,all the cases of the switch statement in the interpreter loop),the cache performance will be better.Table 5presents the number of unique methods and the frequency of calls to those methods.The number of methods and the dynamic calls are obtained at runtime by dynamically profiling the application.Hence,only methods that execute at least once have been counted.Table 5also shows that the static size of the benchmarks remain constant across the different data sets (since the number of unique methods does not vary),although the dynamic instruction count increases for the bigger data sets (due to increased method calls).The number of unique calls has an impact on the number of indirect call sites present in the application.Looking at the three data sets,we see that there is very little difference in the number of methods across data sets.Another bytecode characteristic we look at is the method reuse factor for the different data sets.The method reuse factor can be defined as the ratio of method calls to number of methods visited at least once.It indicates the locality of methods.The method reuse factor is presented in Table 6.The performance benefits that can be obtained from using a JIT compiler are directly proportional to the method reuse factor since the cost of compilation is amortized over multiple calls in JIT execution.The higher number of method calls indicates that the method reuse in the benchmarks for larger data sets would be substantially more.This would then lead to better performance for the JITs (as observed in the next section).In Section 5,we show that the instruction count when the benchmarks are executed using a JIT compiler is much lower than when using an interpreter for the s100data set.Since there is higher method reuse in all benchmarks for the larger data sets,using a JIT results in better performance over an interpreter.The bytecode characteristics described in this section help in understanding some of the issues involved in the performance of the Java runtime system (presented in the remainder of the paper).4W HENORW HETHERTOT RANSLATEDynamic compilation has been popularly used [11],[30]to speed up Java executions.This approach avoids the costly interpretation of JVM bytecodes while sidestepping the issue of having to precompile all the routines that could ever be referenced (from both the feasibility and perfor-mance angles).Dynamic compilation techniques,however,pay the penalty of having the compilation/translation to native code falling in the critical path of program execution.Since this cost is expected to be high,it needs to be amortized over multiple executions of the translated code.Or else,performance can become worse than when the code is just interpreted.Knowing when to dynamically compile a method (using a JIT),or whether to compile at all,is extremely important for good performance.To our knowledge,there has not been any previous study that has examined this issue in depth in the context of Java programs,though thereRADHAKRISHNAN ETAL.:JAVA RUNTIME SYSTEMS:CHARACTERIZATION AND ARCHITECTURAL IMPLICATIONS 135Fig.1.Dynamic method size.TABLE 4Number of Distinct Bytecodes that Account for 80Percent,90Percent,and 100Percent of the Dynamic Instruction StreamTABLE 5Total Number ofMethod Calls (Dynamic)and Unique Methods for the Three Data Setshave been previous studies [13],[31],[12],[4]examining efficiency of the translation procedure and the translated code.Most of the currently available execution environ-ments,such as JDK 1.2[16]and Kaffe [17],employ limited heuristics to decide on when (or whether)to JIT.They typically translate a method on its first invocation,regardless of how long it takes to interpret/translate/execute the method and how many times the method is invoked.It is not clear if one could do better (with a smarter heuristic)than what many of these environments provide.We investigate these issues in this section using five SPECjvm98[15]benchmarks (together with a simple HelloWorld program 2)on the Kaffe environment.Fig.2shows the results for the different benchmarks.All execution times are normalized with respect to the execu-tion time taken by the JIT mode on Kaffe.On top of the JIT execution bar is given the ratio of the time taken by this mode to the time taken for interpreting the program using Kaffe VM.As expected (from the method reuse character-istics for the various benchmarks),we find that translating (JIT-ing)the invoked methods significantly outperforms interpreting the JVM bytecodes for the SPECjvm98.The first bar,which corresponds to execution time using the default JIT,is further broken down into two components,the total time taken to translate/compile the invoked methods and the time taken to execute these translated (native code)methods.The considered workloads span the spectrum,from those in which the translation times dominate,such as hello and db (because most of the methods are neither time consuming nor invoked numerous times),to those in which the native code execution dominates,such as compress and jack (where the cost of translation is amortized over numerous invocations).The JIT mode in Kaffe compiles a method to native code on its first invocation.We next investigate how well the smartest heuristic can do so that we compile only those methods that are time consuming (the translation/compila-tion cost is outweighed by the execution time)and interpret the remaining methods.This can tell us whether we should strive to develop a more intelligent selective compilation heuristic at all and,if so,what the performance benefit is that we can expect.Let us say that a method i takes s i time to interpret, i time to translate,and i i time to execute the translated code.Then,there exists a crossover point x i i a s i Ài i ,where it would be better to translate themethod if the number of times a method is invoked n i b x i and interpret it otherwise.We assume that an oracle supplies n i (the number of times a method is invoked)and x i (the ideal cut-off threshold for a method).If n i `x i ,we interpret all invocations of the method,and otherwise translate it on the very first invocation.The second bar in Fig.2for each application shows the performance with this oracle,which we shall call opt .It can be observed that there is very little difference between the naive heuristic used by Kaffe and opt for compress and jack since most of the time is spent in the execution of the actual code anyway (very little time in translation or interpretation).As the translation component gets larger (applications like db ,javac ,or hello ),the opt model suggests that some of the less time-consuming (or less frequently invoked)methods be inter-preted to lower the execution time.This results in a 10-15percent savings in execution time for these applica-tions.It is to be noted that the exact savings would definitely depend on the efficiency of the translation routines,the translated code execution and interpretation.The opt results give useful insights.Fig.2shows that,by improving the heuristic that is employed to decide on when/whether to JIT,one can at best hope to trim 10-15percent in the execution time.It must be observed that the 10-15percent gains observed can vary with the amount of method reuse and the degree of optimization that is used.For example,we observed that the translation time for the Kaffe JVM accounts for a smaller portion of overall execution time with larger data sets (7.5percent for the s10dataset (shown in Table 7)as opposed to the 32percent for the s1dataset).Hence,reducing the translation overhead will be of lesser importance when execution time dominates translation time.However,as more aggressive optimizations are used,the translation time can consume a significant portion of execution time for even larger datasets.For instance,the base configuration of the translator in IBM's Jalapeno VM [32]takes negligible translation time when using the s100data set for javac.However,with more aggressive optimizations,about 30percent of overall execution time is consumed in translation to ensure that the resulting code is executed much faster [32].Thus,there exists a trade-off between reducing the amount of time spent in optimizing the code and the amount of time spent in actually executing the optimized code.136IEEE TRANSACTIONS ON COMPUTERS,VOL.50,NO.2,FEBRUARY2001Fig.2.Dynamic compilation:How well can we do?2.While we do not make any major conclusions based on this simple program,it serves to observe the behavior of the JVM implementation while loading and resolving system classes during system initialization.TABLE 6Method Reuse Factor for the Different DataSets。
java webservice几种调用方式
java webservice几种调用方式摘要:1.引言2.Java WebService 的定义3.Java WebService 的调用方式3.1 SOAP 协议3.2 RESTful 风格3.3 RSS 和ATOM4.结论正文:【引言】Java WebService 是一种基于Java 语言编写的网络服务,它允许开发人员创建可与外部系统交互的Web 应用程序。
Java WebService 可以被各种调用方式,本文将介绍几种常见的调用方式。
【Java WebService 的定义】Java WebService 是一组基于Java 语言编写的接口和实现,它通过Web 进行通信。
Java WebService 可以被部署在各种支持Java 的服务器上,如Tomcat、GlassFish 等。
客户端可以通过各种协议调用Java WebService,实现数据交互和业务逻辑处理。
【Java WebService 的调用方式】【3.1 SOAP 协议】SOAP(Simple Object Access Protocol)是一种基于XML 的轻量级协议,用于在分布式环境中交换信息。
客户端可以使用SOAP 协议调用Java WebService,这种调用方式需要客户端和服务器之间建立XML 数据传输的通道。
SOAP 协议支持RPC(远程过程调用)和Document 风格的消息传递,可以满足不同需求。
【3.2 RESTful 风格】REST(Representational State Transfer)是一种基于HTTP 协议的Web 服务设计风格,它采用资源(Resource)和HTTP 方法(如GET、POST、PUT、DELETE)进行操作。
客户端可以使用RESTful 风格调用Java WebService,这种调用方式简单、易于实现和维护。
近年来,随着移动互联网和物联网的发展,RESTful 风格得到了广泛应用。
java webservice实例
java webservice实例Java WebService是一种用于实现分布式系统的技术,它允许不同的应用程序通过网络进行通信和交互。
通过使用Web服务,可以将应用程序的功能暴露给其他应用程序,从而实现系统间的数据共享和业务集成。
一个典型的Java WebService实例可以是一个在线图书商城,该商城允许用户搜索图书、查看图书详细信息、购买图书等功能。
为了实现这个Web服务,我们可以使用Java的相关技术和框架,如Java Servlet、Java API for XML Web Services (JAX-WS)等。
我们需要创建一个Java Servlet来处理用户的请求。
该Servlet可以接收来自客户端的HTTP请求,解析请求参数,并根据参数执行相应的操作。
例如,当用户搜索图书时,Servlet可以将搜索关键字传递给后台的业务逻辑处理组件,并返回匹配的图书列表给客户端。
为了实现业务逻辑处理,我们可以使用JAX-WS来创建Web服务端点。
Web服务端点是一个Java类,它提供了Web服务的具体实现。
在我们的例子中,Web服务端点可以包含一些方法,如搜索图书、获取图书详细信息、购买图书等。
这些方法可以被Servlet调用,并返回相应的结果给客户端。
在实现Web服务端点时,我们需要定义相关的数据模型和数据访问组件。
数据模型可以包括图书的属性,如书名、作者、出版日期等。
数据访问组件可以负责从数据库中检索图书数据,并将数据返回给Web服务端点进行处理。
为了提高Web服务的性能和可靠性,我们可以使用一些技术和工具,如SOAP协议、WSDL文档、Apache Axis等。
SOAP协议是一种用于在网络上交换结构化信息的协议,它可以确保数据的安全性和完整性。
WSDL文档是Web服务的描述文件,它定义了Web服务的接口和操作。
Apache Axis是一个开源的Web服务框架,它可以帮助我们更方便地创建和部署Web服务。
java webservice接口调用案例
角色:文章写手文章主题:Java WebService接口调用案例尊敬的客户,在您指定的主题下,我将为您撰写一篇关于Java WebService接口调用案例的文章。
文章将从基础知识入手,逐步深入,以确保您能全面理解和灵活应用这一主题。
一、Java WebService基础知识1.1 什么是Web ServiceWeb Service是一种基于XML标准来进行网络服务的应用程序接口(API)。
它允许不同的应用程序在网络上互相通信,实现远程程序调用(RPC)。
1.2 Java中的Web Service在Java中,可以使用JAX-WS(Java API for XML Web Services)来创建和调用Web Service。
通过JAX-WS,可以方便地构建和部署基于XML的Web服务,实现跨评台、跨语言的通信。
二、Java WebService接口调用实例2.1 创建Web Service客户端在Java项目中引入WebService客户端的依赖包,并生成客户端代码。
可以创建一个Java类作为WebService的客户端,调用WebService 提供的接口方法。
2.2 实现WebService接口调用在客户端类中,可以实例化WebService的服务类,并通过该实例调用WebService提供的方法。
可以通过传递参数来调用WebService接口,获取返回结果,并进行相应的处理和展示。
2.3 错误处理和异常处理在进行WebService接口调用时,需要注意错误处理和异常处理。
可以通过try-catch-finally语句来捕获异常,并进行适当的处理,以确保程序的稳定性和健壮性。
三、个人观点和总结在我看来,Java WebService接口调用是一项非常重要和有价值的技能。
它可以帮助我们实现不同系统之间的通信和数据交换,实现业务逻辑的解耦和扩展。
通过学习和掌握Java WebService接口调用,我们可以更好地应用和拓展在实际项目开发中,提高系统的可维护性和扩展性。
基于Java的人力资源管理系统设计与实施
基于Java的人力资源管理系统设计与实施一、引言随着信息技术的不断发展,人力资源管理系统在企业中扮演着越来越重要的角色。
基于Java的人力资源管理系统具有跨平台性、高效性和可扩展性等优势,能够有效地帮助企业管理人力资源,提高工作效率。
本文将探讨基于Java的人力资源管理系统的设计与实施过程。
二、系统需求分析在设计人力资源管理系统之前,首先需要进行系统需求分析。
根据企业的实际情况和需求,确定系统的功能模块包括但不限于员工信息管理、薪资福利管理、招聘管理、绩效考核、培训发展等。
同时,还需要考虑系统的安全性、稳定性和易用性等方面。
三、系统架构设计基于Java的人力资源管理系统通常采用B/S架构,即浏览器/服务器架构。
前端使用HTML、CSS、JavaScript等技术实现页面展示和交互,后端使用Java语言开发业务逻辑处理和数据存储。
数据库可以选择MySQL、Oracle等关系型数据库或者MongoDB等非关系型数据库。
四、关键技术选型前端技术:使用HTML5和CSS3编写页面结构和样式,利用JavaScript和jQuery实现页面交互效果。
后端技术:采用Spring框架实现IoC和AOP编程思想,使用Spring MVC处理Web请求,结合MyBatis或Hibernate进行持久层操作。
数据库技术:选择适合企业应用的数据库,如MySQL或Oracle,并利用JDBC或MyBatis等技术进行数据操作。
安全技术:引入Spring Security框架实现用户认证和权限控制,保障系统数据安全。
五、系统功能模块设计1. 员工信息管理模块员工信息管理模块包括员工档案管理、组织架构管理、员工合同管理等功能,实现员工信息的录入、查询、修改和删除操作。
2. 薪资福利管理模块薪资福利管理模块涵盖薪资核算、社会保险、公积金等内容,支持薪资计算、福利发放以及相关报表生成。
3. 招聘管理模块招聘管理模块包括岗位发布、简历筛选、面试安排等功能,帮助企业高效地进行招聘流程管理。
中级java工程师面试题
中级java工程师面试题一、Java基础知识1. 请解释Java的基本特性。
答:Java具有以下基本特性:简单性、面向对象、平台独立性、多线程、安全性、健壮性和动态性。
简单性体现在语法上的清晰和简洁;面向对象则是指Java支持封装、继承和多态等面向对象编程的概念;平台独立性意味着Java程序可以在任何支持Java虚拟机(JVM)的平台上运行;多线程使得Java能够同时执行多个操作,提高了程序的效率;安全性则是指Java提供了一系列的安全特性,如异常处理和垃圾回收机制;健壮性体现在Java的强类型检查和错误检测能力;动态性则是指Java支持动态加载、运行时检查等特性。
2. 什么是JVM,JRE和JDK?答:JVM(Java虚拟机)是运行Java程序的虚拟机环境,负责将Java 字节码解释执行或通过即时编译器(JIT)编译为本地机器码执行。
JRE(Java运行环境)包括JVM和运行Java程序所需的核心类库和支持文件。
JDK(Java开发工具包)则包含了JRE和开发Java应用程序所需的编译器、调试器等工具。
3. 描述Java中的垃圾回收机制。
答:垃圾回收(Garbage Collection, GC)是Java自动内存管理的一部分,负责回收不再使用的对象所占用的内存。
Java中的对象会在没有引用指向它们时变成垃圾,GC会定期或根据内存需求来执行回收过程。
这个过程包括标记无用对象、清除这些对象以及压缩内存空间。
垃圾回收提高了程序的性能和稳定性,但也可能导致程序的暂停。
二、Java进阶知识1. 请解释Java中的多线程和并发。
答:多线程是指在单个程序中并行执行多个线程,每个线程执行独立的任务。
Java通过Thread类和Runnable接口来支持多线程编程。
并发是指多个任务在宏观上同时进行,在微观上交替执行。
Java提供了多种并发工具,如同步块(synchronized block)、并发集合类、线程池等,来帮助开发者处理并发问题。
基于java的人力资源管理系统的设计与实现
基于java的人力资源管理系统的设计与实现人力资源管理系统(HRMS)是指为了更好地管理和利用企业内部人力资源而开发的一种电子化信息系统。
该系统主要包括人力资源计划、招聘选拔、培训发展、薪酬福利、绩效考核、劳动关系和员工信息管理等模块,通过集成各种人力资源管理功能,提高了人力资源管理的效率和准确性。
设计和实现一个基于Java的人力资源管理系统,可以通过以下几个步骤逐步进行:第一步:需求分析首先,需要对人力资源管理系统进行需求分析。
与相关部门(如人力资源部门)进行沟通,了解系统的主要功能和需求,包括招聘、培训、绩效考核、员工信息管理等。
在需求分析的过程中,可以绘制用例图和业务流程图,明确系统的功能和流程。
第二步:系统设计在需求分析的基础上,进行系统设计。
主要包括以下几个方面:(1)数据库设计:设计数据库表结构,包括员工信息、职位信息、培训计划、绩效考核等。
(2)界面设计:设计系统的界面,包括登录界面、主界面、员工管理界面、招聘管理界面、培训管理界面、绩效管理界面等。
可以使用Java的图形化界面(GUI)库如Swing或JavaFX进行设计。
(3)业务逻辑设计:设计系统的业务逻辑,包括招聘流程、员工入职、培训流程、绩效考核流程等。
需要定义各个模块的具体功能和流程。
(4)系统架构设计:设计系统的整体架构,包括前端界面、后端业务逻辑和数据库之间的交互。
第三步:系统实现在系统设计的基础上,开始进行系统实现。
主要包括以下几个方面:(1)前端界面实现:使用Java的GUI库如Swing或JavaFX进行界面设计和实现。
可以通过设计界面框架、添加组件、添加事件监听等方式实现界面交互和数据展示。
(2)后端业务逻辑实现:使用Java进行后端业务逻辑的实现。
包括数据处理、业务流程控制、数据库操作等。
可以使用Java的面向对象特性,将不同的功能模块进行对象封装和模块化设计。
(3)数据库实现:使用Java的数据库连接库如JDBC连接数据库,进行数据库的创建、表的创建和数据的插入、查询、更新等操作。
java名词解释
Java是一种广泛使用的编程语言,以下是一些与Java相关的名词解释:1.JDK(Java Development Kit):Java开发工具包,为开发人员提供了一套完整的工具集,用于开发、测试和部署Java应用程序。
JDK包含了JRE(Java Runtime Environment),以及一些用于编写、编译和调试Java程序的开发工具,如Java 编译器(javac)和调试器(debugger)。
2.JRE(Java Runtime Environment):Java运行环境,是运行Java程序所必需的环境。
JRE包含了Java虚拟机(JVM),以及一些必要的库和运行时组件,使得Java应用程序能够在不同的平台上运行。
3.JVM(Java Virtual Machine):Java虚拟机,是一个用于执行Java字节码的虚拟计算机。
JVM可以在不同的硬件和操作系统平台上运行,并通过实现Java字节码到本地机器代码的转换,使得Java应用程序能够在不同的平台上运行。
4.类(Class):在Java中,类是对象的蓝图或模板。
它定义了对象的属性(通常称为成员变量)和方法(函数)。
类是面向对象编程的基本构建块,允许您创建具有共享属性和方法的特定实例(对象)。
5.对象(Object):对象是类的实例。
每个对象都有其独特的状态,这是由其属性决定的,而行为则由其方法定义。
对象通过使用“new”关键字和类构造函数来创建。
6.封装(Encapsulation):封装是将数据(变量)和操作数据的函数组合在单个实体(对象)中的过程。
这有助于保护数据不被外部代码或对象意外修改,并允许更有效和安全地使用数据。
7.继承(Inheritance):继承是一种机制,允许一个新的类继承现有类的属性和方法。
这使得子类可以继承其父类的所有属性和方法,并在此基础上添加或覆盖它们。
这有助于代码重用,并使类之间的关系更加清晰和组织良好。
基于JavaWeb人事管理系统的设计与实现_毕业设计论文
基于JavaWeb人事管理系统的设计与实现摘要在当今社会,互联网空前的发展,给人们的工作和生活带来了极大的便利和高效,信息化、电子化已经成为节约运营成本,提高工作效率的首选。
考虑到当前大量企业的人事管理尚处于单机系统阶段,不但效率低下、因为管理的不慎而出现纰漏,还常常形成信息孤岛。
因此根据现在大多数企业的需求,设计此人事管理系统,以帮助企业达到人事管理办公自动化、节约管理成本、提高企业工作效率的目的。
本人事管理系统采用面向对象语言JavaWeb进行设计与实现,数据库采用SQL Server 2005。
开发之前,首先经过调研,得到系统功能需求,根据需求分析确定开发的内容,其次对系统功能进行模块化设计,得到初步的系统总体结构,然后编写代码具体实现,最后对各个模块进行测试优化。
本次开发的功能是人力资源管理系统中的一部分,主要有权限控制、查询员工信息、增加员工信息、批量增加员工信息、控制员工工作状态、签到、生日提醒等功能。
通过本次系统的设计与开发,旨在对公司的人力资源进行个性化管理,从而提高公司的运作效率。
本文详细介绍了人事管理系统的功能需求,系统设计和具体实现。
简要介绍了系统开发采用的过程方法。
关键词:人事管理系统,JavaWeb,数据库,批量增加,生日提醒JAVAWEB PERSONNEL MANAGEMENT SYSTEMBASED ON THE DESIGN AND IMPLEMENTATIONABSTRACTIn today's society, the Internet unprecedented development, to people's work and life has brought great convenience and efficiency, information technology, electronic technology has become operational cost savings, improve efficiency of choice. Considering the current large number of companies still in the stand-alone system, personnel management stage, not only inefficient, because of careless management flaws, often forming islands of information. Therefore, according to the needs of most businesses now, this personnel management system designed to help companies achieve the personnel management office automation, saving management costs, improve work efficiency. The personnel management system using object-oriented language design and implementation JavaWeb the database using SQL Server 2005. Development, first through research, get the system functional requirements, according to the development needs analysis to determine the content, followed by the modular design of the system function, the preliminary overall system structure, and then write the code specific implementation, the final test of each module optimization. The development of the human resource management function is part of the system, there are access control, query employee information, and increase employee information, batch add employee information, control staff working status, attendance, birthday reminders and other functions. Through this system design and development, aimed at the company's human resources personalized management, thereby enhancing its operational efficiency. This paper describes the personnel management system functional requirements, system design andimplementation. Briefly describes the process of system development methods used.KEY WORDS:Management Information System,JavaWeb,Database ,Batch increase employee information ,Birthday reminders目录前言 (1)第1章问题陈述 (3)§1.1项目背景 (3)§1.2开发语言和环境 (3)§1.2.1B/S架构 (3)§1.2.2配置环境 (4)第2章需求分析 (5)§2.1需求分析内容的收集 (5)§2.1.1调查的目的 (5)§2.1.2调查内容 (5)§2.1.3调查方式 (5)§2.2需求分析内容的整理 (6)第3章系统分析 (7)§3.1系统的初步调查 (7)§3.2系统的可行性研究 (7)§3.2.1营运可行性 (7)§3.2.2 技术可行性 (7)§3.2.3营运可行性 (8)第4章系统设计 (9)§4.1系统功能设计 (9)§4.2系统的功能模块图 (10)§4.3系统业务流程设计 (11)第5章数据库的设计 (12)§5.1 数据库表的设计 (12)§5.1.1概念模型设计 (12)§5.1.2数据库物理设计 (14)§5.2安全设计 (16)第6章系统详细设计与实现 (17)§6.1系统的功能概述 (17)§6.1.1系统的登录功能 (17)§6.1.2修改密码功能 (17)§6.1.3请假功能 (18)§6.2管理员的功能概述 (18)§6.2.1登录后的界面 (18)§6.2.2增加员工的设计与界面 (18)§6.2.3更新员工的设计与界面 (21)§6.2.4查询员工的设计与界面 (22)§6.3部门经理的功能概述 (23)§6.3.1登录后的界面 (23)§6.3.2查询部门员工的设计与实现 (23)§6.4普通员工的功能概述 (24)第7章测试 (25)§7.1测试目的 (25)§7.2测试设计 (25)结论 (27)参考文献 (28)致谢 (29)附录 (30)前言随着信息化、自动化时代的到来,电脑在我们生活中扮演重要的角色,特别是对公司而言,如果公司采用电脑来管理员工,公司的运行效率将会得到很大的提高。
java 责任链模式的注解实现方式
Java责任链模式是一种行为设计模式,它允许多个对象依次处理同一个请求。
这种模式的主要优点是降低了请求的发送者和接收者之间的耦合,同时增强了代码的可扩展性和灵活性。
在本文中,我们将探讨Java责任链模式的注解实现方式,通过引入注解的方式来简化责任链模式的实现。
1. 什么是责任链模式?责任链模式是一种将请求的发送者和接收者解耦的设计模式。
在责任链模式中,多个对象依次处理同一个请求,直到其中一个对象能够处理该请求为止。
这些对象被组织成一条链,因此称之为责任链模式。
责任链模式的主要角色包括抽象处理者、具体处理者和客户端。
2. 责任链模式的注解实现方式在Java中,我们可以通过引入注解的方式简化责任链模式的实现。
下面我们将介绍具体的注解实现方式。
2.1 定义注解我们需要定义一个注解来标识处理请求的方法。
这个注解可以包含一些元属性,用来指定请求的类型或其他相关信息。
例如:```javaTarget(ElementType.METHOD)Retention(RetentionPolicy.RUNTIME)public interface RequestHandler {String value();}```在上面的代码中,我们定义了一个名为`RequestHandler`的注解,并指定了它的目标为方法。
我们使用`value`属性来指定处理请求的类型。
2.2 实现具体处理者接下来,我们需要实现具体的处理者,并在处理方法上添加`RequestHandler`注解来标识该方法能够处理的请求类型。
例如:```javapublic class ConcreteHandlerA implements Handler {RequestHandler("typeA")public void handleRequest(Request request) {// 处理类型为typeA的请求}}在上面的代码中,我们定义了一个名为`ConcreteHandlerA`的具体处理者,并在`handleRequest`方法上添加了`RequestHandler("typeA")`注解,表示该方法能够处理类型为`typeA`的请求。
java service注解案例
java service注解案例java service注解是Java开发中常用的注解之一,它具有简化代码、提高代码可读性和可维护性的优点。
在本文中,我将通过介绍一个具体的java service注解案例,来深入探讨这个主题。
1. 什么是java service注解Java service注解是一种用来标识服务类的注解。
在Java开发中,服务类常常具有一些特殊的功能,例如处理业务逻辑、数据存储、网络通信等。
为了使这些服务类能够被其他组件或模块直接调用和使用,我们通常需要将其注册到某个容器中。
而java service注解则提供了一种简洁、统一的方式来完成这个注册过程。
2. java service注解案例介绍假设我们有一个名为"UserService"的服务类,用来处理用户相关的业务逻辑。
我们想要将该服务类注册到一个名为"ServiceRegistry"的服务注册表中。
在这个案例中,我们可以使用java service注解来实现这个功能。
具体步骤如下:(1)在"UserService"类上添加java service注解,例如:```@Servicepublic class UserService {// ... 省略其他代码}```(2)在"ServiceRegistry"类中编写注册方法,用于将带有@Service 注解的服务类注册到注册表中,例如:```public class ServiceRegistry {private Map<String, Object> serviceMap = new HashMap<>();public void registerService(Object service) {if (service.getClass().isAnnotationPresent(Service.class)) { Service annotation =service.getClass().getAnnotation(Service.class);String serviceName = annotation.value();serviceMap.put(serviceName, service);}}}```(3)在某个入口类中使用注册方法,例如:```public class Main {public static void main(String[] args) {UserService userService = new UserService();ServiceRegistry serviceRegistry = new ServiceRegistry(); serviceRegistry.registerService(userService);}}```通过以上步骤,我们成功地将"UserService"类注册到了"ServiceRegistry"的服务注册表中。
java service作为参数
java service作为参数
当我们谈论Java服务作为参数时,通常是指将一个Java服务
作为另一个Java服务的输入或配置。
这种做法在软件开发中非常常见,特别是在面向服务的架构(SOA)或微服务架构中。
让我们从几
个角度来讨论这个问题。
首先,Java服务作为参数可以提高代码的灵活性和可重用性。
通过将一个服务作为另一个服务的参数传递,我们可以轻松地替换
或升级特定的功能,而无需修改整个代码。
这种灵活性使得系统更
容易维护和扩展。
其次,将Java服务作为参数传递还能够实现依赖注入(DI)和
控制反转(IoC)。
这种设计模式可以帮助我们管理组件之间的依赖
关系,降低耦合度,提高代码的可测试性和可维护性。
通过将服务
作为参数传递,我们可以在运行时动态地注入所需的依赖,而不是
在代码中硬编码。
另外,Java服务作为参数还可以用于实现回调函数或事件驱动
的编程模型。
例如,一个服务可能需要在特定的事件发生时调用另
一个服务来处理相关逻辑。
通过将服务作为参数传递给事件处理器,
我们可以实现这种灵活的事件驱动架构。
此外,Java服务作为参数还可以用于实现策略模式或模板方法模式。
通过将不同的服务作为参数传递给一个通用的算法或方法,我们可以在运行时决定使用哪种具体的实现,从而实现不同的行为或业务逻辑。
总的来说,将Java服务作为参数传递是一种非常灵活和强大的编程技术,可以帮助我们构建可扩展、可维护和高度可定制的应用程序。
通过合理地设计和使用参数化的服务,我们可以更好地满足不断变化的业务需求和技术挑战。
Java中的无服务器(Serverless)架构简化应用程序开发
Java中的无服务器(Serverless)架构简化应用程序开发Java是一种广泛应用于企业级应用程序开发的编程语言,而无服务器(Serverless)架构则是近年来兴起的一种新型应用程序开发模式。
本文将探讨Java中的无服务器架构以及它如何简化应用程序的开发。
无服务器架构概述无服务器架构,顾名思义,是一种无需管理底层服务器资源的应用程序开发模式。
在传统的应用程序开发中,需要开发人员自行管理服务器的配置、扩容、负载均衡等问题。
而在无服务器架构中,开发人员只需专注于应用程序的逻辑实现,无需关心服务器的细节。
Java中的无服务器架构如何工作Java中的无服务器架构基于云计算平台提供的函数即服务(Function-as-a-Service)功能。
开发人员可以通过编写函数来实现应用程序的逻辑,然后将这些函数上传至云计算平台,云计算平台会自动管理函数的部署和执行。
当有请求调用函数时,云计算平台会根据请求触发函数执行,并自动进行资源分配等操作。
无服务器架构的优势1. 简化管理:无服务器架构可大幅度减少开发人员对服务器的管理工作,专注于应用程序的开发和维护。
这样可以减少维护成本、降低出错几率,并提升开发效率。
2. 按需付费:无服务器架构采用按需付费的模式,开发人员只需支付实际使用的资源费用,无需提前购买和维护服务器。
这种模式可以大幅度降低成本,并使开发人员更加敏捷地开发新功能。
3. 弹性扩展:无服务器架构具有高度可扩展性,能够根据实际负载情况自动调整资源的分配。
这意味着应用程序可以根据需求快速扩容,以满足高并发或大规模的请求。
无服务器架构的适用场景1. 前后端分离:无服务器架构适用于前后端分离的应用程序,开发人员可以使用Java编写后端的函数逻辑,而前端则可以使用各种技术栈进行开发。
2. 微服务架构:无服务器架构也可以用于微服务架构,开发人员可以将不同的业务逻辑按模块分解为独立的函数,以实现更好的解耦和组件化。
service类的of方法
service类的of方法在Java中,`ServiceLoader` 类提供了一种机制,用于从类路径(classpath)中的服务提供者配置文件(以`META-INF/services/`为前缀,后跟服务接口的全限定名)中加载服务提供者。
`ServiceLoader` 的 `of` 方法是用来获取指定服务的 `ServiceLoader` 实例的。
这个方法需要一个 `ClassLoader` 作为参数,用于加载服务提供者的配置文件。
下面是一个简单的例子:```javaServiceLoader<MyService> loader = (, getClass().getClassLoader());```在这个例子中,我们创建了一个 `ServiceLoader` 实例,用于加载实现了`MyService` 接口的服务提供者。
我们使用当前类的 `ClassLoader` 来加载服务提供者的配置文件。
然后,我们可以使用 `iterator` 方法来迭代所有的服务提供者:```javafor (MyService service : loader) {// 使用服务}```或者,我们可以使用 `reload` 方法来重新加载服务提供者:```java();```注意,要使用 `ServiceLoader`,你需要在类路径中有一个名为 `META-INF/services/` 的目录,其中包含一个以服务接口全限定名命名的文件,文件中列出了所有实现该接口的服务提供者的全限定名。
例如,如果有一个名为 `MyService` 的接口,你需要在类路径中的 `META-INF/services/` 文件中列出所有实现该接口的服务提供者的全限定名。
java serviceloader案例
文章标题:深度剖析Java ServiceLoader:从简入深的案例探讨在Java编程中,随着软件系统的不断发展,模块化设计和松耦合性的重要性日益凸显。
在这种背景下,Java ServiceLoader作为一种轻量级的服务发现机制,为模块化编程提供了便利,同时也引发了人们对其深入理解和应用的热情。
本文将从简入深,以实际案例为例,深度剖析Java ServiceLoader,帮助读者更好地理解和应用这一特性。
1. 背景介绍在现代软件设计中,模块化和松耦合性是一种重要的设计理念。
Java ServiceLoader作为Java的一项特性,提供了一种简单且有效的服务发现机制,允许模块以松耦合的方式注册和获取服务提供者。
它为软件系统的扩展性和灵活性提供了有力支持,同时也为程序员提供了更方便的编程方式。
2. Java ServiceLoader的基本原理Java ServiceLoader的基本原理是基于SPI(Service Provider Interface)机制的。
SPI是一种服务提供者接口,允许第三方为某个接口提供一种接口的实现。
在Java中,SPI机制通过META-INF/services目录下的配置文件来实现,该文件包含了服务提供者的实现类。
当Java程序运行时,ServiceLoader将在类路径下的META-INF/services目录中查找配置文件,并加载其中定义的服务提供者。
这种机制实现了松耦合,同时也允许程序动态获取服务提供者的实现。
3. 案例分析:自定义日志框架为了更好地理解Java ServiceLoader的应用,我们以自定义日志框架为例进行分析。
假设我们需要开发一个简单的日志框架,通过Java ServiceLoader机制动态加载不同的日志实现。
我们定义一个日志接口Logger,然后在META-INF/services目录下创建一个名为Logger 的配置文件,其中列出了各个日志实现类的全限定名。
Java虚拟机JVM之server模式与client模式的区别
Java虚拟机JVM之server模式与client模式的区别JVM client模式和Server模式区别JVM Server模式与client模式启动,最主要的差别在于:-Server模式启动时,速度较慢,但是⼀旦运⾏起来后,性能将会有很⼤的提升。
JVM⼯作在Server模式下可以⼤⼤提⾼性能,Server模式下应⽤的启动速度会⽐client模式慢⼤概10%,但运⾏速度⽐Client VM要快⾄少有10倍当不指定运⾏模式参数时,虚拟机启动检测主机是否为服务器,如果是,则以Server模式启动,否则以client模式启动,J2SE5.0检测的根据是⾄少2个CPU和最低2GB内存由于服务器的CPU、内存和硬盘都⽐客户端机器强⼤,所以程序部署后,都应该以server模式启动,获取较好的性能;JVM在client模式默认-Xms是1M,-Xmx是64M;JVM在Server模式默认-Xms是128M,-Xmx是1024M;server:启动慢,编译更完全,编译器是⾃适应编译器,效率⾼,针对服务端应⽤优化,在服务器环境中最⼤化程序执⾏速度⽽设计。
client:快速启动,内存占⽤少,编译快,针对桌⾯应⽤程序优化,为在客户端环境中减少启动时间⽽优化;当JVM⽤于启动GUI界⾯的交互应⽤时适合于使⽤client模式,当JVM⽤于运⾏服务器后台程序时建议⽤Server模式。
我们可以通过运⾏:java -version来查看jvm默认⼯作在什么模式。
关于图⼀中的GCCclien模式下,新⽣代选择的是串⾏gc,旧⽣代选择的是串⾏gcserver模式下,新⽣代选择的是并⾏回收gc,旧⽣代选择的是并⾏gc⼀般来说我们系统应⽤选择有两种⽅式:吞吐量优先和暂停时间优先,对于吞吐量优先的采⽤server默认的并⾏gc⽅式,对于暂停时间优先的选⽤并发gc(CMS)⽅式。
其它延伸知识点JDK有两种VM,VM客户端,VM服务器应⽤程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∗ © 2001 IEEE. Reprinted with permission from “Workload Characterization of Multithreaded Java Servers on Two PowerPC Processors” by Pattabi Seshadri and Alex Mericas, Proceedings of the Fourth Annual Workshop on Workload Characterization, Austin, Texas, December 2001, pp. 36-44.Workload Characterization of Java Server Applications on Two PowerPCProcessors ∗Pattabi Seshadri and Lizy K. John Dept of Electrical and Computer Engr The University of Texas at Austin {seshadri,ljohn}@Alex Mericas IBM Corporation mericas@AbstractJava has become fairly popular on commercial servers in recent years. However, the behavior of Java server applications has not been studied extensively. We characterize two Java server benchmarks, SPECjbb2000 and VolanoMark 2.1.2, on two IBM PowerPC architectures, the RS64-III and the POWER3-II, and compare them to more traditional workloads as represented by selected benchmarks from SPECint2000. We find that our Java server benchmarks have generally the same characteristics on both platforms: in particular, high instruction cache, ITLB, and BTAC (Branch Target Address Cache) miss rates. These benchmarks also exhibit high L2 miss rates due mostly to data loads. Instruction cache and L2 misses are seen to be the primary contributors to CPI.1. IntroductionJava, originally used extensively for web client software, is an emerging paradigm for server applications because of its portability and enhanced security features. However, while Java server applications are coming into wide use, their behavior is not yet well understood. Java client applications have been studied [17,9,15], but Java server applications differ significantly from client workloads, particularly in their need to maintain many concurrent client connections. Since in the current version of Java, I/O multiplexing, polling, and signals are not available, the only method available to Java programmers to maintain a large number of client connections is threads. One or more separate threads are created tohandle each client connection [12]. Therefore performance in the presence of a large number of concurrent threads is vital to a Java server application. This distinct characteristic of Java server applications could lead to differences with Java client workloads in terms of branch behavior, cache behavior, and other metrics that contribute to overall performance.The aim of this study is to characterize the impact of multithreaded Java server applications on modern processor microarchitectures. To this end, we compare multithreaded Java server benchmarks with selected benchmarks from SPECint2000, a suite of more “traditional” workloads. We run these benchmarks on two IBM PowerPC microarchitectures, the RS64-III and the POWER3-II.2. Related WorkCommercial workloads have been increasing in importance, and efforts have been made to understand their behavior [2,11,8,7,16,1]. Most of these studies have been focused on applications written in C or C++, in particular OLTP, DSS, and web server applications. Java has also been a popular subject of research. The majority of Java studies use SPECjvm98 [17,9,15], which is a client benchmark suite. SPECjvm98 has been observed to have as much as 31% kernel activity due for the most part to a TLB service routine, which indicates a high TLB miss rate. SPECjvm running on an interpreter has also been observed to have poor ILP and insensitivity to wider issue width [9]. However, it has better instruction cache performance than some C/C++ applications [15]. Commercial Java servers are emerging workloads and thus research has just begun on their behavior. Most of the research in this area has been on the effectof multithreading. Cain and Rajwar [6] studied branch prediction and cache behavior in SPECjbb2000 and TPC-W with the full-system simulation of a coarse-grained multithreaded processor. They found destructive interference between threads that degraded performance. Luo and John [10] studied the impact of multithreading in Java server benchmarks on a Pentium Pro machine. They did see constructive interference in the instruction stream and branch prediction behavior, but these benefits were eventually overcome by increasing resource stalls as the number of threads grew large.This paper focuses on the differences between Java server applications and more “traditional” workloads (represented by SPECint2000). We use two popular IBM PowerPC platforms that represent the state of the art in microprocessor design. Several performance metrics, such as cache behavior, branch behavior, dispatch behavior, CPI components, etc., are studied.3. MethodologyThis section describes the hardware platforms and benchmarks used in this study as well as the methods used to collect performance monitor data.3.1. PlatformsWe use two IBM PowerPC microarchitectures for our study: the RS64-III and the POWER3-II. Both are current microprocessor architectures, but they differ in many significant ways.The RS64-III [4,5] is a 64-bit, superscalar, in order, speculative execution machine and is targeted specifically for commercial applications. It has one single cycle integer unit, one multiple cycle integer unit, one four stage pipelined floating point unit, one branch unit, and one load/store unit. The RS64-III can fetch, dispatch, and retire up to four instructions per cycle and has a five stage pipeline. It does not predict branches dynamically like the POWER3-II, but rather prefetches up to eight instructions from the branch target into a branch target buffer during normal execution, predicts the branch not taken, continues to fetch from the instruction stream and then, once the branch is resolved in the dispatch stage, either continues fetching from the current instruction stream with no penalty or flushes the instructions after the branch and begins fetching from the branch target buffer, with a penalty of at most one and often zero cycles. The RS64-III has a 128KB, two way set associative L1 instruction cache, a 128KB, two way set associative data cache, and a 4MB, four way set associative unified L2 cache. It also has a 512 entry four way set associative unified TLB and a 64 entry instruction effective to real address translation buffer (IERAT) that allows fast address translation without the use of the TLB. The processor clock is 500Mhz.The POWER3-II [13,14] is a 64-bit, superscalar, out of order, speculative execution machine. It has two single cycle integer units, one multiple cycle integer unit, one branch/condition register unit, two load/store units, and two three stage pipelined floating point units. It can fetch, dispatch, and retire up to four instructions in the same cycle. It has a 256 entry branch target address cache (BTAC), which works like a branch target buffer, and a 2048 entry, 2 bits per entry branch history table for dynamic branch prediction. The POWER3-II has a 64KB, 128 way set associative, four way interleaved L1 instruction cache, a 64KB, 128 way set associative, four way interleaved L1 data cache, and a 8MB, four way set associative unified off-chip L2 cache. It also has a 256 entry two way set associative instruction TLB and two 256 entry two way set associative data TLBs. The POWER3-II is designed with separate buses to memory and L2 for greater memory bandwidth. The POWER3-II also employs a data prefetching mechanism that detects sequential data access patterns and prefetches cache lines to match these patterns. The processor clock is 450 MHz.Both of these processors are deployed in IBM p-series systems. The RS64-III system we use in the experiment is the M80 and the POWER3-II system we use is the 44p-170, both of which are configured as uniprocessor systems. Both systems have 2 GB of main memory and run AIX 4.3.3 and the IBM JDK version 1.18.3.2. BenchmarksIn this study, we characterize VolanoMark 2.1.2 and SPECjbb2000, both of which are Java server benchmarks.VolanoMark 2.1.2 [20] is a Java server benchmark that simulates a chat server environment, as illustrated in Figure 1. The VolanoMark server accepts connections from the chat client, which simulates a specifiable number of chat users by creating a number of chat rooms. Each chat room contains a number of users that continuously send messages to the server and wait for the server to send the messages to other usersin the room. The VolanoChat server creates two threads for each client connection.Figure 1. VolanoMarkSPECjbb2000 [19] is another Java serverbenchmark. As illustrated in Figure 2, it emulates a three-tier client/server system with emphasis on the middle tier, the business logic engine. The other tiers are emulated, and thus user emulation and a database are not required. SPECjbb is patterned after TPC-C in Figure 2. SPECjbb2000that it models a wholesale company with warehouses that serve a number of districts. The transactions generated in this system include new orders and order status requests (both customer-generated transactions), as well as processing orders, entering customer payments, and checking stock levels (company-generated transactions). Each warehouse, which is represented by 25MB of data stored in binary trees, is assigned one active customer. One thread is created for each warehouse. SPECjbb is a memory resident benchmark.In addition to these two Java server benchmarks, we run five SPECint2000 benchmarks [18] on the two platforms. This allows us to compare themultithreaded Java server applications to more traditional workloads. We use 255.vortex, 300.twolf, 176.gcc, 252.eon, and 186.crafty, which cover a wide range of application sizes and also contain the only SPECint2000 benchmark written in C++.3.3. MeasurementsWe use the hardware performance monitors built into each microprocessor to make performance measurements. Each performance monitor has eight counters that can be programmed to count a variety of processor events. The list of countable events differs between the two machines, but many important events can be counted on both. We interface with the performance monitor using the IBM-supplied performance monitor API and pmcount (a utility that allows the user to interface with the performance monitor), both of which are AIX kernel extensions. Since we only want to collect performance monitor counts for VolanoMark while client connections are being made and not during server startup or shutdown, we send signals to a wrapper that makes API calls to start counting after server startup and stop counting before server shutdown. Similarly, since we only want to do performance monitoring on SPECjbb during the two-minute “measurement period,” we instrument the code for SPECjbb (modifying only Company.java) to send signals to a wrapper that makes API calls to start counting at the beginning of the measurement period and stop counting at the end of the period. While pmcount is simpler to use, requiring only a list of events and the executable to count for as arguments, it does not allow this kind of selective counting. However, we do use pmcount for the SPECint benchmarks, since we count for the entire workload in those cases.For VolanoMark, we run the client on a separate machine. Each chat room has 20 users, while the number of chat rooms is varied from 1 to 40, resulting in a number of connections ranging from 20 to 800. Since VolanoMark creates two threads for every connection, this results in a number of connection threads ranging from 40 to 1600. For SPECjbb, we vary the number of warehouses from 1 to 25. One thread is created for each warehouse.4. ResultsTable 1 and Table 2 compare the Java serverbenchmarks to the SPECint benchmarks on the RS64-clienttreesIII and POWER3-II, respectively. VolanoMark is runwith 1,10, and 30 chat rooms (indicated as vol01, vol10, and vol30)), and SPECjbb is run with 1, 10, and 25 warehouses (indicated as jbb1, jbb10, and jbb25). The metrics collected are similar to those collected by Bhandarkar et. al. [3].Table 1. Java servers vs. SPECint2000 (RS64-III) As the tables indicate, VolanoMark spends a high proportion of its execution cycles in kernel mode (os cyc %). This phenomenon is likely due both to the factthat it spends a great deal of time sending andTable 2. Java servers vs. SPECint2000 (POWER3-II)receiving messages over the network and to the fact that the number of threads in VolanoMark is very large, requiring the OS to spend a significant amount of time in thread scheduling routines. The user code is concerned mainly with distributing messages, which is a relatively simple task. We can also see that VolanoMark exhibits a higher CPI than the SPECint benchmarks, which is understandable since OS code is known to have a higher CPI than user code [8]. Since SPECjbb2000 contains no network component, has far fewer threads than VolanoMark, and is memory resident and therefore does not generate many page faults, it has a very small proportion of cycles spent in kernel mode. The same is true for the SPECint benchmarks.Also, Table 1 and Table 2 show the data references per instruction and the memory transactions per 1000 instructions for the Java server and SPECint workloads. On the average, the Java server workloads generate less data references per instruction than the SPECint workloads, with some of the SPECint workloads far exceeding them, but the Java server workloads still generate considerably more memory transactions per instruction, by one to three orders of magnitude. This is an interesting observation that will be discussed later.4.1. Dispatch BehaviorBoth the RS64-III and the POWER3-II can dispatch up to four instructions per cycle (dispatch for the RS64-III meaning the cycle in which the instruction is sent directly to the execution unit, and dispatch for the POWER3-II meaning the cycle in which the instruction is sent to the execution unit reservation station). From Figure 3 it seems that our machines have more difficulty exploiting ILP in the Java server benchmarks than in the SPECint benchmarks. For almost all of the Java server benchmarks on the RS64-III, zero instructions are dispatched for over 50% of the execution cycles (the lone exception being sjbb1). Only one SPECint benchmark, twolf, has zero instructions dispatched for over 50% of the execution cycles. On the POWER3-II, the dispatch profile is similar (we show only the percentage of cycles with zero instructions dispatched because the other counts were not available on this machine). All of the Java server benchmarks on the POWER3-II have zero instructions dispatched for more than 60% of the execution cycles, while only twolf crosses this threshold among the SPECint workloads. The profile is almost identical for the percentage of zero-instructions-retired cycles on the POWER3-II, which is reasonable given that pipeline delays are being created in the dispatch stage.It should be noted that the dispatch stage in these machines is not the stage in which operands are read—in the POWER3-II, it is the stage in which the instructions are sent to the reservation stations, and inFigure 3. Dispatch behaviorthe RS64-III (which, being an in-order machine, has no reservation stations) it is the stage in which theinstructions are sent directly to the execution units. In both machines, operands are read in later stages. Therefore, delays in dispatch in these machines are not necessarily due to dependencies between instructions that limit exploited ILP. Nevertheless, dispatch in the RS64-III is stalled if the operand read stage (which directly follows the dispatch stage) is stalled due to instruction dependencies. In the POWER3-II, dispatch can be stalled if the execution unit reservation stations fill, which can occur if dependencies between instructions prevent instruction issue. Therefore instruction dependencies do affect dispatch, and the above dispatch numbers are, to a degree, reflective (though more so in the RS64-III) of exploited ILP. These numbers seem to indicate that the processors cannot exploit as much ILP in the Java server workloads as they can in the SPECint workloads, which is, as mentioned above, an observed characteristic of SPECjvm running on a Java interpreter..4.2. Cache and TLB PerformanceAs mentioned earlier, the Java server workloads generate significantly more memory transactions per instruction than the SPECint workloads. And, as one might expect from a higher number of memory accesses per instruction, Figure 4a and Figure 4c show that the Java server workloads exhibit poorer cache performance than the SPECint workloads on both machines, particularly in the instruction cache and L2 cache.High instruction cache miss rates have also been observed in server applications written in C or C++ [1,2]. Just-in-Time compiling (which our JDK uses) might also contribute to higher instruction cache miss rates for Java applications. With a JIT, bytecode is dynamically compiled into native code, and as a result, code for consecutively called methods may not lie in contiguous address spaces. Thus the instruction data spatial locality can be expected to be poor, causing higher instruction cache miss rates. Also, not surprisingly, the instruction cache miss rates are higher on the POWER3-II for most of the workloads (since its instruction cache is 64KB as opposed to 128KB for the RS64- III), but for vortex and crafty the instruction cache miss rates are higher on the RS64-III. This indicates that, for the Java server workloads and the other SPECint benchmarks, size is more important than associativity for instruction cache performance, while for vortex and crafty associativity (2 for the RS64-III and 128 for the POWER3-II) is more important than(a) Dispatch profile, RS64-IIIdispatched cycles, POWER3-II(b) Percentage of zero instructionsretired cycles, POWER3-IIsize for performance. Figure 5 shows that the Java server benchmarks cause more instruction TLB misses than the SPECint benchmarks on the RS64-III, and aFigure 4. Cache behaviorFigure 5. TLB behaviorTLB misses on the POWER3-II (ITLB miss count not available on POWER3-II). This TLB performance data is further evidence that Java server benchmarks have a large/scattered instruction footprint. (Note: the RS64-III has a much smaller ITLB misses per instruction count than the POWER3-II’s TLB misses per instruction count because its Instruction Effective to Real Address Table (IERAT), which caches address translations and obviates the use of the ITLB if there is a hit, seldom misses.)Figure 4b shows the components (load misses, store misses, and instruction misses) of L2 misses for the RS64-III. (These counts were not available on the POWER3-II.) It is clear from this figure that most of the L2 misses for the Java server workloads aregenerated by load references. While twolf shows aPOWER3-II1000 instructions, RS64-III0.00.10.20.30.40.5craftyeon gcc twolf vortex sjbb1sjbb10sjbb25vol1vol10vol30(a) ITLB misses per 1000 instructions,12345craftyeon gcc twolf vortex sjbb1sjbb10sjbb25vol1vol10vol30(b) TLB misses per 1000 instructions, POWER3-IIdata cache miss rate comparable to Volano, its data appears to be L2 resident.Figure 6. L2 miss ratioFigure 6, which shows the L2 miss ratios (as opposed to misses per 1000 instructions) on each machine, confirms that the Java server benchmarks are putting more pressure on the L2 than the SPECint benchmarks. We cannot explain this behavior with certainty, but a reasonable explanation could be that the Java server benchmarks have a much larger data footprint than the SPECint workloads (though we cannot obtain the data set size for VolanoMark, we know that each warehouse in SPECjbb uses 25MB of data, while the SPEC workloads are for the most part L1 and at worst L2 resident) and therefore generate more capacity L2 misses (hence the much higher number of memory transactions per instruction seen in Table 1).4.3. Branch BehaviorFigure 7a indicates that the POWER3-II’s branchFigure 7. Branch behaviorprediction mechanism works as well for the Java server programs as for the SPECint benchmarks (branch prediction numbers for RS64-III not shown because it does not employ dynamic branch prediction). Figure 7b and Figure 7c show that the speculative factors(instructions dispatched/instructions executed) of the0.000.100.200.300.400.500.60(a) RS64-III0.050.10.150.20.25c raft yeon gc c tw vortex s jbb1s jbb10s jbb25vol1vol10vol30(b) POWER3-IIbehavior, POWER3-IIJava server benchmarks are within the range of SPECint2000, indicating that the two sets of benchmarks have much the same effect on speculative execution. However, the Java server benchmarks (with the exception of vol30) exhibit, on the average, worse BTAC (Branch Target Address Cache) performance than gcc, twolf, and vortex. This could indicate that the BTAC of the POWER3-II, which caches branch target addresses and does not store any target instructions, does not work very well for Java server code. Further, eon, which shows BTAC performance similar to the Java server benchmarks, is written in C++ and makes heavy use of virtual functions, which are also widely used in Java. Java programs are known to have poor branch target predictability due to indirect branches resulting from virtual function calls and code interpretation [15].4.4. CPI ComponentsFigure 8 compares the Java server benchmarks to the SPECint benchmarks on the RS64-III from another perspective: CPI components per instruction. (TheseFigure 8. CPI components, RS64-IIIstalls in the above figure do not comprise a comprehensive list, but they are the significant memory access related stalls on the machine. “Ideal CPI” refers to (total execution cycles – storage latency)/instructions executed. “Storage latency” is a single countable event on the RS64- III that indicates the non-overlapped total amount of storage related stalls (i.e. multiple storage related stalls in one cycle count as one stall). Thus “Ideal CPI” is an approximation of CPI in the absence of all storage related stalls. “Isync” and “Other sync” stalls are caused by various synchronizing PowerPC instructions. It is clear, as could be predicted from the earlier discussion of cache misses, that the Java server benchmarks incur significantly more instruction cache stalls and L2 cache stalls than the SPECint benchmarks, and further, that these along with ideal CPI (which is determined by internal resource conflicts that we cannot count for) are responsible for most of the total CPI. For SPECjbb, data cache miss stalls also play a large role in the CPI. In contrast, the SPECint benchmarks suffer from very little, if any, of the storage related stalls included in the figure. However, despite the large number of storage stall cycles for the Java server benchmarks, Figure 8 shows that the CPIs of the benchmarks are lower than the sum total of the CPI components, which indicates the effectiveness of the RS64-III’s superscalar pipelined architecture in hiding some of the storage latency.5. ConclusionWe performed a comparison of two Java server benchmarks, SPECjbb2000 and VolanoMark2.1.2, with selected benchmarks from SPECint2000 on two IBM PowerPC architectures, the RS64-III and the POWER3-II. We find that our Java server applications differ from SPECint in several ways:Clearly, instruction stream behavior is particularly poor for these Java server workloads. High instruction cache, ITLB, and BTAC miss rates are observed. These point toward a large or scattered instruction footprint. Instruction cache stalls make up a substantial component of the CPIs of these workloads, while they are near negligible in the SPECint workloads.We also see that L2 performance is a major factor in overall performance for the Java server workloads. L2 misses per instruction and per L2 reference are significantly higher than those for SPECint2000. L2 load misses make up the vast majority of the Java server benchmarks’ L2 misses, due possibly to a large data footprint that causes a higher proportion of L2 capacity misses.Clearly, if one is to study the impact of Java server applications on modern processor architectures, L2 performance must not be neglected.In addition, these Java server workloads have a high proportion of zero dispatch cycles, suggesting that ILP is not very easily exploited in these workloads.Given the significant differences between our two PowerPC architectures, the RS64-II being an in-orderexecution machine with static branch prediction and the POWER3-II being a highly aggressive out-of-order execution machine, the fact that the above characteristics were found on both platforms suggests that they are real properties of the workload and not machine-dependent.6. AcknowledgmentsWe would like to thank Steve Stevens of the IBM Austin PowerPC Performance group for his encouragement and support, Rick Eickemeyer of IBM Rochester for his assistance in calculating CPI components and advice on performance metrics, and Steve Kunkel and Frank O’Connell of IBM for their help in understanding the RS64-III and POWER3-II architectures. Thanks also go to Yue Luo of the Laboratory for Computer Architecture at the University of Texas at Austin Department of Electrical and Computer Engineering for his helpful comments and suggestions.This study was funded by a grant from the IBM Austin Center for Advanced Studies.7. References[1] A. Alimaki, D. J. DeWitt, M. D. Hill and D. A.Wood. DBMSs on a Modern Processor: WhereDoes Time Go? In Proceedings of the 25th VLDBConference, Edinburgh, Scotland, 1999.[2] L.A. Barroso, K. Gharachorloo and E. Bugnion.Memory System Characterization of CommercialWorkloads. In Proceedings of the 25thInternational Symposium on ComputerArchitecture, 1998, pp. 3-14.[3] D. Bhandarkar and J. Ding. PerformanceCharacterization of the Pentium Pro Processor. InProceedings of the Third International Symposiumon High-Performance Computer Architecture,1997, pp. 288-297.[4] J.M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla,and S.R. Kunkel. A Multithreaded PowerPCProcessor for Commercial Servers. IBM Journal ofResearch and Development, Vol. 44, No. 6, 2000,pp. 885-894.[5] J. Borkenhagen and S. Storino. Fourth Generation64-Bit PowerPC-Compatible CommercialProcessor Design. White Paper, IBM Corporation,/resource/technology/nstar.html, January 1999.[6] H.W. Cain, R. Rajwar, M. Marden, and M.H.Lipasti. An architectural Evaluation of Java TPC-W. In Proceedings of the Seventh InternationalSymposium on High-Performance ComputerArchitecture, 2001.[7] Q. Cao, P. Trancoso, J.-L. Larriba-Pey, J.Torrellas, R. Knighten, Y. Won. Detailedcharacterization of a Quad Pentium Pro ServerRunning TPC-D. In Proceedings of InternationalConference on Computer Design, 1999.[8] K. Keeton, D. A. Patterson, Y. Q. He, R. C.Raphael, and W. E. Baker. PerformanceCharacterization of a Quad Pentium Pro SMPUsing OLTP Workloads. In Proceedings of the25th International Symposium on ComputerArchitecture, Barcelona, Spain, June 1998, pp. 15-26.[9] T. Li, L.K. John, N. Vijaykrishnan, A.Sivasubramaniam, A. Murthy, and J. Sabarinathan,Using Complete System Simulation to CharacterizeSPECjvm98 Benchmarks. In Proceedings ofInternational Conference on Supercomputing,2000, pp. 22-33.[10] Y. Luo and L.K. John. Workload Characterizationof Multithreaded Java Servers. Technical ReportTR-010815-01, Department of Electrical andComputer Engineering, University of Texas atAustin, June 2001,/projects/ece/lca. [11] A.M.G. Maynard, C.M. Donnelly and B.R.Olszewski. Contrasting characteristics and cacheperformance of technical and multi-usercommercial workloads. In Proceedings of the 6thInternational Conference on Architectural Supportfor Programming Languages and OperatingSystems. San Jose, October 1994, pp. 145-156. [12] S. Oaks and H. Wong. Java Threads, 2nd Edition,O’Reilly and Associates, January 1999.[13] F.P. O’Connell and S.W. White. POWER3: theNext Generation of PowerPC Processors. IBMJournal of Research and Development, Vol. 44,No. 6, 2000, pp. 873-884.[14] M. Papermaster, R. Dinkjian, M. Mayfield, P.Lenk, B. Ciarfella, F. O’Connell, and R. DuPont.POWER3: Next Generation 64-bit PowerPCProcessor Design. White Paper, IBM Corporation,1998.[15] R. Radhakrishnan, N. Vijaykrishnan, L.K. John,and A. Sivasubramaniam, Architectural Issues inJava Runtime Systems. In Proceedings of the SixthInternational Conference on High PerformanceComputer Architecture, January 2000, pp. 387-398.[16] P. Ranganathan, K. Gharachorloo, S.V. Adve andL.A. Barroso. Performance of DatabaseWorkloads on Shared-Memory Systems with Out-of-Order Processors. In Proceedings of the 8thInternational Conference on Architectural Supportfor Programming Languages and OperatingSystems, October 1998, pp. 307-318.[17] B. Rychik and J.P. Shen. Characterization ofValue Locality in Java Programs, Workshop on。