堆排序简介.ppt

合集下载

排序ppt课件

排序ppt课件
代码优化
在编写代码时,可以使用排序算法对数据进行排序,以提高代码执行效率。例如,在处理大量数据时,先对数据进行排序再进行处理可以显著提高处理速度。
01
02
03
04
CHAPTER
排序算法的优化
计数排序
通过统计数组中每个元素的出现次数,将数组分为若干子数组,然后对子数组进行排序,最后合并结果。计数排序适用于整数数组,尤其适用于小范围整数的排序。
基数排序
将数组中的元素按照位数分成若干个子数组,然后对每个子数组进行排序,最后合并结果。基数排序适用于整数和字符串的排序。
将数组分成若干个子数组,对每个子数组进行排序,最后合并结果。归并排序在合并过程中只涉及数据的移动,不涉及交换操作,因此交换次数较少。
归并排序
通过选择一个基准元素,将数组分成两部分,一部分比基准元素小,另一部分比基准元素大,然后递归地对这两部分进行排序。快速排序在内部递归调用时使用“分而治之”的策略,可以减少交换次数。
可读性和可维护性
良好的算法应该易于理解和实现,并且能够方便地进行修改和维护。
时间复杂度
衡量算法执行时间随数据规模增长的速度。常见的时间复杂度有O(n)、O(nlogn)、O(n^2)等。
空间复杂度
衡量算法所需额外空间的大小。常见的空间复杂度有O(1)、O(元素在原始序列中相邻,则在排序后的序列中它们的位置也相邻。稳定的排序算法有冒泡排序、插入排序、归并排序等。
桶排序
插入排序
05
CHAPTER
排序算法的复杂度分析
O(n):如计数排序、基数排序
O(n^2):如冒泡排序、插入排序
概念:时间复杂度是衡量排序算法执行时间随数据量增长而增长的速率。
O(nlogn):如归并排序、快速排序

C++排序讲义

C++排序讲义

j j
j
j
ji
ij
ij
ij
i
i
i
二趟排序: 13 4 48 38 27 49 55 65 97 76 Ch8_3.c
希尔排序特点
子序列的构成不是简单的“逐段分割”,而是将相隔某个增 量的记录组成一个子序列 希尔排序可提高排序速度,因为 分组后n值减小,n² 更小,而T(n)=O(n² ),所以T(n)从总体 上看是减小了 关键字较小的记录跳跃式前移,在进行最后一趟增量为1 的插入排序时,序列已基本有序 增量序列取法 无除1以外的公因子 最后一个增量值必须为1
j j j j j j 排序结果:(13 27 38 49 65 76 97)
算法评价
时间复杂度 若待排序记录按关键字从小到大排列(正序) 关键字比较次数: n
1 n 1
i 2
记录移动次数:
2 2(n 1)
i 2
n
若待排序记录按关键字从大到小排列(逆序) n (n 2)(n 1) 关键字比较次数: i
§8.2 交换排序
冒泡排序
排序过程
将第一个记录的关键字与第二个记录的关键字进行比较,若 为逆序r[1].key>r[2].key,则交换;然后比较第二个记录与第 三个记录;依次类推,直至第n-1个记录和第n个记录比较为 止——第一趟冒泡排序,结果关键字最大的记录被安置在最 后一个记录上 对前n-1个记录进行第二趟冒泡排序,结果使关键字次大的记 录被安置在第n-1个记录位置 重复上述过程,直到“在一趟排序过程中没有进行过交换记 录的操作”为止
输出:13 27 38 49 50 65
76 97 50 49 38 65 27 13 输出:13 27 38 49 50 65 97 50

C++各类排序算法介绍PPT课件

C++各类排序算法介绍PPT课件

}
r[i]=x;
qksort(r,t,j-1);
2021/2/10
qksort(r,j+1,w);
21
}
– 算法评价 • 时间复杂度 – 最好情况(每次总是选到中间值作枢轴) T(n)=O(nlog2n) – 最坏情况(每次总是选到最小或最大元素 作枢轴)T(n)=O(n² )
T(n)=O(n²)
• 根据“寻找”插入位置的方法不同,插入法可分为:直 插排序、二分插入排序、希尔排序。
• (1) 直接插入排序
– 若将一个未排序的元素L[i]插入到已排序的具有i-1个 元素的序列的适当位置,步骤如下:
• a. 从右向左顺序搜索已排序的序列,若已排序序 列中的元素比L[i]大,则后移一个位置,直至找到 一个元素L[j-1](0≤j-1≤i-1)的关键字值比L[i]的关键 字值小;
• 希尔排序可提高排序速度,因为 – 分组后n值减小,n² 更小,而T(n)=O(n² ),所 以T(n)从总体上看是减小了 – 关键字较小的记录跳跃式前移,在进行最后一 趟增量为1的插入排序时,序列已基本有序
• 增量序列取法 – 无除1以外的公因子 – 最后一个增量值必须为1
2021/2/10
14
关键字小,则可分别对这两部分记录进行排序,以达到 整个序列有序。 关键字通常取第一个记录的值为基准值。
– 排序过程:对r[s……t]中记录进行一趟快速排序,附设两 个指针i和j,设基准值记录rp=r[s],x=rp.key
• 初始时令i=s,j=t
• 首先从j所指位置向前搜索第一个关键字小于x的记录, 并和rp交换
9.3 交换排序
• (0) 基本思想:
– 两两比较待排序的数据元素的关键字,如果发生逆序, 则交换之,直到全部对象都排好序为止。

第十章_排序方法(数据结构ppt-严蔚敏)

第十章_排序方法(数据结构ppt-严蔚敏)

第二个问题解决方法——筛选
方法:输出堆顶元素之后,以堆中最后一个元素替代之;然 后将根结点值与左、右子树的根结点值进行比较,并与其中 小者进行交换;重复上述操作,直至叶子结点,将得到新的 堆,称这个从堆顶至叶子的调整过程为“筛选”
例 38 50 97 76
13 27 65 49 13 38
97 27 38 50 76
2 (n 4)(n 1) 记录移动次数: (i 1) 2 i 2
i 2 n
若待排序记录是随机的,取平均值 n2 关键字比较次数: T(n)=O(n² ) 4 记录移动次数:
空间复杂度:S(n)=O(1)
n2 4
折半插入排序
排序过程:用折半查找方法确定插入位置的排序叫~
初始时令i=s,j=t 首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp 交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
x 例 初始关键字: 27 49 i 完成一趟排序: ( 27 38 13 49 65 i 13) 49 97 76 j 97 49 13 j 97 65 49 27 50 j 50)
13 38
76 65 27 49
堆排序:将无序序列建成一个堆,得到关键字最小 (或最大)的记录;输出堆顶的最小(大)值后,使 剩余的n-1个元素重又建成一个堆,则可得到n个元素 的次小值;重复执行,得到一个有序序列,这个过程 叫~ 堆排序需解决的两个问题:
如何由一个无序序列建成一个堆? 如何在输出堆顶元素之后,调整剩余元素,使之成为一个新 的堆?
按排序所需工作量

7排序

7排序

数据结构
例: 初始
49 38 65 97 76 13 27
48
55
4
取d1=5 一趟分组:49 38 65 97 76 13 27
48
55
4
一趟排序:13 27 48 55 4
49 38
65
97
76
取d2=3 13 27 48 55 4 二趟分组:
49 38
65
97
76
二趟排序:13
4
48 38 27
做出相应的调整,那样排序的总体效率会非常高。
• 堆排序(Heap Sort)就是对简单选择排序的一种改进。堆排序 算法是Floyd和Williams在1964年共同发明,同时发明了“堆” 这样的数据结构。
数据结构
堆的定义
一、定义
16 11 9
10 1 2
2
5 4
6
大顶堆
8
1
6 9
小顶堆
数据结构
11 4 12 16 5
• R[0]为监视哨(Sentinel),省略下标越界检查“j>0”:一 旦越界,j=0<1,循环条件R[0]<R[j]不成立,自动控制 while循环的结束。
例:有监视哨,第3趟
0 1 2 3 4 5 6 7 8 9 10 m
初始:
i=3: j=2: j=1: j=0:
49 38 13 76 27 49 38 49 13 76 27 49 13 38 49 13 76 27 49 13 38 49 49 76 27 49 13 38 38 49 76 27 49 13 13 38 49 76 27 49
8
堆的定义
一、定义 • 堆是具有下列性质的完全二叉树:任一结点关键字大于等于 其孩子结点的关键字,称为大顶堆;任一结点关键字小于等 于其孩子结点的关键字,称为小顶堆。 • 将R[1]到R[n]看成完全二叉树的顺序存储结构。根据二叉树 的性质5,如果双亲下标为i,其左右孩子的下标分别为2i和 2i+1. 当且仅当任一R[i]满足以下关系时,称之为堆: R[i] ≤ R[2i]且R[i] ≤ R[2i+1] (1 ≤ i ≤ n/2) 或者 R[i] ≥ R[2i]且R[i] ≥ R[2i+1] (1 ≤ i ≤ n/2) 且分别称之为小顶堆和大顶堆。

数据结构 排序

数据结构 排序
选择排序种类: 简单选择排序 树形选择排序 堆排序
2019/9/7
30
10.4.1 简单选择排序
待排记录序列的状态为:
有序序列R[1..i-1] 无序序列 R[i..n]
有序序列中所有记录的关键字均小于无序序列中记 录的关键字,第i趟简单选择排序是从无序序列 R[i..n]的n-i+1记录中选出关键字最小的记录加入 有序序列
2019/9/7
5
排序的类型定义
#define MAXSIZE 20 // 待排序记录的个数
typedef int KeyType;
typedef struct
{ KeyType key;
InfoType otherinfo; ∥记录其它数据域
} RecType;
typedef struct {
RecType r[MAXSIZE+1];
分别进行快速排序:[17] 28 [33] 结束 结束
[51 62] 87 [96] 51 [62] 结束
结束
快速排序后的序列: 17 28 33 51 51 62 87 96
2019/9/7
26
自测题 4 快速排序示例
对下列一组关键字 (46,58,15,45,90,18,10,62) 试写出快速排序的每一趟的排序结果

final↑ ↑first
i=8
[51 51 62 87 96 17 28 33]

final↑ ↑first
2019/9/7
14
希尔(shell )排序
基本思想:从“减小n”和“基本有序”两 方面改进。
将待排序的记录划分成几组,从而减少参 与直接插入排序的数据量,当经过几次分 组排序后,记录的排列已经基本有序,这 个时候再对所有的记录实施直接插入排序。

最新信息学奥赛一本通-第3章--第3节-堆及其应用(C++版)精品ppt课件精选全文

最新信息学奥赛一本通-第3章--第3节-堆及其应用(C++版)精品ppt课件精选全文

for(i = 1 ; i <= n ; i++) {
cin >> x; put(x); } for(i = 1 ; i < n ; i++) { x = get(); y = get(); ans += x + y; put(x + y); } cout << ans << endl; }
//建堆,其实直接将数组排序也是建堆方法之一
即:
get和put操作的复杂度均为log2n。所以建堆复杂度为nlog2n。合 并果子时,每次需要从堆中取出两个数,然后再加入一个数,因此一 次合并的复杂度为3log2n,共n-1次。所以整道题目的复杂度是nlog2n。
【参考程序】
#include <iostream> #include <cstdio> using namespace std; int heap_size, n; int heap[30001]; void swap(int &a, int &b) //加&后变量可修改 {
if(heap[now] >= heap[next]) break;
swap(heap[now], heap[next]);
now = next;
}
}
使用C++标准模板库STL(需要头文件<algorithm>):
void put(int d)
{
heap[++heap_size] = d;
//push_heap(heap + 1, heap + heap_size + 1);

数据结构-排序

数据结构-排序

实现“一趟插入排序”可分三步进行: 实现“一趟插入排序”可分三步进行: 三步进行 1.在 有序区 中查找 R[i] 的插入位置, . 的插入位置, 2.记录后移一个位置; .记录后移一个位置; 3.将 R[i] 插入(复制)到 相应 的位置上。 . 插入(复制) 的位置上。
第8页
直接插入排序
R0 初始状态 i =2 i =3 i =4 i =5 76 38
49 } // InsertSort 7趟 i =6 13 13 38 49 65 76 97 27 49 排序 排序过程: 个记录看成是一个有序子序列, 排序过程:先将序列中第 1 个记录看成是一个有序子序列, i =7 27 13 27 38 49 65 76 97 49 个记录开始,逐个进行插入,直至整个序列有序。 然后从第 2 个记录开始,逐个进行插入,直至整个序列有序。 i =8 49 13 27 38 49 49 65 76 97
数据结构(C++语言版)
第1页
目 录
1 2 3 3 4 3 5 3 6 3
第2页
排序的基本概念 插入类排序 交换类排序 选择类排序 归并排序 小结
概念
排序:将数据元素的一个任意序列,重新排列成一个按关键 排序:将数据元素的一个任意序列,重新排列成一个按关键 字有序的序列 的序列。 字有序的序列。 R1, R2, R3, R4, R5, R6, R7, R8 例:将关键字序列:52, 49, 80, 36, 14, 58, 61, 23 将关键字序列: K1, K2, K3, K4, K5, K6, K7, K8 Kp1 ≤Kp2 ≤Kp3 ≤Kp4 ≤Kp5 ≤ Kp6 ≤Kp7 ≤Kp8 调整为:14, 23, 36, 49, 调整为: Rp1, Rp2, Rp3, Rp4, 52, 58, Rp5, Rp6, 61 , 80 Rp7, Rp8

《数据结构排序》PPT课件

《数据结构排序》PPT课件

讨论:若记录是链表结构,用直接插入排序行否?折半插入 排序呢?
答:直接插入不仅可行,而且还无需移动元素,时间效率更 高!但链表无法“折半”!
折半插入排序的改进——2-路插入排序见教材P267。 (1)基本思想: P267 (2)举 例:P268 图10.2 (3)算法分析:移动记录的次数约为n2/8
13 20 39 39 42 70 85
i=8
0
1
2
3
4
5
6
7
8
Hj
折半插入排序的算法分析 • 折半查找比顺序查找快,所以折半插入排序
就平均性能来说比直接插入排序要快。
• 在插入第 i 个对象时,需要经过 log2i +1
次关键码比较,才能确定它应插入的位置。 • 折半插入排序是一个稳定的排序方法。
for ( j=i-1;j>=high+1;--j) L.r [j+1] = L.r [j];// 记录
后移
L.r [high+1] = L.r [0];
// 插入
} // for
} // BInsertSort
初始
30 13 70 85 39 42 6 20
012345678
i=2 13
30
13
数逐渐变多,由于前面工作的基础,大多数对象已基本有 序,所以排序速度仍然很快。
时间效率: O(n1.25)~O(1.6n1.25)——经验公式
空间效率:O(1)——因为仅占用1个缓冲单元 算法的稳定性:不稳定——因为49*排序后却到了49的前面
希尔排序算法(主程序)
参见教材P272
void ShellSort(SqList &L,int dlta[ ],int t){

十种排序方法

十种排序方法

十种排序方法排序是计算机科学中常见的操作,它将一组数据按照一定的规则进行重新排列,以便更方便地进行查找、比较和分析。

在本文中,我将介绍十种常见的排序方法,并对它们的原理和特点进行详细讲解。

一、冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历待排序的元素,比较相邻的两个元素,并按照规定的顺序交换它们,直到整个序列有序为止。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

二、选择排序选择排序是一种简单直观的排序算法,它每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到整个序列有序为止。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

三、插入排序插入排序是一种简单直观的排序算法,它将待排序的元素插入到已排序序列的合适位置,使得插入之后的序列仍然有序。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

四、希尔排序希尔排序是插入排序的一种改进算法,它通过将待排序的元素分组,分组进行插入排序,然后逐步缩小分组的间隔,直到间隔为1,最后进行一次完整的插入排序。

希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

五、归并排序归并排序是一种分治排序算法,它将待排序的序列分成两个子序列,分别进行排序,然后将已排序的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

六、快速排序快速排序是一种分治排序算法,它通过选择一个基准元素,将待排序的序列分成两个子序列,一边存放比基准元素小的元素,一边存放比基准元素大的元素,然后对两个子序列进行递归排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

七、堆排序堆排序是一种选择排序算法,它通过构建一个最大堆(或最小堆),将堆顶元素与堆的最后一个元素交换,并对剩余的元素进行调整,直到整个序列有序为止。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

数据结构-快速和堆排序

数据结构-快速和堆排序
本文首先概述了交换类排序和选择类排序的基本思想,并深入探讨了起泡排序的具体实现过程,包括其多趟排序的详细步骤和性能分析。起泡排序通过依次两两比较相邻关键字,并交换不满足排序要求的关键字,直至全部有序。其性能分析显示,在最好情况下,只需进行一趟排序,比较次数为n-1,移动次数为0;而在最坏情况下,需进行n-1趟排序,时间复杂度为O(n^2)。此外,还简要介绍了快速排序的基本思想,即采用分治策略,通过一次划分将无序序列分割成两部分,再递归进行快速排序。然而,本文未直接涉及堆排序算法的具体内容,堆排序作为一种选择类排序,其核心思想是利用堆这种数据结构所设计的一种排序算法,是选择排序的一种。它的基本原理是将待排序的序列构造成一个大顶堆或小顶堆,此时,整个序列的最大值(或最小值)就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值,然后将剩余n-1个元素重新构造成一பைடு நூலகம்堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。

堆排序实例演示3

堆排序实例演示3

91
16
47
85
36
24
24 36 53 30
85 47 30 53
16
91
如果该序列是一个堆,则对应的这棵完全二叉树的特点是: 所有分支结点的值均不小于 (或不大于)其子女的值,即每棵子 树根结点的值是最大(或最小)的。
堆特点:堆顶元素是整个序列中最大(或最小)的元素。
2022/9/1
数据结构
2
2.堆排序
足堆,继续调 整。
将 堆 顶 元 素 R1 比根小,交换。
与Rn交换)。
2022/9/1
数据结构
d.到了叶子结 点,调整结束, 堆建成。
6
85
30
53
47
53
47
53
47
30
24 36 16 30
24 36 16 85
24 36 16 85
91
91
91
堆调整结束。
R1 与 Rn-1 交 换 , 堆被破坏。 对 R1 与 Rn-2 调 整。
16
b.调整结束后,以R4为 根的子树满足堆特性。 再将以R3结点为根的 子树调整为堆;
16
c. 以 R3为根的子树满足 堆特性。 再将以R2结点为根的子树 调整为堆;
30
91
91
47
91
47
30
47
85
24 36 53 85 16
24 36 53 85 16
24 36 53 30 16
以 R2 为 根 的 子 树 满 足 堆特性。 再 将 以 R1 结 点 为 根 的 子树调整为堆
d. 调整结束后,整棵树为堆。
建堆过程示例
❖ 例如,图中的完全二叉树表示一个有8个元素的无序序列: {49,38,65,97,76,13,27,49}(相同的两个关 键字49,其中后面一个用49表示),则构造堆的过程如 图3(b)~(f)所示。

C语言常见排序算法.ppt

C语言常见排序算法.ppt

1.1.2 快速排序
算法实例:
始关键字
pivotkey 21 25 low
49 25* 16 08 high
一次交换
21
二次交换
三次交换
high-1 完成一趟排序
08 25 low
49 25* 16
high
08
49 25* 16 25
low
high
08 16 49 25*
25
low
08 16
low
常见排序算法
1.1 常见的排序算法
冒泡排序 快速排序 直接插入排序 希尔排序 选择排序 堆排序 归并排序
1.1.1 冒泡排序
算法描述
设待排序记录序列中的记录个数为n 一般地,第i趟起泡排序从1到n-i+1 依次比较相邻两个记录的关键字,如果发生逆序,则交换之 其结果是这n-i+1个记录中,关键字最大的记录被交换到第n-i+1的位 置上,最多作n-1趟。
08 16
21
high 25* 49 25
high 25* 49 25
low high
1.1.2 快速排序
算法实例:
完成一趟排序
08 16
21 25* 49 25
分别进行快速排序 有序序列
08 16
21 25* 25 49
08 16
21 25* 25 49
11
1.1.2 快速排序
算法分析:
快速排序是一个递归过程; 利用序列第一个记录作为基准,将整个序列划分为左右两个子序列。只要 是关键字小于基准记录关键字的记录都移到序列左侧; 快速排序的趟数取决于递归树的高度。 如果每次划分对一个记录定位后, 该记录的左侧子序列与右侧子序列的长 度相同, 则下一步将是对两个长度减半的子序列进行排序, 这是最理想的情 况

数据结构 排序

数据结构 排序
关键字分主关键字和次关键字两种。对要排序的数据元素
集合来说,如果关键字满足数据元素值不同时该关键字的值也 一定不同,这样的关键字称为主关键字。不满足主关键字定义
的关键字称为次关键字。
学生成绩表
序号 0 1 2 3
...
学号 1004 1002 1012 1008
...
姓名 Wang Yun Zhang Pen Li Cheng Chen Hong
常用的选择排序算法:
(1)直接选择排序
(2)堆排序
8.3.1直接选择排序
1、其基本思想
每经过一趟比较就找出一个最小值,与待排序列最前 面的位置互换即可。 (即从待排序的数据元素集合中选取关键字最小的数据元 素并将它与原始数据元素集合中的第一个数据元素交换位 置;然后从不包括第一个位置的数据元素集合中选取关键 字最小的数据元素并将它与原始数据集合中的第二个数据 元素交换位置;如此重复,直到数据元素集合中只剩一个 数据元素为止。)
例4:有序列T1=(08, 25, 49, 46, 58, 67)和序列 T2=(91, 85, 76, 66, 58, 67, 55),判断它们是否 “堆”? 0 0 91 08 1 1 2 2 85 76 25 49 6 3 4 5 3 4 5 66 58 67 55 46 58 67
d=5 d=3 d=1
第2趟
076,301,129,256,438,694,742,751,863,937
第3趟 076,129,256,301,438,694,742,75本思想是:每次从待排序的数据元
素集合中选取关键字最小(或最大)的数据元素放到 数据元素集合的最前(或最后),数据元素集合不断 缩小,当数据元素集合为空时选择排序结束。

堆排序算法详解

堆排序算法详解

堆排序算法详解1、堆排序概述堆排序(Heapsort)是指利⽤堆积树(堆)这种数据结构所设计的⼀种排序算法,它是选择排序的⼀种。

可以利⽤数组的特点快速定位指定索引的元素。

堆分为⼤根堆和⼩根堆,是完全⼆叉树。

⼤根堆的要求是每个节点的值都不⼤于其⽗节点的值,即A[PARENT[i]] >= A[i]。

在数组的⾮降序排序中,需要使⽤的就是⼤根堆,因为根据⼤根堆的要求可知,最⼤的值⼀定在堆顶。

2、堆排序思想(⼤根堆)1)先将初始⽂件Array[1...n]建成⼀个⼤根堆,此堆为初始的⽆序区。

2)再将关键字最⼤的记录Array[1](即堆顶)和⽆序区的最后⼀个记录Array[n]交换,由此得到新的⽆序区Array[1..n-1]和有序区Array[n],且满⾜Array[1..n-1].keys≤Array[n].key。

3)由于交换后新的根R[1]可能违反堆性质,故应将当前⽆序区R[1..n-1]调整为堆。

然后再次将R[1..n-1]中关键字最⼤的记录R[1]和该区间的最后⼀个记录R[n-1]交换,由此得到新的⽆序区R[1..n-2]和有序区R[n-1..n],且仍满⾜关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。

这样直到⽆序区中剩余⼀个元素为⽌。

3、堆排序的基本操作1)建堆,建堆是不断调整堆的过程,从len/2处开始调整,⼀直到第⼀个节点,此处len是堆中元素的个数。

建堆的过程是线性的过程,从len/2到0处⼀直调⽤调整堆的过程,相当于o(h1)+o(h2)…+o(hlen/2) 其中h表⽰节点的深度,len/2表⽰节点的个数,这是⼀个求和的过程,结果是线性的O(n)。

2)调整堆:调整堆在构建堆的过程中会⽤到,⽽且在堆排序过程中也会⽤到。

利⽤的思想是⽐较节点i和它的孩⼦节点left(i),right(i),选出三者最⼤者,如果最⼤值不是节点i⽽是它的⼀个孩⼦节点,那边交互节点i和该节点,然后再调⽤调整堆过程,这是⼀个递归的过程。

数据结构 第6章 排序

数据结构  第6章  排序

判断某序列是否符合堆定义
只要将序列依次排成一棵完全二叉树,所有结点的 值都不大于(或不小于)其左右子树结点的值,那么该 序列就符合堆的定义。 例:序列:102、87、100、79、82、62、84
10 2 87 10 0 82
故: 此序列符 合堆定义。
84
79
62
若n个元素的排序码k1,k2,k3,…,kn满足堆,且让结点 按1、2、3、…、n顺序编号,根据完全二叉树的性质(若i为 根结点,则左孩子为2i,右孩子为2i+1)可知,堆排序实际与 一棵完全二叉树有关。若将排序码初始序列组成一棵完全二 叉树,则堆排序可以包含建立初始堆(使排序码变成能符合 堆的定义的完全二叉树)和利用堆进行排序两个阶段。
14
17
25 )
20
9
(3
14
17
20
25 )
9
第五次插入
(3
9
14
17
20
25)
图 9-1 直接插入排序示例
注意:
排正序时,要插入的元素先和有序表中最后 一个元素进行比较,即从后往前;排逆序时, 则刚相反,得从前往后进行比较。 当n很小时,直接插入排序的效率较高,时间 复杂度为o(n^2)。 正序时比较次数最少为n-1; 逆序时最大为(n+2)*(n-1)/2; 两者的平均值约为(n^2)/4。
例如,n=6,数组R的六个排序码分别为:17,3,25,14,20, 9。下面用图9-3给出冒泡排序算法的执行过程。
0 1 2 3 4 5
初始状态
(17
3
25
14
20
9)
第一趟排序
3
(17
9
25

排序算法ppt课件

排序算法ppt课件

for i:=1 to n-1 do begin k:=i; for j:=i+1 to n do if a[j]<a[k] then k:=j; if k<>i then begin t:=a[k]; a[k]:=a[i]; a[i]:=t; end; end;
for i:=1 to n-1 do begin k:=i; for j:=i+1 to n do if a[j]<a[k] then k:=j; if k<>i then begin t:=a[k]; a[k]:=a[i]; a[i]:=t; end; end;
end;
begin randomize; readln(n); for i:= 1 to n do a[i]:=random(100); for i:=1 to n-1 do write(a[i],' '); writeln(a[n]); qsort(1,n); for i:=1 to n-1 do write(a[i],' '); writeln(a[n]);
a:待排序的数组;//从小到大排序 简单选择排序:
for i:=1 to n-1 do for j:=i+1 to n do If a[i]>a[j] then begin
t:=a[i];
a[i]:=a[j];
a[j]:=t;
end;
{ 从第一个元素开始,进行n-1遍处理} {第i遍处理} { 交换a[i]和a[j]}
for j:=i+1 to n do if a[i]>a[j] then begin t:=a[i]; a[i]:=a[j]; a[j]:=t; end;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档