实际问题与一元二次方程(一)教学课件

合集下载

实际问题与一元二次方程 初中九年级数学教学课件PPT 人教版

实际问题与一元二次方程 初中九年级数学教学课件PPT 人教版

成本
药品
两年前的成本
现在的成本

5000元 3000元

6000元 3600元
知识讲解
难点突破成本Fra bibliotek药品两年前的成本
现在的成本
年平均下降额
年平均下降率

5000元 3000元 1000元


6000元 3600元 1200元

知识讲解
难点突破
本年成本=前一年成本-前一年成本×年下降率 =前一年成本×(1-年下降率)
解:设水稻每公顷产量的年平均增长率为x
2011年平均每公顷产量为 2012年平均每公顷产量为
7200(1+x) kg 7200(1+x)2 kg
由此可列方程: 7200(1+x)2=8450
知识讲解
难点突破
探究:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的 成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是 3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下 降率较大?
由题意得
5000(1-x)2=3000
年平均下降 率应为小于1
解方程,得
(1-x)2=0.6
的正数
1 x 0.6
x1 1 0.6, x2 1 0.6
x1 0.225, x2 1.775
根据问题的实际意义,甲种药品成本的年平均下降率约为22.5%.
知识讲解
难点突破
成本
药品
两年前的成本
现在的成本
知识讲解
难点突破
成本
药品
年平均下降额
年平均下降率

1000元 22.5%.

人教版九年级数学上册《实际问题与一元二次方程》课件(共6张PPT)

人教版九年级数学上册《实际问题与一元二次方程》课件(共6张PPT)

某水果批发商城经销一种高档水果,如果每千克盈利 10元,每天可售出500kg。经市场调查发现,在进货 不变的情况下,若每千克涨价1元,日销售量就减少 20kg,现该商场要保证每天盈利6000元,同时又要顾 客得到实惠,那么每千克应涨价多少元?
拓展提高:
某西瓜经营户以2元/千克的价格购进一批小型 西瓜,以3元/千克的价格出售,每天可售出 200千克,为了促销,该经营户决定降价销售, 经调查发现,这种小型西瓜每降价0.1元/千克, 每天可多售出40千克,另外,每天的房租等固定 成本共24元,该经营户要想每天盈利200元,应 将每千克小桃,进价每千克40元,按每千克60元出 售,平均每天可售出100千克,后来经调查发现,单 价每降低2元,商场平均每天可多售出20千克。若商 场平均每天销售核桃的盈利要达到2240元, 请回答:
(1)每千克核桃应降价多少元?
(2)在每天获利不变的情况下,为尽可能让利于顾 客,应按原售价的几折出售?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
实际问题与一元二次方程
营销问题
解一元二次方程应用题的一般步骤?
(1)审题 (2)设未知数 (3)列方程 (4)解方程 (5)答

初三上数学课件(人教版)-实际问题与一元二次方程(第一课时)

初三上数学课件(人教版)-实际问题与一元二次方程(第一课时)
1.会根据具体问题(按一定传播速度传播问题、数字问 题和利润问题)中的数量关系列一元二次方程并求解。
2.能根据问题的实际意义,检验所得结果是否合理。 3.进一步掌握列方程解应用题的步骤和关键。
重点:列一元二次方程解决实际问题 . 难点:找出实际问题中的等量关系 .
未知量
间接设
实际意义
问题:有一人患了流感,经过两轮传染后,有121人患了 流感,每轮传染中平均一个人传染了几个人?
B
9
解:设3月份到5月份营业额的月平均增长率为x, 根据题意得,400×(1+10%)(1+x)2=633.6, 解得,x =0.2=20%,x =2.2(不合题意舍去).答:(略)
解:设这个两位数的个位数字为x,
则十位数字为x-2,这个两位数为10(x-2)+x,
依题意得10(x-2)+x=3x(x-2)
分析:设每轮传染中平均一个人传染x个人,
⑴开始有一人患了患流感,第一轮的传染源就是这个
人,他传染了x个人,用代数式表示第一轮后,共有___人
患了流感;第二轮传染中,这些人中每一个人又传染了x人
,用代数式表示
,第二轮后,共有
人患流感

⑵根据等量关系列方程:_______.
⑶解这个方程得:_______.
(2)设未知数(几种设法) .设较小的奇数为x,则另 一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设 较小的奇数为2x-1,则另一个奇数2x+1. 解法二:
设较小的奇数为x-1,则较大的奇数为x+1
据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19.

22.3实际问题与一元二次方程(第一课时)

22.3实际问题与一元二次方程(第一课时)
各赛1场, 由于甲队对乙队的比赛和乙队对甲队的比赛
是同一场比赛,所以全部比赛共 即
1 x( x 1) 28 2
化简:得
1 x( x 1) 2
场.
2 x 56 0 x
?
探究1: 有一人患了流感,经过两轮传染后共有
121人患了流感,每轮传染中平均一个人 传染了几个人?
解:设每轮传染中平均一个人传染了x个人,则第一轮后共有 X+1 人患了流感,第二轮后共有x(x+1) 人患了流感. 列方程得 1+x+x(x+1)=121
x
∴(1 x)2 1 36% ∴1 x 0.8
∴ x1 0.2 x2 1.8
. 答:平均每月降价
x2 1.8 不合题意舍去. ∴ x 0.2 20%
20% .
例1. 某人将2000元人民币按一年定期存入银行,到期后支取1000 元用于购物,剩下的1000元及应得利息又全部按一年定期存入银 行,若银行存款的利率不变,到期后得本金和利息共1155元,求 这种存款方式的年利率. 解:设这种存款方式的年利率为
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本 为 5000(1-x)2 元,依题意得
5000 (1 x) 3000
2
解方程,得
x 0.225, x 1.775(不合题意, 舍去)
1 2
答:甲种药品成本的年平均下降率约为22.5%.
x2+2x-120=0 解方程,得 x1=-12, x2=10
根据问题的实际意义,x=10
答:每轮传染中平均传染速度,三轮传染后有多少人患流感?

实际问题与一元二次方程(一)传播问题(课件)数学九年级上册(人教版)

实际问题与一元二次方程(一)传播问题(课件)数学九年级上册(人教版)

例2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分
支,主干,支干和小分支的总数是91,每个支干长出多少小分支?
解:设每个支干长出x个小分支, 则 1+x+x2=91 即 x2 x 90 0 解得, x1=9,x2=-10(不合题意,舍去)
答:每个支干长出9个小分支.
…… ……
整理得 5(1+x)2=125
解得 x1=4,x2=-6(不合题意,舍去)
答:每轮传染中平均一个人传染了4个人.
某种病毒传播速度非常快,如果最初有两个人感染这种病毒,经两轮传播
后,就有五十个人被感染,求每轮传播中平均一个人会传染给几个人?若
病毒得不到有效控制,三轮传播后将有多少人被感染?
解:设每轮传播中平均一个人会传染给x个人, 根据题意列方程: 2+2x+x(2+2x)=50, 整理得:2(1+x)2=50, 解得:x1=4,x2=-6.(不合题意,舍去),
∴50×(1+4)=250(人). 答:每轮传播中平均一个人会传染给4个人,若病毒得不到有效控制, 三轮传播后将有250人被感染.
运用一元二次方程模型解决实际问题的步骤有哪些?
实际问题 分析数量关系 建立一元二
设未知数 次方程模型
解一元二次方程
实际问题的解
检验
一元二次方程的根
1.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中
解:设每轮传染中平均每个人传染了x个人, 根据题意,得:(x+1)2=256, 直接开平方得x+1=±16, 解得x1=15,x2=-17, 经检验都是原方程的根,但x2=-17<0不符合实际 (舍去), 答:每轮传染中平均每个人传染了15个人.

人教版九年级上册数学 21.3 实际问题与一元二次方程 课件

人教版九年级上册数学 21.3 实际问题与一元二次方程 课件

4.三个连续偶数,已知最大数与最小数的
平方和比中间一个数的平方大332,求这三 个连续偶数.
1.偶数个连续偶数(或奇数),一般可设中间两个为 (x1)和(x 1). 2.奇数个连续偶数(或奇数,自然数),一般可设中 间一个为x.如三个连续偶数,可设中间一个偶数为x, 则其余两个偶数分别为(x2)和(x+2)又如三个连续自 然数,可设中间一个自然数为x,则其余两个自然数 分别为(x1)和(x 1).
解这个方程得:x1 x2 4
CQ
B
答:当AP 4cm时,四边形面积为16cm2
小结 拓展
回味无穷
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系: • a(1±x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)
数字与方程
实际问题与一元二次方程 (三)
1. 两个数的差等于4,积等于45,求这两个数.
2. 一个两位数,它的十位数字比个位数字小3,而 它的个位数字的平方恰好等于这个两位数.求这 个两位数.
3.有一个两位数,它的十位数字与个位数字的和是5. 把这个两位数的十位数字与个位数字互换后得到 另一个两位数,两个两位数的积为736.求原来的 两位数.
则 x(18 x) 81
化简得,x2 18x 81 0 (x9)2 0 x1 x2 9

九年级上册数学实际问题与一元二次方程课件PPT

九年级上册数学实际问题与一元二次方程课件PPT
分析:此题属于经营问题,若设每件衬衫应降价x元,则每件所得利 润为(40-x)元,但每天多售出2x件,即售出件数为(20+2x)件,因此每天 赢利为(40-x)(20+2x)元,进而可根据题意列出方程求解.
14
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
解:(1)设每件衬衫应降价x元, 根据题意得(40-x)(20+2x)=1 200, 整理得2x2-60x+400=0,解得x1=20,x2=10. 因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快, 故每件衬衫应降价20元. 答:每件衬衫应降价20元. (2)设商场平均每天盈利y元, 则y=(20+2x)(40-x)=-2x2+60x+800 =-2(x2-30x-400)=-2[(x-15)2-625] =-2(x-15)2+1 250.
13
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
拓展点四列一元二次方程解商品销售问题 例4 (2015·岳池县模拟)某商场销售一批名牌衬衫,平均每天可 售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商 场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元, 商场平均每天可多售出2件; (1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多?
4x)=
9 1- 25
×20×30,
解得x1=1,x2=9.
∵4×9=36>20,
∴x=9舍去,
∴横彩条的宽度是2 cm,竖彩条的宽度是3 cm.
12
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五

一元二次方程在实际问题中的应用课件

一元二次方程在实际问题中的应用课件
由题可得 ( x + 0.6 + x ) ·( x – 0.4) ÷ 2 = 0.78,
整理:
x²– 0.1x – 0.9 = 0
解方程得:x1 = 1,x2 = -0.9(舍去).
则渠深为 1 – 0.4 = 0.6 m.
2.6.1 一元二次方程在实际问题中的应用(1)
5. 如图,在 Rt△ACB 中,∠C = 90°;AC = 30cm,BC = 21 cm. 动点 P
1m/s. 经过几秒△PCQ 的面积为 Rt△ACB 面积的一半?
2.6.1 一元二次方程在实际问题中的应用(1)
解:设时间为 t 秒,则 Rt△PCQ 两边 PC ,CQ 长分别为 (8 – t )米与 (6
– t )米.
由题可得


(8-t)(6-t)= × ×6×8


整理:t²– 14t + 48 = 24
(4) 列:根据等量关系列出一元二次方程;
(5) 解:求方程的解;
(6) 检:检验解是否符合方程,是否符合实际;
(7) 答:写出答案并作答.
2.6.1 一元二次方程在实际问题中的应用(1)
针 对 训 练
1.《九章算术》“勾股”章有一题:“今有二人同所立、甲行率七,乙
行率三,乙东行,甲南行十步而斜东北与乙会. 问甲乙行各几何.”
解方程得:t1 = 2,t2 =12(舍去).
则经过 2 秒时△PCQ 的面积为 Rt△ACB 面积的一半.
2.6.1 一元二次方程在实际问题中的应用(1)
4. 如图,一条水渠的断面为梯形,已知断面的面积为 0.78m2,上口比渠
底宽 0.6m,渠深比渠底少 0.4m,求渠深.
解:设渠底为 x m,则上口为 (x + 0.6) m,渠深为 (x – 0.4) m,

21-3 实际问题与一元二次方程 课件(共25张PPT)

21-3 实际问题与一元二次方程 课件(共25张PPT)

2
5−1
− 5−1
或x2=
(不合题意,舍去),所以
2
2
小练习
例 4:邻边不等的矩形花圃ABCD,它的一边AD利用已有的围
墙,另外三边所围的栅栏的总长度是6m,若矩形的面积为
1
4m2,则AB的长度是____m(可利用的围墙长度超过6m)。
解析:设垂直墙的篱笆的AB为x,那么平行墙的篱笆BC长为(6-2x),
解方程,得:x1≈0.225,x2≈1.775(不合题意,舍去)。
则根据问题的额实际意义,甲乙两种药品成本的年平均下降率均为22.5%
知识梳理
知识点1:组合计算问题。
常见单循环赛问题,握手问题,签合同问题都有相同的规
1
律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
2
例 1:某植物的主干长出若干数目的枝干,每个枝干又长
方程,a(1-x)2=49%a,整理得:x2-2x+0.51=0,解得:x1=1.7(舍去)
或x2=0.3,∴平均每次降价30%。故选D。
知识要点
列方程解应用题的一般步骤:①审题;②设未知数;③列方程;
④解方程;⑤检查作答。
组合计数问题:常见单循环问题,握手问题,签合同问题都有
1
相同的规律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
1+x+x(1+x)
人中的每个人又传染了x个人,用代数式表示,第二轮后共有_________
个人患了流感。
列方程1+x+x(1+x)=121,
解方程,得x1=10,x2=-12(不合题意,舍去).
平均一个人传染了10个人。
教学新知

一元二次方程(第一课时)课件

一元二次方程(第一课时)课件
一元二次方程(第一课 时)ppt课件
本PPT课件将介绍一元二次方程的基本概念和解题方法,以及优化题的应用。 通过丰富的内容和精彩的图像,使学生能够轻松理解和掌握这个重要的数学 知识点。
引言
本节课将要介绍一元二次方程的定义和例子,并确定本堂课的学习目标。
一元二次方程的概念和公式
一元二次方程的定义
什么是一元二次方程?通过 实例来解释。
二次方程的标准形式和 一般形式
标准形式和一般形式的区别 是什么?如何转换?
解一元二次方程的公式
学习如何利用公式解一元二 次方程。
解一元二次方程的四种方法
1
直接公式法
使用直接公式解一元二次方程的骤和技巧。
2
完全平方公式法
通过完全平方公式解一元二次方程。
3
公式法
利用一元二次方程的公式进行求解。
4
图像法
推荐一些有关一元二次方程的优秀书籍和教材。
在线资源
分享一些相关的在线资源,供学生进一步学习。
二次函数及其图像分 析
学习如何分析二次函数图像以 解决优化问题。
求最值的思想和方法
通过思考和运用数学方法,找 到优化问题的最值。
小结
本堂课的主要内容回顾
总结本课所学的重点知识和技巧。
下节课预告
预告下节课将学习的内容和目标。
学习到的知识点总结
总结一元二次方程的基本概念和解题方法。
参考资料
书籍和教材
通过分析二次函数图像来解一元二次方程。
解题方法和技巧
1 变形思路
如何巧妙变形一元二次方程,找到解题的突破口。
2 整理形式
整理一元二次方程的形式,使解题更加简单明了。
3 注意二次方程的根性质

22.3.1实际问题与一元二次方程(一)

22.3.1实际问题与一元二次方程(一)
分析:本金×利率=利息,本金+利息=本息
4.某种药剂原售价为4元, 经过两次降价, 现 在每瓶售价为2.56元,问平均每次降价百分 之几?
5.某公司计划经过两年把某种商品的生产成本 降低19%,那么平均每年需降低百分之几?
6、已知两个连续奇数的积等于399,求这两个数.
7、某花圃用花盆培育某种花苗,经过实验发现 每盆的盈利与每盆的株数构成一定的关系.每
(2)上网计算机总台数2001年12月31日至 2003年12月31日与2000年12月31日至2002 年12月31日相比,哪段时间年平均增长率较 大(参考下图)?
2000年1月至2003年12月我国上网计算机总台数
3200 2400 1600 800 0
892 350 2000年 1月1日 2000年 12月31日 2001年 2002年 2003年 年份 12月31日 12月31日 12月31日 1254 上网计算 机总台数 (万台) 3089 2083
x
结束寄语
• 运用方程(方程组)解答相关 的实际问题是一种重要的数学 思想——方程的思想. • 一元二次方程也是刻画现实世 界的有效数学模型.
8.截止到2000年12月31日,我国的上网计算机 总台数为892万台;截止到2002年12月31日,我 国的上网计算机总台数已达2083万台. (1)求2000年12月31日至2002年12月31日 我国 计算机上网台数的年平均增长率(精确 到 0.1%);
盆植入3株时,平均单株盈利3元;以同样的栽
培条件,若每盆每增加1株,平均单株盈利就减 少0.5元.要使每盆的盈利达到10元,每盆应该
植多少株?
8.一个直角梯形的下底比上底大2cm,高比上底 小1cm,面积等于8cm2,求这个梯形的周长。 9.某种植物的主干长出若干数目的支干,每个支干 又长出同样数目的小分支,主干、支干和小分支 的总数是91,每个支干长出多少小分支? 10.如图,利用一面墙(墙的长度不限), 用20m长的篱笆,怎样围成一个面积 为50m2的矩形场地? x 20-2x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂小结
类似地 这种增长率的问题在实际生活普遍 存在,有一定的模式
若平均增长(或降低)百分率为x,增长 (或降低)前的是a,增长(或降低)n次后 的量是b,则它们的数量关系可表示为
a (1 x) b
n
其中增长取+,降低取-
巩固练习
1、某种植物的主干长出若干数目的枝干,每个枝 干又长出同样数目的小分支,主干、支干和小分支 的总数是91,每个支干长出多少小分支? 2.上海甲商场七月份利润为100万元,九月份 的利率为121万元,乙商场七月份利率为200万 元,九月份的利润为288万元,那么哪个商场利 润的月平均上升率较大? 3.有一人患了流感,经过两轮传染后共有121人患 了流感,毎轮传染中平均一个人传染了几个人? 4.某化工厂今年一月份生产化工原料15万吨, 通过优化管理,产量逐年上升,第一季度共生产 化工原料60万吨,设二、三月份平均增长的百分 率相同,均为x,可列出方程为_______
有多少人患流感?
解:121+121×10=1331 答:三轮传染后有1331人患流感.
列一元二次方程解应用题的步骤与列一元 一次方程解应用题的步骤类似,即审、设、 找、列、解、答. 这里要特别注意.在列一元二次方程解应 用题时,由于所得的根一般有两个,所以 要检验这两个根是否符合实际问题的要 求.
分析设每轮传染中平均一个人传染了x个人. 1
第一轮传染 后
1+x
第二轮传染后
1+x+x(1+x)
开始有一人患了流感,第一轮的传染源就是这个人,他传 (x+1) 人患了流 染了x个人,用代数式表示,第一轮后共有_____ 感;第二轮传染中,这些人中的每个人又传染了x个人,
1+x+x(1+x) 人患了流感. 用代数式表示,第二轮后共有____________
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本 为 5000(1-x)2 元,依题意得
5000 (1 x) 3000
2
解方程,得 x1 0.225, x2 1.775(不合题意, 舍去) 答:甲种药品成本的年平均下降率约为22.5%. 算一算:乙种药品成本的年平均下降率是多少? 22.5% 比较:两种药品成本的年平均下降率 (相同)
21.3实际问题与 一元二次方程(一)
复习回顾
1.解一元二次方程有哪些方法? 直接开平方法、配方法、公式法、因式分解法. 2.列一元一次方程解应用题的步骤? ①审题,②设未知数. ③找等量关系知
探究 1 有一人患了流感 , 经过两轮传染 后共有121人患了流感,每轮传染中平均 一个人传染了几个人?
解:设每轮传染中平均一个人传染了x个人.
依题意得:1+x+x(1+x)=121 解方程,得
10 -12 . (不合题意,舍去) _____, x1 x2 ______
10 答:平均一个人传染了________ 个人.
通过对这个问题的探究,你对类似的传播有新的认 识吗?
思考:按照这样的传染速度,三轮传染后
探究2两年前生产 1吨甲种药品的成本是5000元,生
产1吨乙种药品的成本是6000元,随着生产技术的进 步,现在生产 1吨甲种药品的成本是3000元,生产1吨 乙种药品的成本是3600元,哪种药品成本的年平 均下降率较大? 分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元) 乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元) 乙种药品成本的年平均下降额较大.但是,年平 均下降额(元)不等同于年平均下降率(百分数)
相关文档
最新文档