研究生课程 博弈论 英文课件4
研究生课程 博弈论 英文课件3
3. Since player 2 is intelligent, he will predict the reaction of player 1 and figure out the expected payoff m2 (a2 ) from playing a2 : m2 (a2 ) = = ∀ a 1 ∈ A1 .
5 / 24
a1 ∈A1 a1 ∈A1
min u1 (a1 , a2 ) min {u2 (a3 , a1 ), u2 (a2 , a2 ), u2 (a1 , a3 )}, 1 2 1 2 1 2
1\2 a1 1 a2 1 a3 1 m2 (a2 )
a1 2 0, 0 4, −4 9, −9 −9
3. Since player 1 is intelligent, he will predict the reaction of player 2 and figure out the expected payoff m1 (a1 ) from playing a1 : m1 (a1 ) = = ∀ a 1 ∈ A1 .
2 / 24
First argument of player 1: Player 2 moves second
1. Since player 2 is intelligent, he will predict any action a1 ∈ A1 that player 1 may choose. 2. Since player 2 is rational, he will choose the action a2 that maximizes his payoff (or, equivalently, minimizes the payoff of player 2). P1 : P1 : P1 : a1 1 a2 1 3 a1 ⇒ ⇒ ⇒ P2 : P2 : P2 : a1 2 a2 2 2 a2 ⇒ ⇒ ⇒ u1min u1min u1min = 0 = 2 = 0
Chap.7 Repeated Games 博弈论英文版教学课件
P1 0+3,0+3 0+1/2,0+4 0+3,0+3 4+3,1/2+3 0+3,0+3 Q1 0+3,0+3 0+1/2,0+4 0+3,0+3 0+3,0+3 1/2+3,4+3
7.2 Infinitely repeated game
Definitionof strategy: In the finitelyrepeated game G(T) or the infinitely
2
L
R
U 1,1 5,0
1
D 0,5 4,4
2
L
R
U 1,1 5,0
1
D 0,5 4,4
2
L
R
U 1+1,1+1 5+1,0+1 1
D 0+1,5+1 4+1,4+1
• The unique subgame-perfect outcome of the two-stage Prisoners’ Dilemma is not the cooperation outcome!
2
L2
M2
R2
L1 1+1,1+1 5+1,0+1 0+1,0+1
1 M1 0+1,5+1 4+3,4+3 0+1,0+1
R1 0+1,0+1 0+1,0+1 3+1,3+1
Therearethreepure-strategyNashequilibria in the game:
博弈论讲义完整PPT课件
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页
博弈论最全完整-讲解PPT课件
王则柯、李杰编著,《博弈论教程》,中国人民大学 出版社,2004年版。
艾里克.拉斯缪森(Eric Rasmusen)著,《博弈与信 息:博弈论概论》,北京大学出版社,2003年版。
因内思·马可-斯达德勒,J.大卫·佩雷斯-卡斯特里罗著, 《信息经济学引论:激励与合约》,上海财经大学出版 社,2004年版。
常和博弈也是利益对抗程度最高的博弈。 非常和(变和)博弈蕴含双赢或多赢。
.
32
导论
四、主要参考文献
.
33
张维迎著,《博弈论与信息经济学》,上海三联书店、 上海人民出版社,1996年版。
Roger B. Myerson著:Game Theory(原文版、译文 版),中国经济出版社,2001年版。
是关于动态博弈进行过程之中面临决策 或者行动的参与人对于博弈进行迄今的 历史是否清楚的一种刻划。
如果在博弈进行过程中的每一时刻,面 临决策或者行动的参与人,对于博弈进 行到这个时刻为止所有参与人曾经采取 的决策或者行动完全清楚,则称为完美 信息博弈;否则位不完美信息。
.
30
零和博弈与非零和博弈
了解自己行动的限制和约束,然后以精心策划的方式 选择自己的行为,按照自己的标准做到最好。 • 博弈论对理性的行为又从新的角度赋予其新的含义— —与其他同样具有理性的决策者进行相互作用。 • 博弈论是关于相互作用情况下的理性行为的科学。
.
4
如何在博弈中获胜?
…… 真的能在博弈中(总是)获 胜吗?
对手和你一样聪明! 许多博弈相当复杂,博弈论并不
施锡铨编著,《博弈论》上海财大出版社,2000年版。
谢识予编著,《经济博弈论》,复旦大学出版社, 2002年版。
谢识予主编,《经济博弈论习题指南》,复旦大学出 版社,2003年版。
Chap.6 Subgame perfect Nash Equilibrium 博弈论英文版教学课件
There exists two Nash equilibria, but only the strategies combination (a, (a, a)) is subgame perfect Nash equilibrium.
2
(a, a) (a, b) (b, a)
a 300,300 300,300 800, 0
1
b 0, 200
0, 0
0, 200
(b, b)
200, 0 0, 0
Definition 6.1 A subgame in an extensive-form game
1) begins at a decision node n that is a singleton information set;
A
2
YN
2,0
0,0
1
B
2
YN
1,1
0,0
C
2
Y
N
0,2
0,0
The strategies combination (A,(Y,Y,Y)) and (B,(N,Y,Y)) are subgame perfect Nash equilibria.
Kuhn Theorem: Every finite extensive-form game whit perfect information has a subgame perfect Nash equilibrium.
(5)If the case goes to trial, the plaintiff wins amount x with probability r and otherwise wins nothing.
博弈论完整版PPT课件
ac 3
纳什均衡利润为:
Π1NE
Πቤተ መጻሕፍቲ ባይዱ
NE 2
(a c)2 9
.
31
q2 a-c
(a-c)/2 (a-c)/3
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
国外经济学教科书改写,加入大量博弈论内容
博弈论进入主流经济学,反映了:
经济学的研究对象越来越转向个体放弃了有些没有微观基础的假设
经济学的研究对象越来越转向人与人之间行为的相互影响和作用
经济学越来越重视对信息的研究
传统微观经济学的工具是数学(微积分、线性代数、统计学),而
博弈论是一种新的数学。以前只有陆军,现在有了空军,其差异
不完全信息
静态
纳什均衡
(纳什)
贝叶斯纳什均衡
(海萨尼)
.
动态
子博弈精练纳什均衡
(泽尔腾)
精练叶贝斯纳什均衡
(泽尔腾等)
9
博弈的分类
根据参与人是否合作
根据参与人的多少
根据博弈结果
根据行动的先后次序
两人博弈 多人博弈
静态博弈 动态博弈
合作博弈 非合作博弈
零和博弈 常和博弈 变和博弈
根据参与人对其他参与人的
4-阶理性:C相信R相信C相信R相信C是理性的,C会将R1从R的战略空间 中剔除, C不会选择C3;
5-阶理性:R相信C相信R相信C相信R相信C是理性的,R会将C3从C的战
game-theory1--博弈论-英文PPT课件
playersknowactionstakenotherplayersactionsknowngamesclassificationintroductioneconomicmodelsgametheorymodelsgamessummary38previewperfectinformationstaticgamesnashequilibriumdynamicgamesbackwardinduction倒推归imperfectinformationdynamicgamessubgame子博弈perfectneincompleteinformationstaticgamesauctions拍卖dynamicgamessignalinggamesclassificationintroductioneconomicmodelsgametheorymodelsgamessummaryeconomicmodelsgoodenoughapproximationrealworldmanyusefulpurposesgametheorymodelseconomicmodelssituationswheredecisionmakersinteractsummaryintroductioneconomicmodelsgametheorymodelsgamessummarystrategicgameconsistseachplayerseteachplayersetpreferencesoveractionprofilespreferencesrepresentedpayofffunctionsolvinggamesiterative重复的elimination消去strictlydominatedstrategiesnextlecturenashequilibriumnextlectureothermethodslatercoursesummaryiiintroductioneconomicmodelsgametheorymodelsgamessummary
game theory4 博弈论 英文
If q>0: B is better than T If q=0: B is as good as S
{0} B1(q) =
if q > 0
{p: 0≤p≤1} if q = 0 {1} if p < 1/2 {q: 0≤q≤1} if p = 1/2 {0} if p > 1/2 MSNE: {(p,1-p); (0,1)} p≥1/2
• Game • Elimination of strategies that are strictly dominated by mixed strategies
• illustration • example
2 / 32
Review
MSNE
Elimination By Mixing
Summary
19 / 32
Review
MSNE
Elimination By Mixing
Summary
B1(q) =
{1} if q < 3/4 {p: 0≤p≤1} if q = 3/4 {0} if q > 3/4
B2(p) =
{0} if p < 1/3 {q: 0≤q≤1} if p = 1/3 {1} if p > 1/3
• P2 must be indifferent between L and R: p*1+(1-p)*2 = p*2+(1-p)*1 => p=1/2
9 / 32
Review
MSNE
Elimination By Mixing
Summary
2
1
T (p) B (1-p)
L (q) 0,1 2,2
gametheory6博弈论英文精品PPT课件
Review Dynamic Games Centipede Game Ultimatum Game Summary
• action is a decision in one particular node (confess, remain silent, head, tail,…) • strategy is a plan of actions for every possible situation that might occur, for every possible node (AF-Accept if Albert goes In, Fight if Albert plays Out) • strategy – it is deciding about the action in each decision node prior to the game • it is like as if you want your friend to play the game instead of you, you have to tell him in advance what to do in each situation
OUT
0 2
IN
FA
-3
2
-1
1
5 / 27
Review Dynamic Games Centipede Game Ultimatum Game Summary
Dynamic Game (tree):
OUT
IN
0 2
Static game (table):
IN OUT
FA
-3
2
-1
1
F
NEA:
-3,-1
博弈论全套课件
三. 经典的博弈模型
1、“囚徒的困境”
关于博弈论,流传最广的是一个叫做“囚 徒 困 境 ” 的 故 事 。 这 个 博 弈 是 1950 年 图 克 (Tucker)提出的,这个博弈模型提出后曾引 发了大量的相关研究,也有许多关于“囚徒困 境”的版本。“囚徒困境”对博弈论的发展起 到了巨大的推动作用。可以说凡是讲博弈论, 都会说到这个经典的博弈模型。
在过去二三十年中,博弈论已成为社会科 学研究的一个重要方法。有人说,如果未来社 会科学还有纯理论的话,那就是博弈论。无论 是合作博弈还是非合作博弈都给我们提供了一 种系统的分析方法,使人们在其命运取决于他 人的行为时制定出相应的战略。特别是当许多 相互依赖的因素共存,没有任何决策能独立于 其它许多决策之外时,博弈论更是价值巨大。
最近十几年来,博弈论在经济学尤其是微 观经济学中得到了广泛的运用, 博弈论在许多 方面改写了微观经济学的基础,经济学家们已经 把研究策略相互作用的博弈论当作最合适的分 析工具来分析各类经济问题,诸如公共经济、 国际贸易、自然资源、企业管理等。在现代经 济学里,博弈论已经成为十分标准的分析工具。 除经济学以外, 博弈论目前在生物学、管理学 、国际关系、计算机科学、政治学、军事战略 和其他很多学科都有广泛的应用。现在已经有 愈来愈多的人开始关注、了解并学习博弈理论 。
博弈论(Game Theory)是一种关于游戏的 理论, 又叫做对策论, 是一门以数学为基础的、 研究对抗冲突中最优解问题的学科。事实上, 博弈论也正是衍生于古老的游戏,如象棋、围 棋、扑克等。
博弈论作为一门学科,是在20世纪50~60 年代发展起来的,当非零和博弈理论、特别是 不完全信息博弈理论获得充分发展时,才成为 现实。到20世纪70年代,博弈论正式成为主流 经济学研究的主要方法之一。1994年诺贝尔经 济学奖同时授予了纳什、泽尔腾、海萨尼三位 博弈论专家。2005年诺贝尔经济学奖又授予了 美国经济学家托马斯.谢林(Thomas Schelling)和以色列经济学家罗伯特.奥曼 (Robert Aumann),以表彰他们在合作博弈 方面的巨大贡献。
博弈论介绍PPT课件
2
Game of Chicken
driver who steers away looses What should drivers do?
Goal is to prescribe how conflicts can be resolved
Applications of Game Theory
But it can provide intuitions, suggestions and partial prescriptions
best mathematical tool we currently have
What is a Game?
A Game consists of
at least two players a set of strategies for each player a preference relation over possible outcomes
Normal form (strategic) game a finite set N of players
a set strategies A i for each player iN
payoff function u i ( s ) for each player iN • where sAjNAj is the set of strategies
Outline
Introduction to game theory Typical games in networking A sample game in Cognitive Radio Networks
What is Game Theory About?
Analysis of situations where conflict of interests are present
博弈论的几个经典模型PPT课件
模型三、独立私人价值下的一级密 封拍卖/不完全信息静态博弈
N
高成本
低成本
A
默许
阻挠
A
默许
阻挠
B
B
B
B
进入 不进入 进入 不进入 进入 不进入 进入 不进入
(50,40)(300,0)(0,-10)(300,0)(100,30)(400,0)(140,-10)(400,0)
*贝叶斯纳什均衡
模型二、囚徒困境/非合作博弈
有两个小偷A和B联合犯事、私入民宅被 警察抓住。警方将两人分别置于不同的两个 房间内进行审讯,对每一个犯罪嫌疑人,警 方给出的政策是:如果一个犯罪嫌疑人坦白 了罪行,交出了赃物,于是证据确凿,两人 都被判有罪。如果另一个犯罪嫌疑人也作了 坦白,则两人各被判刑8年;如果另一个犯罪 嫌人没有坦白而是抵赖,则以妨碍公务罪(因 已有证据表明其有罪)再加刑2年,而坦白者 有功被减刑8年,立即释放。如果两人都抵赖, 则警方因证据不足不能判两人的偷窃罪,但 可以私入民宅的罪名将两人各判入狱1年。
为个人)他自己的最好策略,还是采用(作为集 体的一员)他们共同的最好策略?前者导致均衡 策略(坦白,坦白),支付为(-8,-8);后者的最 好策略是(抵赖,抵赖),支付为(-1,-1)。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
四,杀鸡给猴看。其实猴子是没有思维的,它们 有一定的群体意识,但没有社会意识,人们关 于它们的故事其实是说人自己的。我们这里也 讲一个猴子的故事……。
博弈论(复旦大学 王永钦)复旦大学研究生一年级博弈论课程讲义,英文
q1 q2 , and
Cont’d
We solve this game with backward induction
q2 arg max 2 (q1 , q2 ) q2 (a q1 q2 c) a q1 c q R2 (q1 ) 2
* 2
(provided that
Implications for social and economic systems (Coase Theorem)
2. Dynamic Games of Complete Information
2.1 Dynamic Games of Complete and Perfect Information 2.1.A Theory: Backward Induction Example: The Trust Game General features:
Two firms quantity compete sequentially. Timing: (1) Firm 1 chooses a quantity q1 (2) Firm 2 observes (3) The payoff to firm
0 ;
q1 and then chooses a quantity q2 0 ;
* * * * (s1 ,..., si*1, si* , si*1,..., sn ) ui (s1 ,..., si*1, si , si*1,..., sn )
Cont’d
Proposition B In the n -player normal form game
G {S1 ,..., Sn ; u1 ,..., un }
完美打印版英文学习Game Theory 博弈论公开课哈佛大学第1到5课字幕讲稿
PRINT ECON-159: GAME THEORYChapter 1. What Is Strategy? [00:00:00]Professor Ben Polak: So this is Game Theory Economics 159. If you're here for art history, you're either in the wrong room or stay anyway, maybe this is the right room; but this is Game Theory, okay. You should have four handouts; everyone should have four handouts. There is a legal release form--we'll talk about it in a minute--about the videoing. There is a syllabus, which is a preliminary syllabus: it's also online. And there are two games labeled Game 1 and Game 2. Can I get you all to look at Game 1 and start thinking about it. And while you're thinking about it, I am hoping you can multitask a bit. I'll describe a bit about the class and we'll get a bit of admin under our belts. But please try and look at--somebody's not looking at it, because they're using it as a fan here--so look at Game 1 and fill out that form for me, okay?So while you're filling that out, let me tell you a little bit about what we're going to be doing here. So what is Game Theory? Game Theory is a method of studying strategic situations. So what's a strategic situation? Well let's start off with what's not a strategic situation. In your Economics - in your Intro Economics class in 115 or 110, you saw some pretty good examples of situations that were not strategic. You saw firms working in perfect competition. Firms in perfect competition are price takers: they don't particularly have to worry about the actions of their competitors. You also saw firms that were monopolists and monopolists don't have any competitors to worry about, so that's not a particularly strategic situation. They're not price takers but they take the demand curve. Is this looking familiar for some of you who can remember doing 115 last year or maybe two years ago for some of you? Everything in between is strategic. So everything that constitutes imperfect competition is a strategic setting. Think about the motor industry, the motor car industry. Ford has to worry about what GM is doing and what Toyota is doing, and for the moment at least what Chrysler is doing but perhaps not for long. So there's a small number of firms and their actions affect each other.So for a literal definition of what strategic means: it's a setting where the outcomes that affect you depend on actions, not just on your own actions, but on actions of others. All right, that's as much as I'm going to say for preview right now, we're going to come back and see plenty of this over the course of the next semester.Chapter 2. Strategy: Where Does It Apply? [00:02:16]So what I want to do is get on to where this applies. It obviously applies in Economics, but it also applies in politics, and in fact, this class will count as a Political Science class if you're a Political Science major. You should go check with the DUS in Political Science. It count - Game Theory is very important in law these days. So for those of you--for the half of you--that are going to end up in law school, this is pretty good training. Game Theory is also used in biology and towards the middle of the semester we're actually going to see some examples of Game Theory as applied to evolution. And not surprisingly, Game Theory applies to sport.Chapter 3. (Administrative Issues) [00:02:54]So let's talk about a bit of admin. How are you doing on filling out those games? Everyone managing to Lecture 1 - Introduction: Five First Lessons [September 5, 2007]multitask: filling in Game 1? Keep writing. I want to get some admin out of the way and I want to start by getting out of the way what is obviously the elephant in the room. Some of you will have noticed that there's a camera crew here, okay. So as some of you probably know, Yale is undergoing an open education project and they're videoing several classes, and the idea of this, is to make educational materials available beyond the walls of Yale. In fact, on the web,internationally, so people in places, maybe places in the U.S. or places miles away, maybe in Timbuktu or whatever, who find it difficult to get educational materials from the local university or whatever, can watch certain lectures from Yale on the web.Some of you would have been in classes that do that before. What's going to different about this class is that you're going to be participating in it. The way we teach this class is we're going to play games, we're going to have discussions, we're going to talk among the class, and you're going to be learning from each other, and I want you to help people watching at home to be able to learn too. And that means you're going to be on film, at the very least on mike.So how's that going to work? Around the room are three T.A.s holding mikes. Let me show you where they are: one here, one here, and one here. When I ask for classroom discussions, I'm going to have one of the T.A.s go to you with a microphone much like in "Donahue" or something, okay. At certain times, you're going to be seen on film, so the camera is actually going to come around and point in your direction.Now I really want this to happen. I had to argue for this to happen, cause I really feel that this class isn't about me. I'm part of the class obviously, but it's about you teaching each other and participating. But there's a catch, the catch is, that that means you have to sign that legal release form.So you'll see that you have in front of you a legal release form, you have to be able to sign it, and what that says is that we can use you being shown in class. Think of this as a bad hair day release form. All right, you can't sue Yale later if you had a bad hair day. For those of you who are on the run from the FBI, your Visa has run out, or you're sitting next to your ex-girlfriend, now would be a good time to put a paper bag over your head.All right, now just to get you used to the idea, in every class we're going to have I think the same two people, so Jude is the cameraman; why don't you all wave to Jude: this is Jude okay. And Wes is our audio guy: this is Wes. And I will try and remember not to include Jude and Wes in the classroom discussions, but you should be aware that they're there. Now, if this is making you nervous, if it's any consolation, it's making me very nervous.So, all right, we'll try and make this class work as smoothly as we can, allowing for this extra thing. Let me just say, no one's making any money off this--at least I'm hoping these guys are being paid--but me and the T.A.s are not being paid. The aim of this, that I think is a good aim, it's an educational project, and I'm hoping you'll help us with it. The one difference it is going to mean, is that at times I might hold some of the discussions for the class, coming down into this part of the room, here, to make it a little easier for Jude.All right, how are we doing now on filling out those forms? Has everyone filled in their strategy for the first game? Not yet. Okay, let's go on doing a bit more admin. The thing you mostly care about I'm guessing, is the grades. All right, so how is the grade going to work for this class? 30% of the class will be on problem sets, 30% of the grade; 30% on the mid-term, and 40% on the final; so 30/30/40.The mid-term will be held in class on October 17th; that is also in your syllabus. Please don't anybody tell me late - any time after today you didn't know when the mid-term was and therefore it clashes with 17 different things. The mid-term is on October 17th, which is a Wednesday, in class. All right, the problem sets: there will be roughly ten problem sets and I'll talk about them more later on when I hand them out.The first one will go out on Monday but it will be due ten days later. Roughly speaking they'll be every week.The grade distribution: all right, so this is the rough grade distribution. Roughly speaking, a sixth of the class are going to end up with A's, a sixth are going to end up with A-, a sixth are going to end up with B+, a sixth are going to end up with B, a sixth are going to end up with B-, and the remaining sixth, if I added that up right, are going to end up with what I guess we're now calling the presidential grade, is that right?That's not literally true. I'm going to squeeze it a bit, I'm going to curve it a bit, so actually slightly fewer than a sixth will get straight A's, and fewer than a sixth will get C's and below. We'll squeeze the middle to make them be more B's. One thing I can guarantee from past experience in this class, is that the median grade will be a B+. The median will fall somewhere in the B+'s. Just as forewarning for people who have forgotten what a median is, that means half of you--not approximately half, it means exactly half of you--will be getting something like B+ and below and half will get something like B+ and above.Now, how are you doing in filling in the forms? Everyone filled them in yet? Surely must be pretty close to getting everyone filled in. All right, so last things to talk about before I actually collect them in - textbooks. There are textbooks for this class. The main textbook is this one, Dutta's book Strategy and Games. If you want a slightly tougher book, more rigorous book, try Joel Watson's book, Strategies. Both of those books are available at the bookstore.But I want to warn everybody ahead of time, I will not be following the textbook. I regard these books as safety nets. If you don't understand something that happened in class, you want to reinforce an idea that came up in class, then you should read the relevant chapters in the book and the syllabus will tell you which chapters to read for each class, or for each week of class, all right. But I will not be following these books religiously at all. In fact, they're just there as back up.In addition, I strongly recommend people read, Thinking Strategically. This is good bedtime reading. Do any of you suffer from insomnia? It's very good bedtime reading if you suffer from insomnia. It's a good book and what's more there's going to be a new edition of this book this year and Norton have allowed us to get advance copies of it. So if you don't buy this book this week, I may be able to make the advance copy of the new edition available for some of you next week. I'm not taking a cut on that either, all right, there's no money changing hands.All right, sections are on the syllabus sign up - sorry on the website, sign up as usual. Put yourself down on the wait list if you don't get into the section you want. You probably will get into the section you want once we're done.Chapter 4. Elements of a Game: Strategies, Actions, Outcomes and Payoffs [00:09:40]All right, now we must be done with the forms. Are we done with the forms? All right, so why don't we send the T.A.s, with or without mikes, up and down the aisles and collect in your Game #1; not Game #2, just Game #1.Just while we're doing that, I think the reputation of this class--I think--if you look at the course evaluations online or whatever, is that this class is reasonably hard but reasonably fun. So I'm hoping that's what the reputation of the class is. If you think this class is going to be easy, I think it isn't actually an easy class. It's actually quite a hard class, but I think I can guarantee it's going to be a fun class. Now one reason it's a fun class, is the nice thing about teaching Game Theory - quieten down folks--one thing about teaching Game Theory is, you get to play games, and that's exactly what we've just been doing now. This is our first game and we're going to play games throughout the course, sometimes several times a week,sometimes just once a week.We got all these things in? Everyone handed them in? So I need to get those counted. Has anyone taken the Yale Accounting class? No one wants to - has aspirations to be - one person has. I'll have a T.A. do it, it's all right, we'll have a T.A. do it. So Kaj, can you count those for me? Is that right? Let me read out the game you've just played."Game 1, a simple grade scheme for the class. Read the following carefully. Without showing your neighbor what you are doing, put it in the box below either the letter Alpha or the letter Beta. Think of this as a grade bid. I will randomly pair your form with another form and neither you nor your pair will ever know with whom you were paired. Here's how the grades may be assigned for the class. [Well they won't be, but we can pretend.] If you put Alpha and you're paired with Beta, then you will get an A and your pair a C. If you and your pair both put Alpha, you'll both get B-. If you put Beta and you're paired with Alpha, you'll get a C and your pair an A. If you and your pair both put Beta, then you'll both get B+."So that's the thing you just filled in.Now before we talk about this, let's just collect this information in a more useful way. So I'm going to remove this for now. We'll discuss this in a second, but why don't we actually record what the game is, that we're playing, first. So this is our grade game, and what I'm going to do, since it's kind of hard to absorb all the information just by reading a paragraph of text, I'm going to make a table to record the information. So what I'm going to do is I'm going to put me here, and my pair, the person I'm randomly paired with here, and Alpha and Beta, which are the choices I'm going to make here and on the columns Alpha and Beta, the choices my pair is making.In this table, I'm going to put my grades. So my grade if we both put Alpha is B-, if we both put Beta, wasB+. If I put Alpha and she put a Beta, I got an A, and if I put Beta and she put an Alpha, I got a C. Is that correct? That's more or less right? Yeah, okay while we're here, why don't we do the same for my pair? So this is my grades on the left hand table, but now let's look at what my pair will do, what my pair will get.So I should warn the people sitting at the back that my handwriting is pretty bad, that's one reason for moving forward. The other thing I should apologize at this stage of the class is my accent. I will try and improve the handwriting, there's not much I can do about the accent at this stage.So once again if you both put Alpha then my pair gets a B-. If we both put Beta, then we both get a B+; in particular, my pair gets a B+. If I put Alpha and my pair puts Beta, then she gets a C. And if I put Beta and she puts Alpha, then she gets an A. So I now have all the information that was on the sheet of paper that you just handed in.Now there's another way of organizing this that's standard in Game Theory, so we may as well get used to it now on the first day. Rather then drawing two different tables like this, what I'm going to do is I'm going to take the second table and super-impose it on top of the first table. Okay, so let me do that and you'll see what I mean. What I'm going to do is draw a larger table, the same basic structure: I'm choosing Alpha and Beta on the rows, my pair is choosing Alpha and Beta on the columns, but now I'm going to put both grades in. So the easy ones are on the diagonal: you both get B- if we both choose Alpha; we both get B+ if we both choose Beta. But if I choose Alpha and my pair chooses Beta, I get an A and she gets a C. And if I choose Beta and she chooses Alpha, then it's me who gets the C and it's her who gets the A.So notice what I did here. The first grade corresponds to the row player, me in this case, and the second grade in each box corresponds to the column player, my pair in this case. So this is a nice succinct way of recording what was in the previous two tables. This is an outcome matrix; this tells us everything that wasOkay, so now seems a good time to start talking about what people did. So let's just have a show of hands. How many of you chose Alpha? Leave your hands up so that Jude can catch that, so people can see at home, okay. All right and how many of you chose Beta? There's far more Alphas - wave your hands the Beta's okay. All right, there's a Beta here, okay. So it looks like a lot of - well we're going to find out, we're going to count--but a lot more Alpha's than Beta's. Let me try and find out some reasons why people chose.So let me have the Alpha's up again. So, the woman who's in red here, can we get a mike to the - yeah, is it okay if we ask you? You're not on the run from the FBI? We can ask you why? Okay, so you chose Alpha right? So why did you choose Alpha?Student: [inaudible] realized that my partner chose Alpha, therefore I chose [inaudible].Professor Ben Polak: All right, so you wrote out these squares, you realized what your partner was going to do, and responded to that. Any other reasons for choosing Alpha around the room? Can we get the woman here? Try not to be intimidated by these microphones, they're just mikes. It's okay.Student: The reason I chose Alpha, regardless of what my partner chose, I think there would be better outcomes than choosing Beta.Professor Ben Polak: All right, so let me ask your names for a second-so your name was?Student: Courtney.Professor Ben Polak: Courtney and your name was?Student: Clara Elise.Professor Ben Polak: Clara Elise. So slightly different reasons, same choice Alpha. Clara Elise's reason -what did Clara Elise say? She said, no matter what the other person does, she reckons she'd get a better grade if she chose Alpha. So hold that thought a second, we'll come back to - is it Clara Elise, is that right? We'll come back to Clara Elise in a second. Let's talk to the Beta's a second; let me just emphasize at this stage there are no wrong answers. Later on in the class there'll be some questions that have wrong answers. Right now there's no wrong answers. There may be bad reasons but there's no wrong answers. So let's have the Beta's up again. Let's see the Beta's. Oh come on! There was a Beta right here. You were a Beta right? You backed off the Beta, okay. So how can I get a mike into a Beta? Let' s stick in this aisle a bit. Is that a Beta right there? Are you a Beta right there? Can I get the Beta in here? Who was the Beta in here? Can we get the mike in there? Is that possible? In here - you can leave your hand so that - there we go. Just point towards - that's fine, just speak into it, that's fine.Student: So the reason right?Professor Ben Polak: Yeah, go ahead.Student: I personally don't like swings that much and it's the B-/B+ range, so I'd much rather prefer that to a swing from A to C, and that's my reason.Professor Ben Polak: All right, so you're saying it compresses the range. I'm not sure it does compress the range. I mean if you chose Alpha, you're swinging from A to B-; and from Beta, swinging from B+ to C. I mean those are similar kind of ranges but it certainly is a reason. Other reasons for choosing? Yeah, the guy in blue here, yep, good. That's all right. Don't hold the mike; just let it point at you, that's fine.Student: Well I guess I thought we could be more collusive and kind of work together, but I guess not. So IProfessor Ben Polak: There's a siren in the background so I missed the answer. Stand up a second, so we can just hear you.Student: Sure.Professor Ben Polak: Sorry, say again.Student: Sure. My name is Travis. I thought we could work together, but I guess not.Professor Ben Polak: All right good. That's a pretty good reason.Student: If you had chosen Beta we would have all gotten B+'s but I guess not.Professor Ben Polak: Good, so Travis is giving us a different reason, right? He's saying that maybe, some of you in the room might actually care about each other's grades, right? I mean you all know each other in class. You all go to the same college. For example, if we played this game up in the business school--are there any MBA students here today? One or two. If we play this game up in the business school, I think it's quite likely we're going to get a lot of Alpha's chosen, right? But if we played this game up in let's say the Divinity School, all right and I'm guessing that Travis' answer is reflecting what you guys are reasoning here. If you played in the Divinity School, you might think that people in the Divinity School might care about other people's grades, right? There might be ethical reasons--perfectly good, sensible, ethical reasons--for choosing Beta in this game. There might be other reasons as well, but that's perhaps the reason to focus on. And perhaps, the lesson I want to draw out of this is that right now this is not a game. Right now we have actions, strategies for people to take, and we know what the outcomes are, but we're missing something that will make this a game. What are we missing here?Student: Objectives.Professor Ben Polak: We're missing objectives. We're missing payoffs. We're missing what people care about, all right. So we can't really start analyzing a game until we know what people care about, and until we know what the payoffs are. Now let's just say something now, which I'll probably forget to say in any other moment of the class, but today it's relevant.Game Theory, me, professors at Yale, cannot tell you what your payoff should be. I can't tell you in a useful way what it is that your goals in life should be or whatever. That's not what Game Theory is about. However, once we know what your payoffs are, once we know what your goals are, perhaps Game Theory can you help you get there.So we've had two different kinds of payoffs mentioned here. We had the kind of payoff where we care about our own grade, and Travis has mentioned the kind of payoff where you might care about other people's grades. And what we're going to do today is analyze this game under both those possible payoffs. To start that off, let's put up some possible payoffs for the game. And I promise we'll come back and look at some other payoffs later. We'll revisit the Divinity School later.Chapter 5. Strictly Dominant versus Strictly Dominated Strategies [00:21:38]All right, so here once again is our same matrix with me and my pair, choosing actions Alpha and Beta, but this time I'm going to put numbers in here. And some of you will perhaps recognize these numbers, but that's not really relevant for now. All right, so what's the idea here? Well the first idea is that these numbers represent utiles or utilities. They represent what these people are trying to maximize, what they're toachieve, their goals.The idea is - just to compare this to the outcome matrix - for the person who's me here, (A,C) yields a payoff of--(A,C) is this box--so (A,C) yields a payoff of three, whereas (B-,B-) yields a payoff of 0, and so on. So what's the interpretation? It's the first interpretation: the natural interpretation that a lot of you jumped to straight away. These are people--people with these payoffs are people--who only care about their own grades. They prefer an A to a B+, they prefer a B+ to a B-, and they prefer a B- to a C. Right, I'm hoping I the grades in order, otherwise it's going to ruin my curve at the end of the year. So these people only care about their own grades. They only care about their own grades.What do we call people who only care about their own grades? What's a good technical term for them? In England, I think we refer to these guys - whether it's technical or not - as "evil gits." These are not perhaps the most moral people in the universe. So now we can ask a different question. Suppose, whether these are actually your payoffs or not, pretend they are for now. Suppose these are all payoffs. Now we can ask, not what did you do, but what should you do? Now we have payoffs that can really switch the question to a normative question: what should you do? Let's come back to - was it Clara Elise--where was Clara Elise before? Let's get the mike on you again. So just explain what you did and why again.Student: Why I chose Alpha?Professor Ben Polak: Yeah, stand up a second, if that's okay.Student: Okay.Professor Ben Polak: You chose Alpha; I'm assuming these were roughly your payoffs, more or less, you were caring about your grades.Student: Yeah, I was thinking-Professor Ben Polak: Why did you choose Alpha?Student: I'm sorry?Professor Ben Polak: Why did you choose Alpha? Just repeat what you said before.Student: Because I thought the payoffs - the two different payoffs that I could have gotten--were highest if I chose Alpha.Professor Ben Polak: Good; so what Clara Elise is saying--it's an important idea--is this (and tell me ifI'm paraphrasing you incorrectly but I think this is more or less what you're saying): is no matter what the other person does, no matter what the pair does, she obtains a higher payoff by choosing Alpha. Let's just see that. If the pair chooses Alpha and she chooses Alpha, then she gets 0. If the pair chooses Alpha and she chose Beta, she gets -1. 0 is bigger than -1. If the pair chooses Beta, then if she chooses Alpha she gets 3, Beta she gets 1, and 3 is bigger than 1. So in both cases, no matter what the other person does, she receives a higher payoff from choosing Alpha, so she should choose Alpha. Does everyone follow that line of reasoning? That's a stronger line of reasoning then the reasoning we had earlier. So the woman, I have immediately forgotten the name of, in the red shirt, whose name was-Student: Courtney.Professor Ben Polak: Courtney, so Courtney also gave a reason for choosing Alpha, and it was a perfectly good reason for choosing Alpha, nothing wrong with it, but notice that this reason's a stronger reason. It kind of implies your reason.So let's get some definitions down here. I think I can fit it in here. Let's try and fit it in here.Definition: We say that my strategy Alpha strictly dominates my strategy Beta, if my payoff from Alpha is strictly greater than that from Beta, [and this is the key part of the definition], regardless of what others do.Shall we just read that back? "We say that my strategy Alpha strictly dominates my strategy Beta, if my payoff from Alpha is strictly greater than that from Beta, regardless of what others do." Now it's by no means my main aim in this class to teach you jargon. But a few bits of jargon are going to be helpful in allowing the conversation to move forward and this is certainly one. "Evil gits" is maybe one too, but this is certainly one.Let's draw out some lessons from this. Actually, so you can still read that, let me bring down and clean this board. So the first lesson of the class, and there are going to be lots of lessons, is a lesson that emerges immediately from the definition of a dominated strategy and it's this. So Lesson One of the course is: do not play a strictly dominated strategy. So with apologies to Strunk and White, this is in the passive form, that's dominated, passive voice. Do not play a strictly dominated strategy. Why? Somebody want to tell me why? Do you want to get this guy? Stand up - yeah.Student: Because everyone's going to pick the dominant outcome and then everyone's going to get the worst result - the collectively worst result.Professor Ben Polak: Yeah, that's a possible answer. I'm looking for something more direct here. So we look at the definition of a strictly dominated strategy. I'm saying never play one. What's a possible reason for that? Let's - can we get the woman there?Student: [inaudible]Professor Ben Polak: "You'll always lose." Well, I don't know: it's not about winning and losing. What else could we have? Could we get this guy in the pink down here?Student: Well, the payoffs are lower.Professor Ben Polak: The payoffs are lower, okay. So here's an abbreviated version of that, I mean it's perhaps a little bit longer. The reason I don't want to play a strictly dominated strategy is, if instead, I play the strategy that dominates it, I do better in every case. The reason I never want to play a strictly dominated strategy is, if instead I play the strategy that dominates it, whatever anyone else does I'm doing better than I would have done. Now that's a pretty convincing argument. That sounds like a convincing argument. It sounds like too obvious even to be worth stating in class, so let me now try and shake your faith a little bitin this answer.Chapter 6. Contracts and Collusion [00:29:33]You're somebody who's wanted by the FBI, right?Okay, so how about the following argument? Look at the payoff matrix again and suppose I reason as follows. Suppose I reason and say if we, me and my pair, both reason this way and choose Alpha then we'll both get 0. But if we both reasoned a different way and chose Beta, then we'll both get 1. So I should choose Beta: 1 is bigger than 0, I should choose Beta. What's wrong with that argument? My argument must be wrong because it goes against the lesson of the class and the lessons of the class are gospel right, they're not wrong ever, so what's wrong with that argument? Yes, Ale - yeah good.。
博弈论英文课件 (4)
If Chris chooses opera then she get a payoff 2 if Pat is happy, or 0 if Pat is unhappy. Her expected payoff is 20.5+ 00.5=1
If Chris chooses prize fight then she get a payoff 0 if Pat is happy, or 1 if Pat is unhappy. Her expected payoff is 00.5+ 10.5=0.5
Suppose that Pat chooses opera if he is happy, and prize fight if he is unhappy. What is Chris’ best
不知道i的类型 response?
的博弈对手-i, 需要推算i在每 一种可能的类型 下的行动集。
静态贝叶斯博弈的标准型表达
一个n 人静态贝叶斯博弈的标准式表达包括: 参与者集合:1,, n ; 参与者的行动空间(行动集) A1,, An ; ai Ai 参与者的类型空间T1,,Tn ; ti Ti 参与者的推断 p1,, pn ; pi pi (ti | ti ) 参与人的收益函数u1,,un ,ui (a1,, an ;ti ) G {A1,, An;T1,,Tn , p1,, pn ;u1,, un}
n How to find a solution ?
Payoffs if Pat is happy with probability 0.5
Chris
Opera Prize Fight
Pat Opera Prize Fight 2, 1 0, 0 0, 0 1, 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Figure: Maximin strategies of player 1
u1 u1 (p, T ) = 1 − 2 p u1 (p, H) = 2 p − 1
p∗
p
m1 (p) = {u1 (p, T ), u1 (p, H)}
4 / 33
The thick (kinked) line represents m1 (p), i.e. the worst outcome for player 1 for each value of p ∈ [0, 1]. In order to maximize m1 (p), we have to compute the intersection of u1 (p, H) and u1 (p, T ):
u1 (H, q) and u1 (T, q)
u1 (H, q) = q u1 (H, H) + (1 − q) u1 (H, T ) ⇔ u1 (H, q) = 2 q − 1 u1 (T, q) = q u1 (T, H) + (1 − q) u1 (T, T ) ⇔ u1 (T, q) = −2 q + 1
u1 (p, T ) and u1 (p, H)
u1 (p, H) = p u1 (H, H) + (1 − p) u1 (T, H) ⇔ ⇔ u1 (p, T ) = 2 p + (1 − p) (−1) u1 (p, T ) = 3 p − 1 u1 (p, T ) = p u1 (H, T ) + (1 − p) u1 (T, T ) ⇔ ⇔ u1 (p, T ) = p (−1) + (1 − p) u1 (p, T ) = −2 p + 1
u1 (T, q) = u1 (H, q) ⇔ 1 − 2 q = −1 + 2 q 1 ⇔ q∗ = . 2 Thus, the Minimax value of player 1 is
M1 = u1 (H, q ∗ ) ⇔ M1 = (1/2) u1 (T, H) + (1/2) u1 (T, T ) ⇔ M1 = (1/2)(−1) + (1/2) (1) ⇔ M1 = 0.
14 / 33
Figure: Minimax strategies of player 2
u1
M1 (q) = {u1 (T, q), u1 (H, q)} u1 (H, q) = 3 q − 1 u1 (T, q) = 1 − 2 q
q∗
q
15 / 33
The thick (kinked) line represents M1 (q), i.e. the best outcome for player 1 for each value of q ∈ [0, 1]. In order to minimize M1 (q), we have to compute the intersection of u1 (H, q) and u1 (T, q):
u1 (H, q) and u1 (T, q)
u1 (H, q) = q u1 (H, H) + (1 − q) u1 (H, T ) ⇔ u1 (H, q) = 3 q − 1 u1 (T, q) = q u1 (T, H) + (1 − q) u1 (T, T ) ⇔ u1 (T, q) = −2 q + 1
16 / 33
Solution
Thus, the equilibrium of the game is thus (p∗ , q ∗ ) = and the value of the game is 1 m1 (p∗ , q ∗ ) = M1 (p∗ , q ∗ ) = u1 (p∗ , q ∗ ) = . 5 According to definition 2.7 the last game is ‘unfair’. If participation would be voluntary, agent 2 would only participate in this game, if (in 1 every round) he would get a sidepayment σ, with σ ≥ 5 . 2 3 , 5 5
Microeconomic Analysis
Lecture in the Graduate Program in International Economics and Finance OTTO-VON-GUERICKE-UNIVERSITY MAGDEBURG
———–
Part 4
Dr. Magnus Hoffmann
5 / 33
◮
Similarly, we compute the minimax value M1 = min[M1 (q)]
q
and the corresponding probability q ∗ = arg min [M1 (q)].
q
We do so by graphing the functions u1 (H, q), u1 (T, q) and, consequently M1 (q) = max{u1 (H, q), u1 (T, q)}.
According to definition 2.7 the last game is a fair game. Is this also true for our next example?
9 / 33
Example 2.20 (Variation of ‘matching pennies’)
Find the minimax equilibrium of the following game! Is this game a fair one? 1\2 H T H 2 −1 T −1 1
◮
H 1, −1 −1, 1
T −1, 1 1, −1
First, we compute the maxmin value m1 = max [m1 (p)]
p
and the corresponding probability p∗ = arg max [m1 (p)].
p
2 / 33
We do so by graphing the functions u1 (p, H), u1 (p, T ) and, consequently, m1 (p) = min{u1 (p, H)(p, H) ⇔ 1 − 2 p = −1 + 2 p 1 ⇔ p∗ = . 2 Thus, the Maximin value of player 1 is
m1 = u1 (p∗ , H) ⇔ m1 = (1/2) u1 (H, H) + (1/2) u1 (T, H) ⇔ m1 = (1/2)(1) + (1/2) (−1) ⇔ m1 = 0.
u1 (p, T ) = u1 (p, H) ⇔ 1 − 2 p = −1 + 3 p 2 ⇔ p∗ = . 5 Thus, the Maximin value of player 1 is m1 = u1 (p∗ , H) ⇔ m1 = (2/5) u1 (H, H) + (3/5) u1 (T, H) ⇔ m1 = (2/5)(2) + (3/5) (−1) 1 . ⇔ m1 = 5
magnus.hoffmann@ovgu.de
1 / 33
Chapter 2.2 - Two-Player Zero-Sum Games (cont’d)
Example 2.1 (‘Matching Pennies’ again)
Find the minimax equilibrium for the “matching pennies” game! 1\2 H T
u1 (T, q) = u1 (H, q) ⇔ 1 − 2 q = −1 + 3 q 2 ⇔ q∗ = . 5 Thus, the Minimax value of player 1 is M1 = u1 (H, q ∗ ) ⇔ M1 = (2/5) u1 (T, H) + (2/5) u1 (T, T ) ⇔ M1 = (2/5)(−1) + (3/5) (1) 1 . ⇔ M1 = 5
◮
Again, first we compute the maxmin value m1 = max [m1 (p)]
p
and the corresponding probability p∗ = arg max m1 (p).
p
10 / 33
We do so by graphing the functions u1 (p, H), u1 (p, T ) and m1 (p) = min{u1 (p, H), u1 (p, T )}.
6 / 33
Figure: Minimax strategies of player 2
u1 u1 (T, q) = 1 − 2 q M1 (q) = {u1 (T, q), u1 (H, q)} u1 (H, q) = 2 q − 1
q∗
q
7 / 33
The thick (kinked) line represents M1 (q), i.e. the best outcome for player 1 for each value of q ∈ [0, 1]. In order to minimize M1 (q), we have to compute the intersection of u1 (H, q) and u1 (T, q):
u1 (p, T ) and u1 (p, H)
u1 (p, H) = p u1 (H, H) + (1 − p) u1 (T, H) ⇔ ⇔ u1 (p, T ) = p + (1 − p) (−1) u1 (p, T ) = 2 p − 1 u1 (p, T ) = p u1 (H, T ) + (1 − p) u1 (T, T ) ⇔ ⇔ u1 (p, T ) = p (−1) + (1 − p) u1 (p, T ) = −2 p + 1