2006年中考复习之锐角三角函数

合集下载

锐角三角函数复习1

锐角三角函数复习1

四、锐角三角函数值的变化规律
(1)当角度在0~90之间变化时,正弦值 和正切值随角度的增大而增大
(2)当角度在0~90之间变化时,余弦值 随角度的增大而减小
(1)当锐角A>300时,cosA的值是(
1 ( A). 小于 2 3 C .小于 2 1 B .大于 2
)
3 D .大于 2
(2)下列判断中正确的是()
三、特殊角的三角函数值
例5计算
1
sin 60 1
0
2
1 tan60
0
0
(2).6 tan 30 3 sin 60 2 cos45
2 0
0
( 3)
12 | 3 3 | tan60
0
1 (3)、cos , 求: 的值 2
2
(4)、3 tan 4 tan 3 0, 则 ___
(2)如果两条直角边分别都扩大2倍,
那么锐角的各三角函数值都( )
(A)扩大2倍;(B)缩小2倍;(C) 不变;(D)不能确定
(3)在Rt△ABC中∠C=90 °,下列 式子中不一定成立的是() (A)cosA=cosB; (C)sinA=cosB; (B)cosA=sinB (D)sin(A+B)=sinC
若a=3, ∠B=60°,则a= ∠A= 。 , c= ,
(3) 在⊿ABC中,∠C=90°,若b=4, a:c= 3 :2,则∠B=60°,则 ∠A= ,a= , c= 。
(4)如图,已知AB是⊙O的直径, CD是弦, 且 CD⊥AB , BC=6 , AC=8 . 则 sin∠ABD的值是( )
(A)sin30 °+cos30 °=1 ( C )cos46 °>sin43 °

中考数学复习专题之锐角三角函数,考点过关与基础练习题

中考数学复习专题之锐角三角函数,考点过关与基础练习题

30. 锐角三角函数➢ 知识过关1. 锐角三角函数的定义在Rt△ABC 中,A 、B 、C 的对边分别为a 、b 、c 且∠C=90°,sinA=_____,cosA=_____,tanA=____3. 三角函数之间的关系(1) 同角三角函数之间的关系:=+αα22cos sin _______;αααcos sin tan =(2) 互余两角的三角函数的关系:sin(90°-α)=________;cos(90°-α)=_______ (3) 锐角三角函数的增减性:当α为锐角时,1cos 0,1sin 0<<<<αα且sinα、tanα的值都随α的增大而_______;cosα的值随α的增大而_______➢ 考点分类考点1求锐角三角函数值例1 (1)如图所示,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切值为( ) A.2 B.252 C. 25 D.21(2) 如图所示,Rt△ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则cosA=_____考点2特殊角度的三角函数值 例2(1)在锐角△ABC 中,若0)3(tan |41c |22=-+-B A os ,则∠C 的正切值是________. (2)计算:00230cos 2|23|)14.3()21(----+-π考点3三角函数之间的关系 例3下列式子错误的是( )A.050sin 40cos = B.175tan 15tan 0=⋅ C.125cos 25sin 022=+ D.030sin 260sin =➢ 真题演练1.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则sin ∠BOD =( )A .12B .2C .2√55D .√552.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P .则tan ∠APD 的值是( )A .2B .1C .0.5D .2.53.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .√5B .√55C .12D .2√534.如图,在网格中,点A ,B ,C 都在格点上,则∠CAB 的正弦值是( )A .√55B .12C .2√55D .25.如图,在中Rt △ABC ,∠C =90°,AB =13,AC =5,下列结论中,正确的是( )A .tanB =125B .tan A =512C .sin A =1213D .cos B =5136.如图是某商场自动扶梯的示意图,自动扶梯AB 的坡角(∠BAC )为30.5°,乘客从扶梯底端升到顶端上升的高度BC 为5米,则自动扶梯AB 的长为( )A .5tan30.5°米B .5sin30.5°米C .5sin30.5°米 D .5cos30.5°米7.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,那么sin ∠BAC 的值为 .8.已知在△ABC 中,AB =13,BC =17,tan B =512,那么AC = ․9.计算:(1)(13)﹣1+sin45°﹣(π+1)0+√3tan60°(2)sin 230°+cos 230°−12tan 245°10.如图,在△ABC 中,AD ⊥BC ,垂足为点D ,BF 平分∠ABC 交AD 于点E ,BC =5,AD =4,sin ∠C =2√55. (1)求sin ∠BAD 的值; (2)求线段EF 的长.➢ 课后作业1.如图,在△ABC 中,AD ,BE 是△ABC 的角平分线,如果AB =AC =10,BC =12,那么tan ∠ABE 的值是( )A .12B .√63C .√64D .22.图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =m ,∠AOB =α,则OC 2的值为( )A .m 2sin 2α+m 2B .m 2cos 2α+m 2C .m 2sin 2α+m 2D .m 2cos 2α+m 23.如图,在离铁塔100米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.4米,则铁塔的高BC 为( )A .(1.4+100tan α)米B .(1.4+100tanα)米 C .(1.4+100sinα)米 D .(1.4+100sin α)米4.兴义市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高1m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进20m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为( )A .(10√3+1)mB .(20√3+1)mC .(5√3+1)mD .(15√3+1)m5.如图,AD 是△ABC 的中线,AD =5,tan ∠BAD =34,S △ADC =15,则AC 的长为( )A .√5B .2√10C .2√5D .√106.如图,A 、D 、B 在同一条直线上,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为( )A .ℎcosαB .ℎsinαC .ℎtanαD .h •cos α7.如果把一个锐角△ABC 的三边的长都扩大为原来的2倍,那么锐角A 的正弦值( ) A .扩大为原来的2倍 B .缩小为原来的12C .没有变化D .不能确定8.如图,AD 是△ABC 的高,若BD =2CD =6,tan C =2,则sin B =( )A .12B .√22C .13D .√239.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若cos∠BAC=13,则AD的长度是.10.已知:如图,△ABC中,AC=10,sinC=45,sinB=13,则AB=.11.在Rt△ABC中,∠C=90°,BC=4,sin A=23,则AC=.12.已知在△ABC中,∠C为直角.(Ⅰ)若AB=13,tan A=512,求△ABC的面积.(Ⅱ)若BC=2√3,AD是角平分线,BD=2CD,求AB,AC的长度.13..如图,CD是△ABC的中线,∠B是锐角,sin B=√22,tan A=12,AC=√5.(1)求AB的长.(2)求tan∠CDB的值.➢冲击A+如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:∠BAG=∠ABG;②若AD=5,求AF的长.。

中考复习: 锐角三角函数

中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。

当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。

2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。

3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。

4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。

5、正、余弦的平方关系:sin 2α+ cos 2α=1。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。

锐角三角函数 复习

锐角三角函数 复习

C.扩大4倍
D.没有变化
2.(2013•温州)如图,在△ABC中, ∠C=90°,AB=5,BC=3,则sinA的值是( C )
A. 3
B. 4
C. 3
4
3
5
D. 4 5
3
3.在△ABC中,∠C=90,BC=6cm,sinA= ,
则AC的长为( B )
5
A.3cm B.8cm C.10cm D.5cm
边为c,a,b分别是∠A的对边和邻边,则
正弦:sinA=______=_______; A
b
余弦:cosA=______=_______;
C
正切:tanA=______=_______.
c aB
考点二:特殊角的三角函数 值30°、45°、60°角的正弦值、余弦值和正切值如下表:
角度 三角函数
sinA
BE 5
AE
ABC为等腰直角三角形, AB AC 6, B 且A 45,在RtAED中,AE DE x,
由AB AE EB得 : 62 62 x 5x 解得x 12
AD AE2 DE2 122 122 12 2
14.如图,在某建筑物AC上,挂着“美丽家园”的宣传条 幅BC,小明站在点F处,看条幅顶端B,测的仰角为,再往 条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角 为,求宣传条幅BC的长,(小明的身高不计,结果精确到 0.1米)
D
A
O
B
C
11.(2008 泰安)直角三角形纸片的两直
角边长分别为6,8,现将如图那样折叠,
使点 A 与点 B重合,折痕为DE,则
tan CBE 的值是

中考《锐角三角函数》解题策略

中考《锐角三角函数》解题策略

中考《锐角三角函数》解题策略《锐角三角函数》是中考的必考点,与相似三角形等知识点结合,极具灵活性.这要求我们在理解直角三角形中五个元素的关系、运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的基础上,会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.我们可以从以下几方面找到《锐角三角函数》解题策略,达到以“不变”应“万变”的功效。

一、基础知识(一)锐角三角函数的定义如下图,在Rt△ABC中,∠C=900,AB=c,AC=b,BC=a,则∠A的:1 .正弦:2.余弦:3 .正切:(二)特殊角的三角函数值注:我们很多学生在考试时因为紧张等原因,常常出现竟然把特殊锐角的有三角函数值记错了现象,因此我们只要要求学生记住右边的两个特殊直角三角形,就记住了特殊角的三角函数值了,就不会出错了。

(三)规律探索1.(1);(2)tanA=2.(1)sinA=cos(90°一 A)=cosB;(2)cosA=sin(90°一A)=sinB3.(1)0<sinA<1;0<cosA<14.三角函数值的变化规律(1)当角度在0°— 90°间变化时,正弦值随着角度的增大而增大;(2)当角度在0°—90°间变化时,余弦值随着角度的增大而减小。

(3)450的正弦值等于其余弦值。

(四)应用中的常识1 .仰角、俯角:在视线与水平线所成的锐角中,视线在水平线上方的角叫;视线在水平线下方的角叫。

(如图1示)2.坡度(坡比)、坡角:坡面的铅直高度h和水平宽度l的比叫坡度(坡比),用字母i表示;坡面与水平线的夹角a叫坡角,i=tana=。

(如图2示)3.方向角:一般指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度。

如图,A点位于O点的北偏东300方向,B点位于O点的南偏东600方向,C点位于O点的北偏西450方向(或西北方向)。

锐角三角函数的解题技巧

锐角三角函数的解题技巧
(二)同角的三角函数之间的关系
(1)平方关系:sin2α+cos2α=1
(2)商数关系:
(三)两角的关系
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.
答案:D
分析:
(1)要求sinα与cosα的关系的值,而已知tanα的值,故可通过 来求值.
(2)已知tanα的值,也可通过 ,把要求的式子的分子,分母同时除以cos2α转化成关于tanα的关系,这样便可求出结论.
点评:在进行三角函数有关计算时,常利用有关公式进行变换.
2、化简计算
例3、计算
分析:
这是一组有关特殊角三角函数值的计算题,计算中最关键是将它们先化成具体的数值,同时还要应用其它一些知识帮助求值,如(1)注意分母有理化,(2)应掌握整数指数幂的意义.
(5)0<sinA<1,0<cosA<1
2、同名三角函数值的变化规律
当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.
三、解题方法技巧点拨
1、求锐角三角函数的值
例1、(1)在Rt△ABC中,∠C=90°,若 ,求cosB,tanB的值.
分析:本题主要考查锐角三角函数的定义,结合图形求解可化繁为简,迅速得解.
5、求线段长与面积
例6、如图,在△ABC中,∠A=30°,∠B=45°,AC=4,求BC的长.
分析:
题中有30°,45°特殊角,想把它们放到直角三角形中,利用三角函数来解题.
点评:
(1)在作高线构造直角三角形时,一般不过特殊角的顶点作垂线,这样便于利用特殊角解题.

中考专项复习锐角三角函数

中考专项复习锐角三角函数

与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函

汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度

中考总复习锐角三角函数综合复习--知识讲解

中考总复习锐角三角函数综合复习--知识讲解

中考总复习锐角三角函数综合复习--知识讲解锐角三角函数是初中数学中的一个重要内容,也是中考数学考试中常考的内容之一、掌握了锐角三角函数的定义、性质和相关的计算方法,可以帮助我们解决与角度有关的各种问题,如计算角度的大小、求角的三角函数值等。

下面是锐角三角函数的综合复习知识讲解。

1.弧度制和角度制在介绍锐角三角函数之前,我们首先要了解弧度制和角度制。

在角度制中,一个圆的周长被定义为360度,而在弧度制中,一个圆的周长被定义为2π弧度。

所以可以得到以下关系:360度=2π弧度180度=π弧度90度=π/2弧度2.定义对于任意一个锐角A,我们可以在一个单位圆上面取点P,使得∠POA 的顶点为O,点O为圆心,点P在单位圆上。

这样,我们可以定义以下几个锐角三角函数:正弦函数sinA、余弦函数cosA、正切函数tanA、余切函数cotA。

3.性质(1) 正弦函数sinA:在单位圆上,点P的纵坐标就是正弦值sinA。

(2) 余弦函数cosA:在单位圆上,点P的横坐标就是余弦值cosA。

(3) 正切函数tanA:tanA的值等于sinA/cosA。

(4) 余切函数cotA:cotA的值等于cosA/sinA。

(5) 错位现象:sinA等于cos(90度-A),cosA等于sin(90度-A)。

4.基本关系式(1) sin²A + cos²A = 1,即sin²A = 1 - cos²A,cos²A = 1 -sin²A。

(2) tanA = sinA/cosA,cotA = 1/tanA = cosA/sinA。

(3) sin(180度 - A) = sinA,cos(180度 - A) = -cosA。

(4) cos(360度 - A) = cosA,sin(360度 - A) = -sinA。

5.锐角三角函数的值(1)0度、30度、45度、60度、90度的正弦、余弦、正切值是特殊的,需要进行熟记。

数学中考一轮复习:三角函数-锐角三角函数要点集锦

数学中考一轮复习:三角函数-锐角三角函数要点集锦

初中数学锐角三角函数要点集锦考点考纲要求分值考向预测锐角三角函数要点1. 理解正弦、余弦、正切的定义及计算公式;2. 能够推导并掌握特殊角的三角函数值;3. 能够理解与锐角三角函数有关的公式。

3~5分主要考查为利用三角函数的定义求值,利用特殊角的三角函数值进行计算,难度不大,分值也不高,理解定义是解决问题的关健。

一、锐角三角函数基本定义:在Rt△ABC中,∠C=90°,我们把∠A的对边与斜边的比叫做∠A的正弦,记作sin A;把∠A的邻边与斜边的比叫做∠A的余弦,记作cos A;把∠A的对边与邻边的比叫做∠A 的正切,记作tan A。

即:sinA=;cosA=;tanA=。

锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

ABCabc对边邻边斜边【随堂练习】(贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为()A. B. C. D.思路分析:首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可。

答案:解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==,故选:D。

三角函数角度αsinαcosαtanα30°45° 160°【重要提示】1. 各三角函数值可通过直角三角形性质及勾股定理求出边长从而求出比值;2. 锐角三角函数值的取值范围及增减情况:①∠A的正弦函数、余弦函数的取值范围是:0<sinA<1,0<cosA<1,即任意锐角的正弦、余弦值都大于0而小于1;而正切是两直角边的比,所以∠A的正切函数取值范围是:tanA>0,即任意锐角的正切值都大于0。

②当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)。

三、同角、互余两角的锐角三角函数值的关系:1. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值;即:。

初三锐角三角函数复习讲义

初三锐角三角函数复习讲义

锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:如图所示,在Rt△ABC 中,∠C=90则∠A 的正弦可表示为:sinA0, ∠A 、∠B、∠C 的对边分别为a、b、c,∠A 的余弦可表示为:cosA∠A 的正切可表示为:tanA,它们称为∠ A 的锐角三角函数①( )sin A =______,斜边②( )cos A =______,斜边③( )tan A =______,A的邻边【特别提醒:1、sinA、cosA、tanA 表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关。

2、取值范围<sinA< ,<cosA< ,tanA>例1. 锐角三角函数求值:在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=______,sinA=______,cosA=______,tanA=______,sinB=______,cosB=______,tanB=______.典型例题:类型一:利用直角三角形求值1.已知:如图,Rt△TNM 中,∠TMN =90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR 、tan∠TMR.2.已知:如图,⊙O 的半径OA=16cm,OC⊥AB 于C 点,sin AOC 求:AB 及OC 的长.3 4类型二.利用角度转化求值:1.已知:如图,Rt△ABC 中,∠C=90°.D 是AC 边上一点,DE⊥AB 于E 点.DE∶AE=1∶2.求:sin B、cosB、tanB.2.如图,直径为10 的⊙ A 经过点C (0,5) 和点O (0,0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则c os∠OBC 的值为()A.y 12B.32C.35D.45CAxO DB第8题图35.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为2,AC 2 ,则sin B 的值是()A.23B.32C.34D.436. 如图4,沿AE 折叠矩形纸片A BCD ,使点D 落在BC 边的点F 处.已知AB 8 ,BC 10 ,AB=8,则t an∠EFC 的值为()A DEA.34 B.43C.35D.45BFC7. 如图6,在等腰直角三角形ABC 中, C 90 ,AC 6 ,D为A C 上一点,若tan1DBA ,则A D 的长为( )5A. 2 B .2 C.1 D .2 2类型三. 化斜三角形为直角三角形8.如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 3,求AB 的长.2.如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2 ,求△ABC 的周长.(结果保留根号)3. ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是()2 B.43 cm2A.2 3 cm2 D.12 cm2C.6 3 cm类型四:利用网格构造直角三角形1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()12 A.B.55C.10102 55D. ACO BA B2.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.3.如图,A、B、C 三点在正方形网络线的交点处,若将ABC 绕着点 A 逆时针旋转得到AC'B',则tan B' 的值为()A. 14B.13C.12D. 14.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A .55B.2 5512C.D. 2知识点二:特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.29.计算:tan 60 sin 45 2 cos30 -1+(2 π-1)0-10.计算:333tan30 -°tan45 °3.计算:122 cos60 sin 4532tan 30 4.计算:t an 45 sin 301 cos60例2.求适合下列条件的锐角.(1)1cos (2)23tan (3)32sin 2 (4) 6 cos( 16 ) 3 32()已知为锐角,且tan( 30 ) 3,求tan 的值1 22()在ABC 中,cos A (sin B ) 0 ,A, B 都是锐角,求 C 的度数2 2例3.三角函数的增减性1.已知∠A 为锐角,且sin A < 12,那么∠A 的取值范围是A. 0 <°A < 30 °B. 30 <°A <60°C. 60 <°A < 90 °D. 30 <°A < 90 °4. 已知 A 为锐角,且0cos A sin 30 ,则()A. 0 <°A < 60 °B. 30 <°A < 60 °C. 60 <°A < 90 °D. 30 <°A < 90 °类型五:三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E,BE=16cm,sin A 1213求此菱形的周长.2.已知:如图,Rt△ABC 中,∠C=90°,AC BC 3 ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD;(2)sin∠BAD、cos∠BAD 和tan∠BAD.11. 已知:如图△ABC 中,D 为BC 中点,且∠BAD=90°,∠CAD 、tan∠CAD.1tan B ,求:sin∠CAD、cos3312. 如图,在Rt△ABC 中,∠C=90°,sin B ,点D 在BC 边上,DC= AC = 6 ,求tan ∠BAD5的值.AB D C5(.本小题 5 分)如图,△ABC 中,∠A=30°,AC 4 3.求AB 的长.tan3B ,2CAB知识点三:解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在Rt△ABC 中,∠C=90°,AC=b,BC=a,AB=c,①三边之间的等量关系:________________________________ .②两锐角之间的关系:__________________________________ .③边与角之间的关系:sin A cos B______;cos A sin B _______;1 1tan A _____;tan Btan B tan A______.④直角三角形中成比例的线段(如图所示).在Rt△ABC 中,∠C=90°,CD⊥AB 于D.2=_________;AC2=_________; CD2=_________;AC·BC=_________. BC例1.在Rt△ABC 中,∠C=90°.(1)已知:a 2 3 ,b 2 ,求∠A、∠B,c;(2)已知:2sin A ,c 6 ,求a、b;3(3).已知:△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.类型六:解直角三角形的实际应用仰角与俯角1.如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD为100 米,点 A 、D、B 在同一直线上,则A B 两点的距离是()A .200 米B.200 米C.220 米D.100()米2.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13 所示,某学生在河东岸点A处观测到河对岸水边有一点 C ,测得 C 在A北偏西31 的方向上,沿河岸向北前行20 米到达B 处,测得C 在B北偏西45 的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31 °≈35,sin31 °≈12)图133.如图,小聪用一块有一个锐角为30 的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3 3 米,小聪身高AB 为1.7 米,求这棵树的高度.CADB E4.一数学兴趣小组为测量河对岸树AB 的高,在河岸边选择一点C,从C 处测得树梢A的仰角为45°,沿BC 方向后退10 米到点D,再次测得点 A 的仰角为30°.求树高.(结果精确到0.1 米.参考数据: 2 1.414, 3 1.732)A45°30°BCD5.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的在 A 处,离益阳大道的距离(AC)为30 米.这时,一辆测点设知识检测车速.如图,观为8 秒,∠BAC=75°.小轿车由西向东匀速行驶,测得此车从 B 处行驶到 C 处所用的时间(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到 1 米,参考数据:sin75 °≈0.96,59cos75°≈0.258,8 tan75°≈ 3.73,23 ≈ 1.73,260 千米/小时≈16.7米/秒)坡度与坡角13.如图,某水库堤坝横断面迎水坡AB 的坡比是1: 3 ,堤坝高BC=50m,则应水坡面AB 的长度是()A.100m B.100 3 m C.150m D.50 3 m14.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡比为i=1:10,学生小明站在离升旗台水平距离为35m(即CE=35m)处的 C 点,测得旗杆顶端 B 的仰角为α,已知tanα= CD =1.6m,请帮小明计算出旗杆AB 的高度. 37,升旗台高AF =1m,小明身高BA i FC = 1:10αD FC E15.如图,有两条公路OM,ON 相交成30°角,沿公路OM 方向离O 点80 米处有一所学校A,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50 米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校 A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18 千米/时.(1)求对学校 A 的噪声影响最大时,卡车P 与学校 A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校 A 带来噪影响的时间.NP30°O M80米 A16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 米,AB=6 米,中间平台宽度DE =1 米,EN、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC 于F,∠CDF =45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 米,参考数据:sin31 °≈0.,52cos31°≈0.8,6tan31°≈0.)60CE D 45° F31°A N MB5.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45o降为30o,已知原滑滑板AB 的长为 5 米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空地,像这样改造是否可行?说明理由。

中考复习之锐角三角函数

中考复习之锐角三角函数

2006年中考复习之锐角三角函数知识考点:本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 、cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。

精典例题:【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。

(1)求AB 的长;(2)求sinA 、cosA 的值;(3)求A A 22cos sin +的值;(4)比较sinA 、cosB 的大小。

分析:在Rt △ABC 中,已知两直角边长求斜边长可应用勾股定理,再利用两直角边长与斜边长的比分别求出sinA 、cosA 的大小,从而便可以计算出A A 22cos sin +的大小,即可比较sinA 与cosB 的大小。

答案:(1)AB =13; (2)sinA =135,cosA =1312; (3)1cos sin 22=+A A ; (4)sinA =cosB变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。

(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。

答案:(1)35;(2)6 【例2】计算:020045sin 30cot 60sin +⋅ 解:原式=2)22(323+⨯=2123+=2 注意:熟记00、300、450、600、900角的三角函数值,并能熟练进行运算。

【例3】已知,在Rt △ABC 中,∠C =900,25tan =B ,那么cosA ( ) A 、25 B 、35 C 、552 D 、32分析:由三角函数的定义知:斜边的对边A A ∠=cos ,又因为25tan =B ,所以可设k AC 5=,k BC 2=)0(>k ,由勾股定理得k AB 3=,不难求出3535cos ==k k A 答案:B变式:已知α为锐角,且54cos =α,则ααcot sin += 。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

中考生常用三角函数公式

中考生常用三角函数公式

中考生常用三角函数公式1、同角三角函数的差不多关系倒数关系: tan cot=1 sin csc=1 cos sec=1商的关系:sin/cos=tan=sec/csc cos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=1 1+tan^2()=sec^2() 1+cot^2()=csc^2()平常针对不同条件的常用的两个公式sin +cos =1tan *cot =1一个专门公式(sina+sin)*(sina+sin)=sin(a+)*sin(a-)2、锐角三角函数公式正弦:sin =的对边/ 的斜边余弦:cos =的邻边/的斜边正切:tan =的对边/的邻边余切:cot =的邻边/的对边3、二倍角公式正弦sin2A=2sinAcosA余弦1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1正切tan2A=(2tanA)/(1-tan^2(A))4、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)5、n倍角公式sin(n a)=Rsina sin(a+/n)……sin(a+(n-1)/n)。

其中R=2^(n-1)6、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cos A)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/s in(a)=sin(a)/(1+cos(a))7、和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)8、两角和公式cos(+)=coscos-sinsincos(-)=coscos+sinsinsin(+)=sincos+cossinsin(-)=sincos -cossin9、积化和差sinsin = [cos(-)-cos(+)] /2 coscos = [cos(+)+cos(-)]/2 sincos = [sin(+) +sin(-)]/2 cossin = [sin(+)-sin(-)]/210、双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2 k+)= sin cos(2k+)= cos tan(2k+)= tan cot(2k+)= cot 公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin (+)= -sin cos(+)= -cos tan(+)= tan cot(+)= cot 公式三:任意角与-的三角函数值之间的关系:sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot公式四:利用公式二和公式三能够得到与的三角函数值之间的关系:s in()= sin cos()= -cos tan()= -tan cot()= -cot公式五:利用公式-和公式三能够得到2与的三角函数值之间的关系:s in(2)= -sin cos(2)= cos tan(2)= -tan cot(2)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= cos cos(/ 2+)= -sin tan(/2+)= -cot cot(/2+)= -tan sin(/2-)= cos cos(/2-)=sin tan(/2-)= cot cot(/2-)= tan sin(3/2+)= -cos cos(3/2+)= sin tan(3/2+)= -cot cot(3/2+)= -tan sin(3/2-)= -cos cos(3/2-)= -sin tan(3/2-)= cot cot(3/2-)= tan (以上kZ) Asin(t+)+ Bsin(t+) = {(A +B +2ABcos(-)} sin{ t + arcsin[ (Asin+Bsin) / {A^2 +B^2; +2ABcos(-)} } 表示根号,包括{……}中的内容11、诱导公式sin(-) = -sin cos(-) = cos tan (-)=-tan sin(/2-) = cos cos(/2-) = sin si n(/2+) = cos cos(/2+) = -sin sin() = sin cos() = -cos sin() = -sin cos() = -cos tanA= sinA/cosA tan(/2+)=-cot tan(/2-)=cot tan(-)=-tan tan(+)=tan 诱导公式记背诀窍:奇变偶不变,符号12、万能公式sin=2tan(/2)/[1+(tan(/2))] cos=[1-(tan(/2))]/[1+(tan(/2))] tan=2tan(/2)/[1-(t an(/2))]13、其它公式(1) (sin)+(cos)=1(2)1+(tan)=(sec)(3)1+(cot)=(csc)(4)关于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC (5)cotA cotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)c ot(C/2)(7)(cosA)+(cosB)+(cosC)=1-2cosAcosBcosC(8)(sinA)+(sinB)+(sinC)=2+2cosAcosBcosC家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

锐角三角函数中考必考题型

锐角三角函数中考必考题型

锐角三角函数中考必考题型
题目:锐角三角函数
锐角三角函数是中考必考知识点之一,本文将从定义、值域、性质和运用四个方面详细介绍这个重要的数学概念。

一、定义
锐角三角函数分为正弦、余弦和正切三种,它们的定义如下:
正弦:在直角三角形中,对于一个锐角,其对边与斜边的比值。

余弦:在直角三角形中,对于一个锐角,其邻边与斜边的比值。

正切:在直角三角形中,对于一个锐角,其对边与邻边的比值。

二、值域
正弦和余弦的值域均为[-1,1],而正切的值域为R(实数集)。

三、性质
1.正弦函数与余弦函数是周期函数,周期均为360°,即2π。

2.正弦函数与余弦函数在对称轴上对称。

3.正切函数是奇函数,即tan(-x)=-tan(x)。

4.正切函数具有奇点,即tan(π/2+kπ)(k∈Z)。

5.正切函数的图像在x轴上有最多两个零点。

四、运用
1.利用正弦函数和余弦函数求两角间的方向角。

2.利用正切函数解决直角三角形中的问题,如求角度或边长。

3.利用正弦函数和余弦函数求解物理问题中的动态平衡问题。

4.利用三角函数解决航线问题,计算两点之间的距离、方向角等。

以上就是关于锐角三角函数的介绍,掌握了这个概念,我们可以在中考中更灵活地运用三角函数解决相关数学问题。

锐角三角函数(总复习)

锐角三角函数(总复习)

锐角三角函数一、 考点聚焦1.锐角三角函数定义=A sin ,=A cos ,=A tan 。

2.特殊角三角函数值3、解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 4.解直角三角形的类型:已知____________;已知___________________. 5.如图:解直角三角形的公式:(1)三边关系:__________________. (2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____.二、 典例精析例1、在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .30° 45° 60° sin α cos α tan α例2、计算:4sin 302cos 453tan 60︒-︒+︒.例3、等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的三角函数值.例4、Rt ABC ∆的斜边AB =5, 3cos 5A =,解这个直角三角形。

例5(2012上海市)如图,在Rt △ABC 中,∠ACB =90°,D 是边AB 的中点,BE ⊥CD ,垂足为点E .已知AC =15,cosA =35. (1)求线段CD 的长; (2)求sin ∠DBE 的值.三、 课堂练习一、选择题1. (2012天津市)2cos60︒的值等于【 】(A)1 (B)2(C)3(D)22. (2012浙江杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则【】A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°3. (2012浙江宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为【】A.4 B.2C.181313D.1213134. (2012江苏无锡)sin45°的值等于【】A.B.C.D.1二、填空题1.(2012湖北武汉)tan60°=.2.(2012宁夏区)在△ABC中∠C=90°,AB=5,BC=4,则tanA=3.(2012江苏常州)若∠α=600,则∠α的余角为,cosα的值为。

中考总复习锐角三角函数综合复习--知识讲解(基础)

中考总复习锐角三角函数综合复习--知识讲解(基础)

中考总复习:锐角三角函数综合复习—知识讲解(基础)撰稿:张晓新 审稿:杜少波【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.BCabc锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B a B c ∠==的邻边斜边;tan B bB B a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小),②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a) 由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.如图,在4×4的正方形网格中,tanα=( )(A)1 (B)2 (C) 12(D)52【思路点拨】把∠α放在一个直角三角形中,根据网格的长度计算出∠α的对边和邻边的长度.【答案】B;【解析】根据网格的特点:设每一小正方形的边长为1,可以确定∠α的对边为2,邻边为1,然后利用正切的定义tan∠αα=∠α的对边的邻边,故选B.【总结升华】本题考查锐角三角函数的定义及运用,可将其转化到直角三角形中解答,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.举一反三:【变式】在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是( )(A)12 (B)2 (C) 55 (D) 52【答案】选 C.因为∠C=90°,522AB=AC +BC =BC ,所以BC BC 5sin A AB 55BC===.类型二、特殊角的三角函数值2.已知a =3,且21(4tan 45)302b bc -++-=°,以a 、b 、c 为边长组成的三角形面积等于( ). A .6 B .7 C .8 D .9【思路点拨】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩°求出b 、c 的值,再求三角形面积. 【答案】A ;【解析】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩° 解得 4,5.b c =⎧⎨=⎩ 所以a =3,b =4,c =5,即222a b c +=,其构成的三角形为直角三角形,且∠C =90°, 所以162S ab ==. 【总结升华】利用非负数之和等于0的性质,求出b 、c 的值,再利用勾股定理的逆定理判断三角形是直角三角形,注意tan45°的值不要记错. 举一反三: 【变式】 计算:.【答案】原式.【思路点拨】为求sin B ,sin C ,需将∠B ,∠C 分别置于直角三角形之中,另外已知∠A 的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B 、C 向CA 、BA 的延长线作垂线,即可顺利求解.【答案与解析】解:过点B 作BD ⊥CA 的延长线于点D ,过点C 作CE ⊥BA 的延长线于点E .∵∠BAC =120°,∴∠BAD =60°.又∵CD =CA+AD =10,∴2257BC BD CD =+=,∴21sin 7BD BCD BC ∠==. 同理,可求得21sin 14ABC ∠=. ∴21213sin sin 71414ABC BCD ∠∠=⨯=. 【总结升华】由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线等方法将其置于直角三角形中.举一反三:【变式】如图,机器人从A 点,沿着西南方向,行了个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为__________.(结果保留根号).【答案】类型三、解直角三角形及应用【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例3】4.在△ABC中,∠A=30°,BC=3,AB=33,求∠BCA的度数和AC的长.【思路点拨】由于∠A是一个特殊角,且已知AB,故可以作AC边上的高BD(如图所示),可求得332BD=.由于此题的条件是“两边一对角”,且已知角的对边小于邻边,因此需要判断此题的解是否唯一,要考虑对边BC与AC边上的高BD的大小,而33332BC<<,所以此题有两解.【答案与解析】解:作BD⊥AC于D.(1)C1点在AD的延长线上.在△ABC1中,13BC=,332 BD=,∴13sin2C=.∴∠C1=60°.由勾股定理,可分别求得13 2DC=,92 AD=.∴AC1=AD+DC1=936 22+=.(2)C2点在AD上.由对称性可得,∠BC2D=∠C1=60°,213 2C D C D==.∴∠BC2A=120°,2933 22AC=-=.综上所述,当∠BCA=60°时,AC=6;当∠BCA=120°时,AC=3.【总结升华】由条件“两边一对角”确定的三角形可能不是唯一的,需要考虑第三边上的高的大小判断解是否唯一.【高清课堂:锐角三角函数综合复习 ID:408468 播放点:例4】5.如图所示,某船向正东航行.在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30°方向,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时20海里,求A,D两点间的距离(结果保留根号).【思路点拨】作CE ⊥AD ,用CE 可以表示出AE 、DE ,根据AD 的长,可以得到关于CE 的方程,就可以求得CE 的长. 【答案与解析】解:作CE ⊥AD 于E ,设CE =x(海里), ∵∠CAD =∠CDA =45°, ∴CE =AE =DE =x .在Rt △CEB 中,∠CBE =60°,BE =DE-BD =x-10. ∴tan 60310x CEx BE===-°. 解得 30155333x ==+-.∴AD =2x =(30+103)(海里).答:A ,D 两点间的距离为(30103)+海里.【总结升华】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.已知斜三角形中的SSS ,SAS ,ASA ,AAS 以及SSA 条件,求三角形中的其他元素是常见问题,注意划归为常见的两个基本图形(高在三角形内或高在三角形外)(如图所示):举一反三:【变式】坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖砌八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高.下图为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶(M)的仰角α=35°,在点A 和塔之间选择一点B ,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A ,B 两点间的距离为18.6m ,量出自身的高度为1.6m .请你利用上述数据帮助小华计算出塔的高度(tan35°≈0.7,结果保留整数).①在你设计的测量方案中,选用的测量工具是:________________________;________________________________________________________.【答案】解:(1)设CD 的延长线交MN 于E 点,MN 长为x m ,则ME =(x-1.6)m .∵β=45°,∴DE =ME =x-1.6.∴CE =x-1.6+18.6=x+17.∵tan tan 35ME CEα==°, ∴ 1.60.717x x -=+,解得x =45. ∴太子灵踪塔MN 的高度为45m .(2)①测角仪、皮尺;②站在P 点看塔顶的仰角、自身的高度(注:答案不唯一).【思路点拨】要得出有无触礁的危险,需求出轮船在航行过程中离点P 的最近距离,然后与暗礁区的半径进行比较,若大于则无触礁的危险,若小于则有触礁的危险.【答案与解析】解:过P 作PC ⊥AB 于C 点,根据题意知:AB =9×26=3,∠PAB =90°-60°=30°, ∠PBC =90°-45°=45°,∠PCB =90°.∴PC =BC 在Rt △APC 中,tan 303PC PC PC AC AB BC PC===++°, 即333PC PC=+. ∴3332PC +=>3. 答:客轮不改变方向继续前进无触礁危险.【总结升华】此题主要考查解直角三角形的有关知识.通过数学建模把实际问题转化为解直角三角形问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年中考复习之锐角三角函数
知识考点:
本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 、cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。

精典例题:
【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。

(1)求AB 的长;
(2)求sinA 、cosA 的值;
(3)求A A 2
2
cos sin +的值;
(4)比较sinA 、cosB 的大小。

分析:在Rt △ABC 中,已知两直角边长求斜边长可应用勾股定理,再利用两直角边长与斜边长的比分别求出sinA 、cosA 的大小,从而便可以计算出A A 2
2
cos sin +的大小,即可比较sinA 与cosB 的大小。

答案:(1)AB =13; (2)sinA =
135,cosA =13
12
; (3)1cos sin 2
2
=+A A ; (4)sinA =cosB 变式:(1)在Rt △ABC 中,∠C =900,5=
a ,2=
b ,则sinA = 。

(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。

答案:(1)
3
5
;(2)6 【例2】计算:0
2
45sin 30cot 60sin +⋅
解:原式=
2)2
2
(323+⨯=2123+=2
注意:熟记00、300、450、600、900角的三角函数值,并能熟练进行运算。

【例3】已知,在Rt △ABC 中,∠C =900,2
5
tan =
B ,那么cosA ( ) A 、
25 B 、35 C 、5
5
2 D 、32
分析:由三角函数的定义知:斜边的对边A A ∠=
cos ,又因为2
5
tan =B ,所以可设
k AC 5=,k BC 2=)0(>k ,由勾股定理得k AB 3=,不难求出3
5
35cos =
=
k k A 答案:B
变式:已知α为锐角,且5
4
cos =
α,则ααcot sin += 。

略解:可设α为Rt △ABC 的一锐角,∠A =α,∠C =900 ∴AC =k 4,AB =k 5,则BC =k 3 ∴15
2934533453cot sin =+=+=
+k k k k αα 评注:直角三角形中,只要知道其中任意两边的比,可通过勾股定理求出第三边,然后应用锐角三角函数的定义求锐角三角函数值。

【例4】已知3cot tan =+αα,α为锐角,则αα2
2cot tan += 。

分析:由定义可推出1cot tan =⋅αα
∴723cot tan 2)cot (tan cot tan 2222=-=⋅-+=+αααααα
评注:由锐角三角函数定义不难推出1cos sin 2
2=+A A ,1cot tan =⋅αα,它们是
中考中常用的“等式”。

探索与创新:
【问题】已知0
09030<<<βα,则αβαβcos 12
3
cos )cos (cos 2
-+-
--= 。

分析:α在00~900范围内,sin α、tan α是随α的增大而增大;cos α、cot α是随α的增大而减小。

∴cos β-cos α<0,又不难知道cos300=23,cos00=1,∴2
3
cos -β<0,αcos 1->0。

∴原式=αββαcos 123cos cos cos -+-
+-=2
3
2- 变式:若太阳光线与地面成α角,300<α<450,一棵树的影子长为10米,则树高h 的范围是( )(取7.13=)
A 、3<h <5
B 、5<h <10
C 、10<h <15
D 、h >15
略解:∵300<α<450
∴tan300<α<tan 450 而αtan 10=h
∴0
45tan 1030tan 10<<h ∴5.7<h <10 答案:B 跟踪训练: 一、选择题:
1、在Rt △ABC 中,∠C =900,若4
3
tan =
A ,则sinA =( ) A 、34
B 、43
C 、35
D 、5
3
2、已知cos α<0.5,那么锐角α的取值范围是( )
A 、600<α<900
B 、00<α<600
C 、300<α<900
D 、00<α<300 3、若1)10tan(30=+α,则锐角α的度数是( )
A 、200
B 、300
C 、400
D 、500 4、在Rt △ABC 中,∠C =900,下列式子不一定成立的是( )
A 、cosA =cos
B B 、cosA =sinB
C 、cotA =tanB
D 、2
cos 2sin B A C += 5、在Rt △ABC 中,∠C =900,3
1
tan =
A ,AC =6,则BC 的长为( ) A 、6
B 、5
C 、4
D 、2 6、某人沿倾斜角为β的斜坡前进100米,则他上升的最大高度为( )
A 、
βsin 100米 B 、βsin 100米 C 、β
cos 100
米 D 、βcos 100米 7、计算00
30cot 3
3
60cos +
的值是( ) A 、
27 B 、65 C 、23 D 、2
23+ 二、填空题:
1、若α为锐角,化简αα2sin sin 21+-= 。

2、已知135cot cot 0=⋅β,则锐角β= ;若tan α=1(00≤α≤900)则
)90cos(0α-= 。

3、计算0
2
2
63sin 21cot 90cos 48tan 42tan 27sin +⋅-⋅+= 。

4、在Rt △ABC 中,∠C =900,若AC ∶AB =1∶3,则cotB = 。

5、△ABC 中,AB =AC =3,BC =2,则cosB = 。

6、已知,在△ABC 中,∠A =600,∠B =450,AC =2,则AB 的长为 。

三、计算与解答题:
1、0
90cot 0cos 45tan 60cos 0tan 30sin 90sin ⋅-⋅+++;
2、△ABC 中,∠A 、∠B 均为锐角,且0)3sin 2(3tan 2
=-+-A B ,试确定△ABC 的形状。

3、已知0
60sin =a ,0
45cos =b ,求a
b b
b a b a -+-+2的值。

四、探索题:
1、△ABC 中,∠ACB =900,CD 是AB 边上的高,则
CB
CD
等于( ) A 、cotA B 、tanA C 、cosA D 、sinA
2、如图,两条宽度都是1的纸条交叉叠在一起,且它们的夹角为α,则它们重叠部分(图中阴影部分)的面积是( )
A 、αsin 1
B 、αcos 1
C 、αsin
D 、1
3、已知m =+ααcos sin ,n =⋅ααcos sin ,则m 与n 的关
系是( )
A 、n m =
B 、12+=n m
C 、122+=n m
D 、n m 212
-=
4、在Rt △ABC 中,∠C =900,∠A 、∠B 的对边分别是a 、b ,且满足02
2=--b ab a ,则tanA 等于( ) A 、1 B 、
251+ C 、251- D 、2
5
1± 跟踪训练参考答案
一、选择题:DAAAD ,BC
二、填空题:
1、1-sin α;
2、550,2
2
;3、2;4、22;5、31;6、31+
三、计算与解答题:
1、2;
2、等边三角形;
3、625+ 四、探索题:CACB。

相关文档
最新文档