量子力学基础知识

合集下载

量子力学的知识点

量子力学的知识点

量子力学的知识点量子力学是一门研究微观世界的物理学分支,它描述了微观粒子的行为和相互作用。

本文将介绍一些量子力学的基本概念和知识点。

1. 波粒二象性:量子力学中最基本的概念之一是波粒二象性。

根据波粒二象性,微观粒子既可以表现出波动性,也可以表现出粒子性。

例如,电子和光子既可以像粒子一样被探测到,也可以像波一样干涉和衍射。

2. 不确定性原理:不确定性原理是量子力学的核心原理之一,由海森堡提出。

它指出,在某一时刻,无法同时准确测量一个粒子的位置和动量。

换句话说,粒子的位置和动量不能同时被完全确定。

3. 波函数和量子态:波函数是量子力学中描述微观粒子的数学工具。

它可以用来计算粒子的概率分布和状态。

量子态则是描述粒子的完整信息,包括波函数和其他相关信息。

4. 叠加态和量子叠加:叠加态是指一个粒子处于多个可能状态的叠加状态。

量子叠加是指粒子在没有被观测之前,可以同时处于多个可能状态,直到被观测时才会坍缩到其中一个确定的状态。

5. 纠缠态和量子纠缠:纠缠态是指多个粒子之间存在相互关联的状态。

量子纠缠是指两个或多个粒子之间的状态相互依赖,无论它们之间有多远的距离。

6. 测量和量子测量:量子测量是指对一个量子系统进行观测,以获取它的某个性质的数值。

量子测量会导致波函数坍缩,从而确定粒子的状态。

7. 哥本哈根解释:哥本哈根解释是量子力学最广泛接受的解释之一,由波尔和海森堡等人提出。

它强调了观察者在量子系统中的重要性,认为观测会导致波函数坍缩,从而决定粒子的状态。

8. 量子力学的应用:量子力学在现代科学和技术中有广泛的应用。

例如,量子力学在原子物理学、核物理学、凝聚态物理学和量子计算等领域发挥着重要作用。

总结起来,量子力学是一门研究微观世界的物理学分支,它涉及到波粒二象性、不确定性原理、波函数和量子态、叠加态和量子叠加、纠缠态和量子纠缠、测量和量子测量、哥本哈根解释以及量子力学的应用等知识点。

通过深入了解这些知识点,我们可以更好地理解微观世界的奥秘,并应用于相关领域的研究和技术发展中。

量子力学基础

量子力学基础

量子力学基础
量子力学是描述微观粒子行为的物理学理论。

它基于几个重要的基
本概念:
1. 粒子的波粒二象性:根据量子力学,微观粒子(如电子、光子等)既具有波动特性也具有粒子特性。

这意味着粒子的运动和行为可以通
过波动的方式来描述。

2. 不确定性原理:由于波粒二象性,确定粒子的位置和动量同时存
在的精确值是不可能的。

不确定性原理表明,我们无法同时准确测量
粒子的位置和动量,只能得到它们的概率分布。

3. 波函数:波函数是描述量子系统状态的数学函数。

它包含了粒子
的所有可能位置和动量的信息。

根据波函数,可以得出粒子的概率分布。

4. 算符和观测量:在量子力学中,物理量(如位置、动量、能量等)被表示为算符,而不是直接的数值。

物理系统的状态和性质可以通过
算符的作用来描述和测量。

5. 薛定谔方程:薛定谔方程是量子力学的基本方程,描述了量子系
统的时间演化。

它通过波函数的时间导数和能量算符之间的关系来表示。

量子力学的基础原理提供了一种独特而全面的方式来理解微观世界
的行为。

它已经在许多领域获得了成功应用,如原子物理、核物理、
量子化学和量子计算等。

量子学入门了解量子力学的基础知识

量子学入门了解量子力学的基础知识

量子学入门了解量子力学的基础知识量子学入门:了解量子力学的基础知识量子力学是近代物理学中的一门重要学科,涉及到微观世界中微小粒子的行为和性质。

通过深入了解量子力学的基础知识,我们可以揭开自然界的奥秘,同时也有助于推动科学技术的进步。

本文将介绍一些量子力学的基础概念和原理,帮助读者入门了解这一领域。

一、波粒二象性:光的特殊性质在经典物理学中,我们将光看作是一种波动,具有速度、频率和振幅等特性。

然而,我们在实验中发现,光在与物质相互作用时表现出粒子的性质,如光子的概念。

这一现象被称为光的波粒二象性。

在量子力学中,不仅光,所有微观粒子如电子、中子等都具有波粒二象性。

二、波函数:描述微观粒子的性质波函数是量子力学中用来描述微观粒子状态的数学函数。

它包含了粒子的位置、动量和能量等信息。

波函数的模方的积分给出了物理实体存在于不同位置的概率。

三、不确定性原理:测量的局限性不确定性原理是量子力学的基本原理之一,由海森堡提出。

它表明,在测量某个微观粒子的位置和动量时,这两个量无法同时被确定得非常准确,存在一定程度的不确定性。

这意味着我们无法精确预测微观粒子的行为,只能通过概率性的方式来描述。

四、量子态和叠加态:微观世界的奇妙现象在量子力学中,我们用量子态来描述微观粒子的性质。

量子态可以处于叠加态,即处于多种可能性的叠加状态。

只有在测量时,量子系统的叠加态才会塌缩成确定的状态。

这种现象被称为叠加态叠加和量子叠加原理。

五、量子纠缠:隐形的联系量子纠缠是量子力学中一个引人注目的现象,描述了两个或多个微观粒子之间的非常规联系。

当粒子间发生纠缠后,它们的状态将紧密关联,一方的状态发生变化会立即影响到另一方。

这种纠缠现象在量子通信和量子计算等领域有着广泛应用。

六、量子隧穿效应:微观世界的奇迹量子隧穿效应是量子力学的一个重要现象,描述了微观粒子在经典力学中无法实现的特殊行为。

当微观粒子遇到类似势垒的障碍时,它们有一定概率通过障碍物进入到势能较低的区域,即使它们的能量低于障碍物的势能。

量子力学基础 知识点

量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。

*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。

量子力学的基础知识

量子力学的基础知识

量子力学的基础知识
量子力学是物理学中一种重要的理论,是对微观世界运动规律的
研究。

它不仅推动了物理学的发展,而且深刻影响了化学、生物学和
其他学科的发展。

量子力学以爱因斯坦的能量等离子体模型为基础,
以普朗克的统计力学和波动力学为补充,建立了一个用来描述微型物
体(尤其是粒子)的完整理论。

量子力学的核心思想是对微观世界物体运动规律的研究和解释,
即“量子”这个词。

量子是用来描述它们的最小基本单位,其大小只
有原子的尺寸。

量子力学认为,量子不仅能描述物体的性质,而且也
能描述它们的运动。

量子力学的基本原理有四个:第一,物体的运动
是概率性的;第二,波函数能完整地描述物体的性质;第三,能量的
变化是离散的;第四,波粒二象性原理。

量子力学看似简单,但它提供了许多有用的工具,帮助人们更好
地理解微观世界。

例如,它可以用来解释和解释自然界中复杂的现象,比如电磁现象、原子特性、原子结构、以及化学反应。

此外,它有助
于揭开古老的谜题,如结晶结构的形成,量子调控效应的作用,原子
核的物理性质,以及费米子的发现。

量子力学提供了一套全新的手段来探索物质的结构,特性和行为。

它不仅改变了物理学,而且也深刻影响了其他学科,比如化学、生物学、工程学和信息科学。

今天,量子力学已经发展成为一门独立的学科,它可以用来描述和研究微观世界中令人惊讶的现象,并有助于发
展各种新技术,有助于深入了解物质的结构和行为。

量子力学的基本原理与公式

量子力学的基本原理与公式

量子力学的基本原理与公式量子力学是描述微观世界行为的物理学理论,它基于一些基本原理和公式。

本文将介绍量子力学的基本原理和公式,并探讨其应用。

一、波粒二象性原理量子力学的基础是波粒二象性原理,即微观粒子既具有粒子性质又具有波动性质。

这一原理由德布罗意提出,并通过实验证明。

根据波粒二象性原理,物质粒子的行为可以用波函数来描述。

波函数是一个数学函数,描述了粒子在空间中的概率分布。

它可以通过薛定谔方程得到。

薛定谔方程是量子力学的核心方程之一,用于描述波函数随时间的演化。

二、量子力学的基本公式1. 不确定性原理不确定性原理是量子力学的基本原理之一,它表明对于某些物理量,无法同时准确测量其位置和动量。

不确定性原理由海森堡提出,并用数学公式表示为:Δx · Δp ≥ ħ/2其中,Δx表示位置的不确定度,Δp表示动量的不确定度,ħ为普朗克常数。

不确定性原理告诉我们,粒子的位置和动量不能同时被完全确定。

2. 库仑定律库仑定律是描述电荷之间相互作用的定律,它在量子力学中仍然适用。

库仑定律的数学表达式为:F = k · (q1 · q2) / r^2其中,F表示电荷之间的力,k为库仑常数,q1和q2为两个电荷的大小,r为它们之间的距离。

库仑定律描述了电荷之间的吸引和排斥力。

3. 薛定谔方程薛定谔方程是量子力学的核心方程,描述了波函数随时间的演化。

薛定谔方程的基本形式为:H · Ψ = E · Ψ其中,H为哈密顿算符,Ψ为波函数,E为能量。

薛定谔方程告诉我们,波函数的演化取决于系统的哈密顿量和能量。

4. 统计解释量子力学引入了统计解释来解释物理量的测量结果。

根据统计解释,波函数的平方代表了测量结果的概率分布。

测量一个物理量时,得到的结果是随机的,但按照波函数的概率分布,某些结果出现的概率更大。

三、量子力学的应用1. 原子物理量子力学的应用之一是研究原子的结构和性质。

通过求解薛定谔方程,可以得到原子的能级和波函数。

第一章量子力学基础知识.doc

第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。

2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。

金属中的电子从光获得足够的能量而逸出金属,称为光电子。

光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。

(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

(3) 增加光的频率,光电子的动能也随之增加。

光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。

按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。

(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。

电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。

2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。

量子力学的基础知识

量子力学的基础知识

量子力学的基础知识量子力学是描述物质结构和物理属性的理论,它在20世纪初的时候被开发出来,由于它的成功应用,此后一直是物理学的重要工具。

它不仅可以帮助科学家们能够理解物质的结构,而且可以用来研究物体的行为,甚至在一定程度上预测它们可能发生的事情。

量子力学的基础知识主要包括量子状态、量子场理论、对称性、态密度矩阵、能量层结构、矩阵力学等。

量子状态是量子力学中最基本的概念,它是一个描述原子或分子等物质态的数学表达式。

量子状态可以用于研究物体的不同状态和物理性质,并可以用来预测物质在极其微小的尺度上的行为和属性。

量子场理论是量子力学中最重要的理论,它可以用来描述和解释物质和粒子的行为。

根据量子场理论,一些粒子例如光子和重子之间会存在相互作用,而这种相互作用的本质是自旋极化的实质性的交互作用。

对称性是很多领域的重要概念,也是量子力学中的重要概念。

"对称"指的是某些系统的性质是不变的,这就意味着,当你对系统的某些变量做出改变时,如果另一个变量也发生相应的改变,那么这种系统就是对称的。

态密度矩阵是量子力学中最重要的概念之一,它描述物质结构下的能量变化。

态密度矩阵可以用来表示物质的状态,并可以用来预测物质的性质,而且也可以用来计算物质的各种性质,比如能量、质量等。

能量层结构是量子力学中常用的概念,通过研究可以发现,能量层结构可以看作一个多层结构,上层由更高能量组成,而下层由更低能量组成。

而每一层都存在一定的跃迁规律,这些跃迁规律将决定能量状态的变化。

最后,矩阵力学是量子力学中近年来研究的重要方向,矩阵力学使用数学方法来分析物质的性质、结构和变化,可以用来研究物质的性质,并用来预测物质的性质变化,从而更好地了解物质的结构和行为。

量子力学基础知识_图文

量子力学基础知识_图文
当a=1cm时
在这种情况下,相邻能级间的距离是非常小的, 我们可以把电子的能级看作是连续的。 当a=10-10m时
在这种情况下,相邻能级间的距离是非常大的, 这时电子能量的量子化就明显的表现出来。
加速电压U=102V 电子准直直径为0向弥散可以忽略,轨道有意义。 宏观现象中
可看成经典粒子,从而可使用轨道概念。
讨论
1) 从量子过渡到经典的物理条件 如粒子的活动线度>> h
如例2所示的电子在示波管中的运动, 这时将电子看做经典粒子。
2) 微观粒子的力学量的不确定性 意味着物理量与其不确定量的数量级相同, 即P与P量级相同,r与r量级相同, 如例1所示的原子中运动的电子。
看到“冬虫夏草”这 个名字,许多人都会感到 奇怪;冬天还是动物,怎 么夏天又变成了植物呢? 自然界的变化,奥妙无穷 ,世界上就有这种一身兼 动物、植物的奇特生物。 冬天的形状完全是虫,夏 天的形状又象是草,所以 取了这么一个形象生动的 名字--冬虫夏草。
§22-4 薛定谔方程
1. 薛定谔方程的引入
例 估算一些物理量的量级: 估算 H 原子的轨道半径r;
H原子最稳定的半径 ——玻尔半径。
解 设H原子半径为r, 则电子活动范围 由不确定关系
假设核静止 按非相对论 ,电子能量为
代入

最稳定,即能量最低

Å
一张有趣的图片 少女还是老妇? 两种图象不会同 时出现在你的视 觉中。
“冬虫夏草” -
是虫还是草 ?
德布罗意假设:实物粒子具有波粒二象性。
德布罗意公式
注意
1)若



2)宏观物体的德布罗意波长小到实验难以测 量的程度,因此宏观物体仅表现出粒子性。

大学物理理论:量子力学基础

大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。

本文将介绍一些关于量子力学的基本概念和原理。

2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。

解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。

2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。

通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。

3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。

通过波函数,可以计算出一系列平均值,用来描述系统的特征。

3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。

这涉及到测量的本质和粒子与波的性质之间的关系。

4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。

它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。

4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。

这为填充多电子原子如何达到稳态提供了解释。

5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。

它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。

5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。

6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。

介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。

6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。

结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。

(完整版)量子力学知识点总结,推荐文档

(完整版)量子力学知识点总结,推荐文档

1光电效应:光照射到金属上,有电子从金属上逸出的现象。

这种电子称之为光电子。

2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。

光的强度只决定光电子数目的多少。

3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。

⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大5戴维逊-革末实验证明了德布罗意波的存在6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。

按照这种解释,描写粒子的波是几率波7波函数的归一化条件1),,,( 2⎰∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。

定态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。

⑵粒子几率流密度不随时间改变。

⑶任何不显含时间变量的力学量的平均值不随时间改变9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。

10厄密算符的定义:如果算符满足下列等式Fˆ,则称为厄密算符。

式中ψ和φ为任意() ˆ ˆdx F dx F φψφψ**⎰⎰=F ˆ波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。

推论:量子力学中表示力学量的算符都是厄密算符。

11厄密算符的性质:厄密算符的本征值必是实数。

量子力学知识点

量子力学知识点

量子力学知识点量子力学是描述微观世界中物质和能量行为的理论框架,是现代物理学中最重要的分支之一。

早在20世纪初,物理学家们就开始探索微观世界的奥秘,并提出了量子力学的理论基础。

本文将为您介绍一些关于量子力学的基本知识点。

一、光的粒子性和波动性在经典物理学中,光被视为电磁波,具有波动性质。

然而,在实验中发现光也具有粒子性,即光子。

根据光的粒子性和波动性,量子力学引入了波粒二象性的概念。

二、波函数和不确定原理波函数是量子力学中用来描述粒子行为的数学函数。

它包含了粒子的位置、动量、能量等信息。

根据不确定原理,无法同时准确确定粒子的位置和动量,这是量子力学中的基本原理之一。

三、叠加原理和量子纠缠量子力学中的叠加原理指出,处于未观测状态的粒子可以同时存在于多个可能状态之中。

当进行观测时,波函数会坍缩为某一确定状态。

这种现象被称为量子纠缠,即两个或多个粒子之间的状态相互依赖,无论它们之间有多远。

四、量子力学的定态和非定态在量子力学中,定态表示粒子处于稳定状态,其波函数不随时间变化。

非定态则表示粒子的状态会随时间演化。

通过薛定谔方程,我们可以描述粒子在不同状态下的演化过程。

五、测量和观测量子力学中的测量和观测与经典物理学中有所不同。

测量过程会导致波函数坍缩,粒子的状态被确定下来。

而在观测之前,粒子处于叠加态,可能处于多个不同状态。

六、量子力学的应用量子力学的应用涉及到许多领域。

在材料科学中,量子力学可以解释材料的电子结构和导电性质。

在计算机科学中,量子计算机的发展有望在处理复杂问题上实现超高速计算。

此外,量子力学还在量子通信、量子密码等领域有重要应用。

七、量子纠缠和量子隐形传态量子纠缠是量子力学中的一个重要概念,也是量子计算和量子通信的基础。

量子隐形传态则指通过纠缠态将信息传递到另一个位置,实现“隐形传输”。

结语量子力学作为一门复杂而深奥的学科,对我们理解微观世界的本质和开展科学研究具有重要意义。

本文对量子力学的一些基本知识点进行了梳理和介绍,希望能对读者理解量子力学产生帮助,并引发对这一领域更深入的探索与思考。

第一章量子力学基础知识

第一章量子力学基础知识
波函数的绝对值的平方 表示在时间t、在空间 这一点发现微粒的几率密度。
23
波函数可用来描述微观粒子的状态。但是波函数 所做出的种种预言, 只对在同一条件下大量的、同种 粒子的集合或者单个粒子的多次重复行为才有直接 意义; 而对个别粒子的一次行为, 一般来说只有间接 的即是几率性的意义。
例如, 用波函数可以预言, 在电子衍射实验中, 通 过晶体粉末射到屏上的大量电子是怎样分布的, 却不能 预言一个电子将会射到哪一点上。
32
⑤自身算符相乘 例:
33
将所求力学量写成坐标、时间和动量的函数, 由此获得所求力学量的算符形式。 例1:单粒子动能 其算符为
34
算符的本征态、本征值及本征方程
如果 Au a u,且a 为常数,则为本征方程。
u为
A 的本征函数, a为
A
的本征值

例1:
e2x 是算符
d dx
的本征值 2 的本征函数.
λ
6.626 10 34 J s 3108 m s1 1.81.6022 1019 J
6.893 10 7 m
m E 1.81.60221019 J 3.2041036 kg
c2
(3108 m s 1 )2
p h 6.626 10 34 J s 9.612 10 28 kg m s 1
波动性, 即一个能量为E、动量为 p 的质点同时也
具有波的性质, 其波长 由动量 p 确定, 频率 则
由能量
E
确定

h
h
p m
E
h
德布罗意关系式
12
注:
①其中 E 和 p 体现微粒性, 和 体现波动性,两
者通过普朗克常数 h 相关联;

量子力学基础

量子力学基础

量子力学基础量子力学是描述微观世界中物质和能量行为的一门科学,它在20世纪初由物理学家们逐步建立起来。

量子力学是现代物理学的基石,对于理解原子、分子、固体、核反应等现象具有重要意义。

本文将介绍一些量子力学的基础知识。

1. 波粒二象性量子力学将微观粒子既可以表现为粒子,又可以表现为波的特性称为波粒二象性。

这一概念是量子力学的核心之一。

例如,电子不仅可以具有粒子的位置和动量,还可以像波动一样干涉和衍射。

这对于解释实验数据和理解微观效应非常关键。

2. 不确定性原理不确定性原理是量子力学的另一个重要原理,由海森堡于1927年提出。

不确定性原理指出,在某些物理量的测量中,无法同时准确测量其位置和动量,或者能量和时间。

这是因为测量过程会对被测量的系统产生干扰,从而使得同时准确测量两个互相联系的物理量成为不可能。

3. 波函数和波函数坍缩波函数是量子系统在给定时刻的状态描述,它是与量子力学中的各个物理量相对应的一组数学函数。

波函数可以用来计算某个物理量的概率分布,从而预测实验测量结果。

当对一个物理量进行测量时,波函数会发生坍缩,即系统会塌缩到某个确定的状态上。

4. 薛定谔方程薛定谔方程是量子力学的基本方程之一,由奥地利物理学家薛定谔于1925年提出。

薛定谔方程描述了量子系统的演化规律,可用来计算波函数随时间的变化。

薛定谔方程是解释原子、分子、凝聚态物质等现象的重要工具。

5. 超越边界和量子隧穿效应在经典物理学中,粒子的运动受到势能的限制,当粒子的能量低于势垒时,无法跨越势垒。

然而,在量子力学中,由于波粒二象性,粒子可以通过量子隧穿效应,以概率的形式穿越势垒,即使其能量低于势垒。

6. 基态和激发态在量子力学中,系统的能量可以分为不同的离散能级。

基态是系统的最低能量状态,而激发态是高于基态的能量状态。

通过向系统提供能量,可以使系统从基态跃迁到激发态,这在原子和分子的能级转移中起着重要作用。

总结:量子力学作为现代科学的重要分支,为我们理解微观世界提供了重要的工具和理论框架。

量子力学的基础知识

量子力学的基础知识

量子力学的基础知识
1.波粒二象性:物质既有粒子性又有波动性,既可以表现为粒子,又可以表现为波。

2.可观察量和算符:量子力学中的物理量称作可观察量,其对应的数学操作符称作算符。

3.薛定谔方程:描述量子系统演化的基本方程,它可以用来计算系统的波函数。

4.波函数:描述量子系统状态的函数,包含了系统所有的信息。

5.不确定原理:由于波粒二象性的存在,同一物理量的不同测量结果有一定的不确定性。

6.量子叠加态和纠缠态:量子系统可以处于多个状态的叠加态,同时这些状态之间可以相互影响并产生纠缠。

7.算符的本征值和本征态:算符作用于某个态时,可以得到一个数值和一个相应的本征态,它们是算符所描述的量子系统的重要特征。

8.量子力学的统计解释:许多量子现象都可以用统计方法来解释和描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章量子力学基础知识微观粒子运动的特征1 、几个代表性的实验经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。

它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。

19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。

(1)黑体辐射黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。

绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。

进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。

实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。

在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。

许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。

瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。

特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。

维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。

1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简谐振动,这种振子的能量只能采取某一最小能量单位ε0的整数倍数值。

ε=nε0, n=1,2,3,...n称量子数。

并且ε0=hν其中h 称为普朗克常数,数值为6.626×10-34 J.s由于量子数n 取值的整数性,辐射能量具有跳跃式的不连续性。

这种能量变化的不连续性就称为能量的量子化。

在量子化假定基础上,使振子的各本征振动的能量服从玻尔兹曼分布,得到辐射强度与波长的关系318[exp(/)1]E h hc k T --λ=πλλ-式中,T 为绝对温度;c 是光速;k 是玻尔兹曼常数。

这个公式结果和实验结果完全一致,很好地描述了黑体辐射问题。

下图中就是1500K 时辐射强度实验数据与瑞利-金斯理论及普朗克理论的比较。

…(2)光电效应19世纪赫兹发现光照射到金属表面上时,金属表面上会发射出光电子的现象就是的光电效应。

测定装置示意图如图。

当合适频率的入射光透过石英窗射向金属电极A 时,电极将发射具有一定动能的电子。

在该电极与环形电极C 间施加电压V ,可在检流计G 中检测到光电流。

当电压减少至零时,光电流仍有一定大小,说明光电子本身有动能。

当电压变负达到某值时,光电流等于零,此时电压与电荷的乘积应与光电子的动能相等,由此可估计光电子动能的大小。

实验中发现的规律主要有以下几点:每种金属都有一固定的频率ν0,称为临阈频率。

只有当入射光频率大于ν0时,才会有光电流产生,否则,无论光强度多大都不会产生光电流。

光电流强度和入射光强度成正比。

光电子电子动能和入射光频率成线性增长关系,而与入射光强度无关经典物理学理论认为光的能量应由光的强度决定,即由光的振幅决定,而与光的频率无关,光的频率只决定光的颜色。

光电流是金属内电子吸收入射光能量后逸出金属表面所产生的,因此,光电流是否产生,以及产生后光电子的动能大小应由光强度决定。

这样的解释显然和光电效应实验相矛盾。

1905年,爱因斯坦提出光子学说,成功地解释了光电效应,它的主要思想如下:光的能量只能是最小能量单位ε0(称光量子)的整数倍,ε=n ε0,n=1,2,3,…,n 称为量子数,并且光能量与光子频率ν成正比,ε0=h ν光子不但有能量,还有质量m,不同频率的光子具有不同的质量。

光子具有动量P=mc=h/λ光强度取决于单位体积内的光子数,即光子密度。

根据爱因斯坦的光子学说,当光照射到金属表面上时,能量为hν的光子被电子所吸收,电子将这部分能量中的一部分用来克服金属表面对它的吸引力,另一部分转变成逸出电子的动能。

hν0为电子逸出功,所以只有当频率大于临阈频率时,才能有电子逸出,产生光电流。

入射光强度越大,光子密度越大,光子越多,产生的光电流就越大,因此,光电流强度和入射光强度成正比。

(3)氢原子光谱原子被火焰、电弧等激发时,能受激而发光,形成光源。

将它的辐射线通过分光可以得到许多不连续的明亮的线条,称为原子光谱。

实验发现原子光谱是不连续的线状光谱。

这又是一个经典物理学不能解释的现象。

下图就是氢原子的巴尔末线系1911年卢瑟福(Rutherford E)用α粒子散射实验证实了原子模型,认为原子是由电子绕核运动构成的。

经典物理学无法解释原子光谱现象,因为根据经典电动力学,绕核作轨道运动的电子是有加速度的,应当自动地放射出辐射,因而能量要逐渐减少,这样会使电子逐渐接近原子核,最后和核相撞,因此原子应为一个不稳定的体系。

另一方面,根据经典电动力学,电子放出辐射的频率应等于电子绕核运动的频率,由于电子的能量要逐渐减少,其运动的频率也将逐渐地改变,因而辐射的频率也将逐渐地改变,所以原子发射的光谱应当是连续的。

然而实验测得的光谱却是线状的、不连续的。

这些都和经典的理论发生了本质的矛盾。

1913年玻尔(Bohr N)根据普朗克的量子论,爱因斯坦的光子学说和卢瑟福的原子模型,提出关于原子结构的三个假定:电子只能在核外某些稳定的轨道上运动,这时电子绕核旋转不产生经典辐射,原子相应处于稳定态,简称定态。

能量最低的稳定态称为基态,其它的称为激发态。

原子可由某一定态跳跃到另一个定态,称为跃迁,跃迁中放出或吸收辐射,其频率为νhν=E2-E1=ΔE原子各种可能存在的定态轨道有一定限制,即电子的轨道运动的角动量必须等于h/2π的整数倍,M=nh/2π,n=1,2,3,…此式又称玻尔的量子化规律,其中n为量子数。

%%%%1913年玻尔(Bohr N)根据普朗克的量子论,爱因斯坦的光子学说和卢瑟福的原子模型,提出关于原子结构的三个假定:电子只能在核外某些稳定的轨道上运动,这时电子绕核旋转不产生经典辐射,原子相应处于稳定态,简称定态。

能量最低的稳定态称为基态,其它的称为激发态。

原子可由某一定态跳跃到另一个定态,称为跃迁,跃迁中放出或吸收辐射,其频率为νhν=E2-E1=ΔE原子各种可能存在的定态轨道有一定限制,即电子的轨道运动的角动量必须等于h/2π的整数倍,M=nh/2π,n=1,2,3,…此式又称玻尔的量子化规律,其中n为量子数。

根据玻尔的假定可以计算出氢原子基态轨道的半径a0为52.9pm,基态能量为-13.6eV,和实验结果十分接近。

对于微观体系的运动,经典物理学已完全不能适用。

以普朗克的量子论、爱因斯坦的光子学说和玻尔的原子模型方法为代表的理论称为旧量子论。

旧量子论尽管解释了一些简单的现象,但是,对绝大多数较为复杂的情况,仍然不能解释。

这显然是由于旧量子论并没有完全放弃经典物理学的方法,只是在其中加入了量子化的假定,然而量子化概念本身与经典物理学之间是不相容的。

因此,旧量子论要作为一个完整的理论体系,其本身是不能自圆其说的。

从黑体辐射、光电效应和原子光谱等实验可见,对于微观体系的运动,经典物理学已完全不能适用。

以普朗克的量子论、爱因斯坦的光子学说和玻尔的原子模型方法为代表的理论称为旧量子论。

旧量子论尽管解释了一些简单的现象,但是,对绝大多数较为复杂的情况,仍然不能解释。

这显然是由于旧量子论并没有完全放弃经典物理学的方法,只是在其中加入了量子化的假定,然而量子化概念本身与经典物理学之间是不相容的。

因此,旧量子论要作为一个完整的理论体系,其本身是不能自圆其说的。

2 、波粒二象性的普遍性及统计解释17世纪末以前,人们对光的观察和研究还只限于几何光学方面。

从光的直线传播、反射定律和折射定律出发,对于光的本性问题提出了两种相反的学说——以牛顿为代表的微粒说和以惠更斯为代表的波动说。

微粒说认为,光是由光源发出的以等速直线运动的微粒流。

微粒种类不同,颜色不同。

在光反射和折射时,表现为刚性弹性球。

波动说认为光是在媒质中传播的一种波,光的不同颜色是由于光的波长不同引起的。

微粒说和波动说都能解释当时已知的实验事实,但在解释折射现象时导出的折射率结论相反:微粒说的结论是光在媒质中的相对折射率正比于光在媒质中的传播速率,而波动说则得出相对折射率反比于光在媒质中的传播速率的结论。

当时由于还不能准确测量光速,所以无法判断哪种说法对。

随后光的干涉和衍射现象相继发现,这些现象是波的典型性质,而微粒说无法解释。

光速的精确测定证实了波动说对折射率的结论是正确的。

光的偏振现象进一步说明光是一种横波。

因此在19世纪末、本世纪初的黑体辐射、光电效应和康普顿散射等现象发现以前,波动说占了优势。

为了解释光在真空中传播的媒质问题,提出了“以太”假说。

“以太”被认为是一种弥漫于整个宇宙空间、渗透到一切物体之中且具有许多奇妙性质的物质,而光则认为是以“以太”为媒质传播的弹性波。

19世纪70年代,麦克斯韦建立了电磁场理论,预言了电磁波的存在。

不久后赫兹通过实验发现了电磁波。

麦克斯韦根据光速与电磁波速相同这一事实,提出光是一种电磁波,这就是光的电磁理论。

根据麦克斯韦方程组和电磁波理论,光和电磁波无需依靠“以太”作媒质传播,其媒质就是交替变化的电场和磁场本身。

所谓“以太”是不存在的。

到了19世纪末,因为光的电磁波学说不能解释黑体辐射现象而碰到了很大的困难。

为了解释这个现象,普朗克在1900年发表了他的量子论。

接着爱因斯坦推广普朗克的量子论,在1905年发表了他的光子学说,圆满地解释了光电效应,又在1907年在振子能量量子化的基础上解释了固体的比热与温度的关系问题。

根据他的意见,光的能量不是连续地分布在空间,而是集中在光子上。

这个学说因为康普顿效应的发现再一次得到了实验证明。

光子学说提出以后,重新引起了波动说和微粒说的争论,并且问题比以前更尖锐化了,因为凡是与光的传播有关的各种现象,如衍射、干涉和偏振,必须用波动说来解释,凡是与光和实物相互作用有关的各种现象,即实物发射光(如原子光谱等)、吸收光(如光电效应、吸收光谱等)和散射光(如康普顿效应等)等现象,必须用光子学说来解释。

不能用简单的波动说或微粒说来解释所有现象。

因此,光既具有波动性的特点,又具有微粒性的特点,即它具有波、粒二象性(wave particle duality),它是波动性和微粒性的矛盾统一体,不连续的微粒性和连续的波动性是事物对立的两个方面,它们彼此互相联系,相互渗透,并在一定的条件下相互转化,这就是光的本性。

相关文档
最新文档