2011年上海市中考数学模拟试题压轴题分析11宝山25

合集下载

中考数学压轴题

中考数学压轴题

中考压轴题复习————————二模试题整理(奉贤2012 25)(闵行 2012 三模)25.(本题共3小题,第(1)小题4分,第(2)、(3)小题每小题5分,满分14分)已知:如图,△ABC 为等边三角形,43AB ,AH ⊥BC ,垂足为点H , 点D 在线段HC 上,且HD = 2,点P 为射线AH 上任意一点,以点P 为圆心,线段PD 的长为半径作⊙P ,设AP = x .(1)当x = 3时,求⊙P 的半径长;(2)如图1,如果⊙P 与线段AB 相交于E 、F 两点,且EF = y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△PHD 与△ABH 相似,求x 的值(直接写出答案即可).ABCPD H(第25题图)(图1)A BCPD HEFABCH(备用图)(2011 金山) 25.(本题满分14分)如图,正方形ABCD 的边长是4,M 是AD 的中点.动点E 在线段AB 上运动.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连接EG 、FG .(1)求证:GEF ∆是等腰三角形;(2)设x AE =时,EGF ∆的面积为y .求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在点E 运动过程中GEF ∆是否可以成为等边三角形?请说明理由.错误!未指定书签。

GMF E DCB A(宝山 2011)24.(本题满分12分,每小题各4分)如图10,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OB OA =. (1) 求c b +的值;(2) 若点C 在抛物线上,且四边形OABC 是 平行四边形,试求抛物线的解析式;(3) 在(2)的条件下,作∠OBC 的角平分线, 与抛物线交于点P ,求点P 的坐标.CBAOy x(图10)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知⊙O 的半径长为1,PQ 是⊙O 的直径,点M 是PQ 延长线上一点,以点M 为圆心作圆,与⊙O 交于A 、B 两点,联结P A 并延长,交⊙M 于另外一点C .(1) 若AB 恰好是⊙O 的直径,设OM=x ,AC=y ,试在图12中画出符合要求的大致图形,并求y 关于x 的函数解析式;(2) 联结OA 、MA 、MC ,若OA ⊥MA ,且△OMA 与△PMC 相似,求OM 的长度和⊙M 的半径长;(3) 是否存在⊙M ,使得AB 、AC 恰好是一个正五边形的两条边?若存在,试求OM 的长度和⊙M 的半径长;若不存在,试说明理由.图12Q P OM备用图QPOA B图11 CQ PO M25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知△ABC 中,AB =4,BC =6,AC >AB ,点D 为AC 边上一点,且DC =AB ,E 为BC 边的中点,联结DE ,设AD =x 。

2011年中考数学预测压轴题10题及答案

2011年中考数学预测压轴题10题及答案

2011年中考数学练习1、(上海卷)已知点P 在线段AB 上,点O 在线段AB 延长线上.以点O 为圆心,OP 为半径作圆,点C 是圆O 上的一点. (1)如图,如果2AP PB =,PB BO =.求证:CAO BCO △∽△;(2)如果AP m =(m 是常数,且1m >),1BP =,OP 是OA ,OB 的比例中项.当点C 在圆O 上运动时,求:AC BC 的值(结果用含m 的式子表示);(3)在(2)的条件下,讨论以BC 为半径的圆B 和以CA 为半径的圆C 的位置关系,并写出相应m 的取值范围.2、(福建龙岩卷)如图,已知抛物线234y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线334y x t=-+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<. (1)确定b c ,的值:__________b c ==,;(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示): (______)(______)(______)B Q P ,,,,,;(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.3、(福建漳州卷)如图,已知矩形3ABCD AB BC ==,,在BC 上取两点E F ,(E 在F 左边),以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE PF ,分别交AC 于点G H ,.(1)求PEF △的边长;(2)在不添加辅助线的情况下,当F 与C 不重合时,从图中找出一对相似三角形,并说明理由; (3)若PEF △的边EF 在线段BC 上移动.试猜想:PH 与BE 有何数量关系?并证明你猜想的结论.4.(浙江省台州市)如图,已知直线y =-21x+1交坐标轴于A 、B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线另一个交点为E .(1)请直接写出点C ,D 的坐标; (2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D 落在x 轴上时停止,求抛物线上C 、E 两点间的抛物线弧所扫过的面积.CA PB OA B CE F121+-=x5.(河南省)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动,速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E .① 过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长?② 连接EQ ,在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.6.(浙江省温州市)如图,在平面直角坐标系中,点A (3,0),B (33,2),C (0,2).动点D 以每秒1个单位的速度从点O 出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF ⊥AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒.(1)求∠ABC 的度数;(2)当t 为何值时,AB ∥DF ;(3)设四边形AEFD 的面积为S .①求S 关于t 的函数关系式;②若一抛物线y =-x2+mx 经过动点E ,当S <23时,求m 的取值范围(写出答案即可).7.(重庆市綦江县)如图,已知抛物线y =a (x -1)2+33(a≠0)经过点A (-2,0),抛物线的顶点为D ,过O 作射线OM ∥AD .过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为t (s ).问:当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC =OB ,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s ),连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.8.(甘肃省兰州市)如图①,正方形ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到D 点时,图①图②两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t9.(甘肃省陇南市)如图,在平面直角坐标系中,抛物线经过A (-1,0),B (4,0),C (0,-4),⊙M 是△ABC M 为圆心.(1)求抛物线的解析式; (2)求阴影部分的面积;(3)在x 轴的正半轴上有一点P ,作PQ⊥x 轴交BC 于Q PQ =k ,△CPQ 的面积为S ,求S 关于k 的函数关系式,S 的最大值.10.(广东省湛江市)已知矩形纸片OABC 的长为4,宽为3,以长OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系;点P 是OA 边上的动点(与点OA 不重合),现将△POC 沿PC 翻折得到△PEC ,再在AB 边上选取适当的点D ,将△PAD 沿PD 翻折,得到△PFD ,使得直线PE 、PF 重合.(1)若点E 落在BC 边上,如图①,求点P 、C 、D 的坐标,并求过此三点的抛物线的函数关系式;(2)若点E 落在矩形纸片OABC 的内部,如图②,设OP =x ,AD =y ,当x 为何值时,y 取得最大值?(3)在(1)的情况下,过点P 、C 、D 三点的抛物线上是否存在点Q ,使△PDQ 是以PD 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.1,在等腰梯形ABCD 中,AD ∥BC ,EF ∥BC 交CD 于点F .AB =4,BC =E 到BC 的距离;(2)点P 为线段EF ⊥EF 交BC 于点M ,过M 作MN ∥ABPN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.图① FE ADB C 图1F E A D B C图2N P M 图3 MF E A DB C 图4(备用) F E A D B C图5(备用)12.(云南省昆明市)如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 坐标为(6,0),点B 坐标为(3,4),点C 在y 轴的正半轴上.动点M 在OA 边上运动,从O 点出发到A 点;动点N 在AB 边上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也就随即停止,设两点的运动时间为t (秒).(1)求线段AB 的长;当t 为何值时,MN ∥OC ?(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式,并指出自变量t 的取值范围;S 是否有最小值?若有最小值,最小值是多少?(3)连接CA ,那么是否存在这样的t 值,使MN 与AC 互相垂直?若存在,求出这时的t 值;若不存在,请说明理由.13. (湖南省株洲市)如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A 、C 在x 轴上,点B 的坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:FC (AC +EC )为定值.14. (湖北省黄冈市)如图,在平面直角坐标系xo y 中,抛物线y =181x2-94x -10与x 轴的交点为A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒) (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当0<t <29时,△PQF 的面积是否总为定值?若是,求出此定值;若不是,请说明理由;(4)当t 为何值时,△PQF1.(安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.[解] (1)(本小题介绍二种方法,供参考)方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB''''==又∵DO ′+BO ′=DB ∴1EO EO AB DC ''+= ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB''=,∴2316EO DO DB AB ''=⨯=⨯= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2①再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =⎧⎨=-⎩∴E 点坐标(0,-2),即E 点在y 轴上(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)E (0,-2)三点,得方程组42632a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2(3)(本小题给出三种方法,供参考)图①图②由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

2011年上海市中考数学模拟试题压轴题分析卢湾25

2011年上海市中考数学模拟试题压轴题分析卢湾25

例 2011年上海市卢湾区中考模拟第25题已知:如图1,在直角梯形ABCD中,BC∥AD(AD>BC),BC⊥AB,AB=8,BC=6.动点E、F分别在边BC和AD上,且AF=2EC.线段EF与AC相交于点G,过点G作GH∥AD,交CD于点H,射线EH交AD的延长线于点M,交AC于点O,设EC=x.(1)求证:AF=DM;(2)当EM⊥AC时,用含x的代数式表达AD的长;(3)在(2)题条件下,若以MO为半径的⊙M与以FD为半径的⊙F相切,求x的值.图1动感体验请打开几何画板文件名“11卢湾25”,拖动点E在CB上运动,可以体验到,AF与DM 保持相等,从AD随x变化的函数图像可以看到,AD是x的一次函数.可以看到,两圆可以内切,不可能外切.请打开超级画板文件名“11卢湾25”,思路点拨1.结合第(2)题的条件“EM⊥AC”重新画图:先画确定的直角△ABC,过点A画BC的平行线,截取AF=2CE,联结EF交AC于G;作EM⊥AC产生点M;过点G作BC 的平行线交EM于H;延长CH交AM于D.如果你截取的AF=2CE使得F不慎落在了AD的延长线上,那就太好了,暗示了第(3)题求得的x值要检验的.再取适当的AF=2CE重新画图.2.已知条件“直角梯形ABCD”,容易误导大家以为AD是定值,其实点D是从动点.满分解答(1)如图2,如图3,因为BC∥AD,所以EC CGAF AG=,EC CHDM DH=.因为GH∥AD,所以CG CHAG DH=.因此EC ECAF DM=.所以AF DM=.图2 图3(2)如图4,在Rt△ABC中,AB=8,BC=6,所以10AC=.过点E作EN//AC交DA的延长线于N,则四边形CANE是平行四边形.因此NE=AC=10,AN=CE=x,∠MNE=∠BCA.由于EM ⊥AC ,所以△EMN 是直角三角形.在Rt △EMN 中,NE =10,MN =MD +DA +AN =DA +3x . 所以3cos cos 5NE BCA MNE MN ∠=∠==. 因此10335AD x =+.于是得到5093x AD -=.图4 图5(3)如图5,在Rt △AMO 中,MA =MD +DA =509503233x x x --+=,4sin 5MAO ∠=, 所以404sin 35MO MA MAO x =⋅∠=-. 由AF =MD ,可得AD =MF .因此FD =AD -AF =509502533x x x --=-. 对于⊙M ,r M =40435MO x =-;对于⊙F ,r F =FD =5053x -;圆心距MF 5093x -=. ①当两圆外切时,r M +r F =MF .解方程40435x -+5053x -5093x -=,得10021x =. 此时,AF 200221x ==,5093x AD -=5021=.因此点F 在AD 的延长线上,不合题意. ②当两圆外切时,|r M -r F |=MF . 解方程404505353x x ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭5093x -=,得259x =. 此时,AF 5029x ==,5093x AD -=759=.因此点F 在AD 上,符合题意. 综合①、②,当x =259时,两圆内切(如图5). 考点伸展第(2)题用含x 的代数式表达AD 的长,怎么确定x 的取值范围呢?因为点E 、F 分别在边BC 和AD 上,所以AF ≤AD ,即2x ≤5093x -.解得x ≤103. 如果事先确定了x 的取值范围是x ≤103,据此可以检验10021x =不合题意. 事实上,当两圆内切时,四边形CDFE 是平行四边形,四边形CHGE 是菱形. 绘图注意:大圆经过点O ,不经过点C 、G .C 、G 在圆外。

2011上海市中考数学试卷【答案+解析】知识讲解

2011上海市中考数学试卷【答案+解析】知识讲解

2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3=_________.8.(2011•上海)因式分解:x2﹣9y2=_________.9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_________.10.(2011•上海)函数的定义域是_________.11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________.12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________(填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________.14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量=_________(结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________.18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。

上海市宝山区、嘉定区2011学年第二学期初三数学二模试卷附答案1

上海市宝山区、嘉定区2011学年第二学期初三数学二模试卷附答案1

上海市宝山区、嘉定区2011学年中考预测数学试卷(测试时间:100分钟,满分150分) 2012.4. 考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试不使用计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号填涂在答题纸的相应位置上】 1.下列计算正确的是 ( ).(A )422a a a =+; (B )236a a a =÷; (C )32a a a =⋅; (D )532)(a a =. 2.如果b a <,0<c ,那么下列不等式成立的是( ).(A )c b c a +<+; (B ) c b c a +-<+-; (C )bc ac <; (D )cbc a <. 3.一次函数1-=x y 的图像不.经过( ). (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4.在研究反比例函数图像与性质时,由于计算粗心,小明误认为(2-,3)、(2,3-)、(2-,3-)、 (3,2-)、(23-,4)五个点在同一个反比例函数的图像上,后来经检查发现其中有一个点不在, 这个点是( ).(A )(2,3-); (B )(2-,3); (C )(2-,3-); (D )(23-,4). 5.如图1,在编号为错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

的四个三角形中,关于x 轴对称的两个三角形是( ).(A )错误!未找到引用源。

和错误!未找到引用源。

; (B )错误!未找到引用源。

和错误!未找到引用源。

; (C )错误!未找到引用源。

上海中考数学第25题分析(下)

上海中考数学第25题分析(下)

上海中考数学第25题分析(下)——与圆有关的压轴题前言:我们古代数学家刘徽、祖冲之为了研究圆(周长和面积),费尽毕生精力,不管是割圆术还是牟合方盖,不管极限思想还是圆周率的精确,都是古人智慧的结晶,也许正因为古人的智慧铺垫,才有了如今我们学习圆的轻松和方便,今天我们一起来探究下圆的压轴!一、圆的知识梳理及拓展延伸——重要!!!1、圆的定义(轨迹法):平面上的动点到定点的距离等于定长,这样的轨迹称之为圆(定点为圆心,定长为半径)。

2、圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4、在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5、切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

6、切线的性质:①经过切点垂直于这条半径的直线是圆的切线。

②经过切点垂直于切线的直线必经过圆心。

③圆的切线垂直于经过切点的半径。

7、直径所对的圆心角为直角。

8、两圆相交,则连心线平分公共弦——注意事连心线,不是圆心之间的线段! 9、①圆的周长及面积公式:r C π2=,2r S π=; ②扇形的周长及面积公式:r n C π2360=,2360r n S π=; 10、圆的割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

11、圆和圆的位置关系:相交、相离(外离+内含)、相切(外切+内切)。

12、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:①共圆的四个点所连成同侧共底的两个三角形的顶角相等;②圆内接四边形的对角互补;③圆内接四边形的外角等于内对角。

题外话:圆的性质是所有章节最多的一个,还有弦切角+圆心角+圆周角的关系、圆幂定理及逆定理、托勒密定理及其逆定理等等,但可恨的是上海中考这个拿学业水平考当选拨的考试,它根本就不考那么多!二、25题与圆有关的压轴题题型归纳圆的综合在一模试卷中出现的不多,二模中是重点题型。

最新初中中考数学题库 2011数学上海宝山模拟卷试卷

最新初中中考数学题库 2011数学上海宝山模拟卷试卷

宝山区2010年九年级学业模拟考试数学试题(满分: 150 分,考试时间:100分钟)考生注意:1.答题时,考生务必按答题要求在答题纸规定的位置上作答,在本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.下列运算正确的是( ▲ )(A) 10a ÷52a a = (B) 422a a a =+ (C) 222)(b a b a +=+ (D) 632)(a a =2.1=x 是下列哪个方程的解?( ▲ )(A) 1112-=-x x x (B) x x -=23(C) 01=+x (D) 1=+y x 3.下列不等式组中,解集为12<≤-x 的是( ▲ ) (A) ⎩⎨⎧>-≥+0102x x (B) ⎩⎨⎧<-≥-0102x x (C) ⎩⎨⎧>-≥+0102x x (D) ⎩⎨⎧>-≥-0102x x4.已知0<k ,0>b ,那么一次函数b kx y +=的大致图像是( ▲ )5.已知四边形ABCD ,下列条件中,不.能确定四边形ABCD 是平行四边形的是( ▲ ) (A) AB ∥CD 且AD ∥BC ; (B) AB ∥CD 且 AB = CD ; (C) AB ∥CD 且AD = B C ; (D) AB ∥CD 且C A ∠=∠. 6.已知两个相似三角形的相似比是1︰2,则下列判断中,错误..的是( ▲ ) (A) 对应边的比是1:2; (B) 对应角的比是1:2; (C) 对应周长的比是1:2; (D) 对应面积的比是1:4; 二、填空题:(本大题共12题,每题4分,满分48分)Oyx(A)Oyx(C)Oyx(B)Oyx(D)[请将结果直接填入答题纸的相应位置] 7.计算:=-219▲ .8.因式分解:a a 43-= ▲ .9.用配方法解方程261x x -=时,方程的两边应该同加上 ▲ ,才能使得方程左边 配成一个完全平方式.10.经过点A (2, 1)且与直线y x =-平行的直线表达式为 ▲ . 11.解方程2232=---x x x x 时,如果设y xx =-2,那么原方程可以化为关于y 的整式方程.这个整式方程是 ▲ .12.某公司承担了制作600个上海世博会道路交通指引标志的任务, 原计划x 天完成,实际平均每天多制作了10个,因此提前5天完成任务。

2011年上海中考数学试卷及答案

2011年上海中考数学试卷及答案

2011年上海市初中毕业统一学业考试数学卷数学注意事项:1. 本试卷共4页,全卷满分150分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6题,每题4分,共24分)1.下列分数中,能化为有限小数的是( )(A) 13; (B) 15; (C) 17; (D) 19 .2.如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b c c > . 3.下列二次根式中,最简二次根式是( ).(A)(B) ;(C)(D).4.抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共28分)12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC 的边上,那么m=_________.图1 图2 图3 图4三、解答题(本大题共4题,满分48分)21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD 平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若1tan2C∠=,求弦MN的长.图523.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数33 4y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,12sin13EMP∠=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分)[解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。

2011年中考数学压轴题精选10答案

2011年中考数学压轴题精选10答案

2011年中考数学压轴题精选(91-100题)答案n=2+c,解:法1:由题意得【091】(1) 1分 2n-1=2+c.解得……2分 1 法2:∵抛物线y=x2-x+c的对称轴是x=,211 且-(-1) =2-,∴ A、B两点关于对称轴对称. 22 ∴ n=2n-11分∴ n=1,c=-1. 2分 15 ∴有 y=x2-x-1 3分=(x-)2-. 245 ∴二次函数y=x2-x-1的最小值是-. ……4分4 (2)解:∵点P(m,m)(m>0),∴PO=2m.∴22≤2m ≤2+2. ∴2≤m≤1+2. ……5分法1:∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴ m=m2-m+c,即c=-m2+2m. ∵开口向下,且对称轴m=1,∴当2≤m≤1+2 时,有-1≤c≤0. (6)分法2:∵2≤m≤1+2,∴1≤m-1≤2. ∴1≤(m-1)2≤2.∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴m=m2-m+c,即1-c=(m-1)2. ∴1≤1-c≤2.∴-1≤c≤0. ……6分∵点D、E关于原点成中心对称,法1:∴ x2=-x1,y2=-y1. y1=x12-x1+c, ∴∴2y1=-2x1,y1=-x1. -y1=x12+x1+c. 设直线DE:y=kx. 有-x1=kx1. 由题意,存在x1≠x2. ∴存在x1,使x1≠0. 7分∴ k=-1. ∴直线DE: y=-x. 8分法2:设直线DE:y=kx. 则根据题意有 kx=x2-x+c,即x2-(k+1) x+c=0. ∵-1≤c≤0,∴(k+1)2-4c≥0.∴方程x2-(k+1) x+c=0有实数根. 7分∵ x1+x2=0,∴ k+1=0. ∴ k=-1. ∴直线DE: y=-x. 8分 y=-x, 33 若则有 x2+c+=0.即 x2=-c-. 3 88 y=x2-x+c+. 8333 ① 当-c-=0时,即c=-时,方程x2=-c-有相同的实数根,8883 即直线y=-x与抛物线y=x2-x+c+有唯一交点. ……9分8333 ② 当-c->0时,即c<-时,即-1≤c<-时,888 13 方程x2=-c-有两个不同实数根,83 即直线y=-x与抛物线y=x2-x+c+有两个不同的交点. ……10分83333 ③ 当-c-<0时,即c>-时,即-<c≤0时,方程x2=-c-没有实数根,88883 即直线y=-x与抛物线y=x2-x+c+没有交点. ……11分8【092】解:(1)如图,在坐标系中标出O,A,C三点,连接OA,OC.y∵∠AOC≠90°,∴∠ABC=90°,327 A B 12故BC⊥OC, BC⊥AB,∴B(,1).(1分,)xO-112345 C 7-12即s=,t=1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,得,y=x2+mx-m与 y=1(线段AB)相交,2 y=x mx m, y=1.由(x-1)(x+1+m)=0,(3分)∴1=x2+mx-m,x 1,x m 1得.123x2∵=1<,不合题意,舍去.(4分)1x∴抛物线y=x2+mx-m与AB边只能相交于(,1),23759 m 2222∴≤-m-1≤,∴.①(5分)2mm 4m, 24又∵顶点P()是直角梯形OABC的内部和其边上的一个动点,m70 7 m 022∴,即.② (6分)442∵,(或者抛物线22m 4m2) 4m(m 2 1 1( 1)y=x2+mx-m顶点的纵坐标最大值是1)∴点P一定在线段AB的下方.(7分)又∵点P在x轴的上方,2m 4m 0m(m 4) 0,4∴, 2或者 m 4 0m 4 0 .(*8分)m 0,m 0,∴ 4 m(9分) 0. ③(9分)2m 4m2m2 ( )m(3m 8) 0.3432又∵点P在直线y=x的下方,∴,(10分)即或者 3m 8 03m 8 0.(*8分处评分后,m 0,m 0,分),或m 0.3 ④ 8m此处不重复评分)8 m (113 4 .(12分)由①②③④ ,得说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.BOACOABCPDPHH【093】解:(1)连结与交于点,则当点运动到点时,直线平分矩形的面积.理由如下: H ∵矩形是中心对称图形,且点为矩形的对称中心. OABCDP又据经过中心对称图形对称中心的任一直线平分此中心对称图形的面积,因为直线过矩形OABCDPH的对称中心点,所以直线平分矩形的面积.…………2分 3P(,2)2P 由已知可得此时点的坐标为. y kx bDP, 3420k b 2.k b 设直线的函数解析式为. 5k b 021313,.则有解得420y x 1313DP所以,直线的函数解析式为:. 5分△△DOMABCM(2)存在点使得与相似. yM(0,y)DP如图,不妨设直线与轴的正半轴交于点.m OMBCOMAB.因为,若△DOM与△ABC相似,则有或 DOM ABCODABODBC,)m144ODAB54.所以点满足条件.当时,y3OMBC1515m y M(0即,解得 3,)m233ODBC53.所以点满足条件.当y4OMAB2020m y M(0时,即,解得15M(0, )34也满足条件.由对称性知,点152015M(0,)M(0,)M(0, )123△△DOMABC434M、、.综上所述,满足使与相似的点有3个,分别为9分5 P2(3)如图,过D作DP⊥AC于点P,以P为圆心,半径长为画圆,过点D分别作的切线DE、DF,5 P2点E、F是切点.除P点外在直线AC上任取一点P1,半径长为画圆,过点D分别作的切线DE1、DF1,点E1、F1是切点.在△DEP和△DFP中,∠PED=∠PFD,PF=PE,PD=PD,22∴S四边形DEPF=2S∴△DPE≌△DPF.15 DE PE DE PE DE△DPE=2×.∴当DE取最小值时,S四边形DEPF的值最小.y∵,,222DE DP PE222DE DP PE∴.11P22DE DE 0 DPDP,1111F2222DE DE DP DPCB∴.∵11E DE DEP x∴.由点的任意性知:DE是11A DOFD点与切点所连线段长的最小值.……12分1在△ADP与△AOC中,∠DPA=∠AOC,P1∠DAP=∠CAO,∴△ADP∽△AOC.DPCODP432 DP.∴E55DACA8.∴.∴,即1102425347122DE DP PE 25410 3471347144∴S四边形DEPF=,即S=. 14分(注:本卷中所有题目,若由其它方法得出正确结论,请参照标准给分.)2y ax bx c,则【094】解:(1)令二次函数16a 4b c 0 a b c 0 c 2 1分 42 c 2 2分 132y x x 21 a23 bA,B,C22 过三点的抛物线的解析式为4分3 O,022 5分2 AB(2)以为直径的圆圆心坐标为53 OC OO为圆切线6分 OCD DCO 90° CDO OC CDCOO OCO 90 COO DCO°△OCO∽△CDOOO/OC OC/OD 8分38/2 2/OD OD 23坐标为 9分(3)存在 10分 3X 2抛物线对8 0, 3 D称轴为 33( r,r)F( r,r)r22E设满足条件的圆的半径为,则的坐标为或132y x x 222E而点在抛物线上2222 2929r 1 r 1 2122 13332 r ( r) ( r) 22929 1 1 x22EF故在以为直径的圆,恰好与轴相切,该圆的半径为,12分 5注:解答题只要方法合理均可酌情给分C0(,2) B【095】(1)(4,0),. 2分132y x x 222. 4分△ABC(2)是直角三角形.5分132x x 2 0y 022证明:令,则. x 1,x 4.12 A( 1,0). 6分 AB 5,AC 5,BC 25解法一:. 7. △ABC是直角三角形.8分分222 AC BC 5 20 25 ABCOAO1 AO 1,CO 2,BO 4, BOOC2解法二:, △AOC∽△COB.7分AOC COB 90°ACO CBO. CBO BCO 90°,.即. △ABC是直角三角形.8ACO BCO 90° ACB 90°分 ①COGFAB H (3)能.当矩形两个顶点在上时,如图1,交于. y GF ∥AB , E D △CGF ∽△CAB . O A B x F H GFCH G C ABCO . 9分 图1 62CH x GF xDE x5解法一:设,则,, 2DG OH OC CH 2 x 5. 22 2 S ·2 x xx 2x 矩形DEFG55 2255 x 522 =. 10分 5x S2当时,最大. 5 DE ,DG 1 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 10 5xDE GF DG x2解法二:设,则. 10 5x55522 S x · x 5x (x 1) 矩形DEFG2222.10分 x 1S 当时,最大. 5 DG 1,DE 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 y 7 D O A B x G G C②CABF 当矩形一个顶点在上时,与重合,如图2, GDAG DG ∥BC △AGD ∽△ACBBCAF ,.. AC 5,BC 25GD x 解法一:设,, x1 x 2S x ·5 x 5x GF AC AG 5 矩形DEFG 22 2 . 15 2 x 5 22=. 12分 x 5S 当时,最大. 3 535 D ,0 22 AD AG GD OD GD 5,AG 2 222,. 13分 AC 5BC 25AG 5 x GD 25 2xDE x GC x 解法二:设,,,,.. 2 55 5 2x x 2 x·25 2x 2x 25x S22 S2 矩形DEFG= 12分当时,最大, 3,AG 535D,022 AD AG GD OD . GD 52 222 .. 13分 1 ,0 2 AB综上所述:当矩形两个顶点在上时,坐标分别为,(2,0); 3 ,0 2 AB当矩形一个顶点在上时,坐标为14分【096】(1)因所求抛物线的顶点M的坐标为故可设其关系式为………………(1分) (2,4), 2 y ax 2 4又抛物线经过O(0,0),于是得,………………(2分) 解2 a0 2 4 0得a=-1 ………………(3分) 2 y x 2 4∴所求函数关系式为,即. ……………(4分)2y x 4x(2)① 点P不在直线ME上. ………………(5分) 根据抛物线的对称性可知E点的坐标为(4,0),又M的坐标为(2,4),设直线ME的于是得,关系式为y=kx+b. 4k b 0k 2 2k b 4b 8 解得 8所以直线ME的关系式为y=-2x+8. ……(6分) 55 55 P, 22 22由已知条件易得,当t ……………(7分) 时,OA=AP,∵ P点的坐标不满足直线ME的关系式y=-2x+8. 5 2∴当t时,点P不在直线ME 上. ………………(8分) ② S存在最大值. 理由如下:………………(9分) ∵点A在x轴的非负半轴上,且N在抛物线上,∴ OA=AP=t. ∴点P,N的坐标分别为(t,t)、(t,-t 2+4t) ∴ AN=-t 2+4t (0≤t≤3) , ∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t …(10分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴1122S=DC·AD=×3×2=3. ………………(11分) (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵4222 PN∥CD,AD⊥CD,2213 11 t∴S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3=321S 最大24. …………(12分) 其中(0<t<3),由a=-1,0<<3,此时3 2时,以点P,N,C,D为顶点的多边形面积有最大值,综上所述,当t214这个最大值为. ………………(13分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合. 3)(4,D.【097】解:(1)点的坐标为(2分)392y x x84(2)抛物线的表达式为.(4分)Px(3)抛物线的对称轴与轴的交点符合条件.1yO x ∴.1 M P OA∥CB∵, P A 6 POM CDO3B OPM DCO 90°C D ,∵13y x 4Rt△POM∽Rt△CDO∴.(6分)1 9x 3∵抛物线的对称轴,P(3,0)P∴点的坐标为.(7分)11POOD过点作的垂线交抛物线的对称轴于点.2y∵对称轴平行∴.2 POM DCO 90°∵,于轴, PMO DOC∴点也符合条2Rt△PMO∽Rt△DOC∴.(8分)21 OPM ODCP∴,件,.22PO CO 3, PPO DCO 90°121Rt△PPO≌Rt△DCO∴.(9分)21PP CD 4∴.12P∵点在第一象限,2PP(3,4)∴点的坐标为,22P(3,0)P(3,4)P∴符合条件的点有两个,分别是,.(11分)12【098】解:(1)当t=4时,B(4,0) 设直线AB的解析式为y= kx+b . 把 A(0,6),B(4,0) 代入得:3 b=6k =- 2 , 解得: , 4k+b=0 b=63∴直线AB的解析式为:y=-x+6.………………………………………4分 2 (2) 过点C作CE⊥x轴于点E 由∠AOB=∠CEB=90°,∠ABO=∠BCE,得△AOB∽△BEC. BE CE BC1 AOBOAB2∴,11t∴BE= OB= AO=3,CE= ,222t∴点C的坐标为(t+3,).…………………………………………………………2分2方法一:1011t115 y S梯形AOEC= OE·(AO+EC)= (t+3)(6+)=t2+t+9,22244 A 11 D S△ AOB= AO·OB= ×6·t=3t,22 C 11t3S△ BEC= BE·CE= ×3×= t,2224 B x O E ∴S△ ABC= S梯形AOEC- S△AOB-S△ BEC 11531 = t2+t+9-3t-t = t2+9. 4444方法二:1∵AB⊥BC,AB=2BC,∴S△ABC= AB·BC= BC2. 21在Rt△ABC 中,BC2= CE2+ BE2 = t2+9,41即S△ABC= t2+9.…………………………………………………………2分4(3)存在,理由如下:y ①当t≥0时. Ⅰ.若AD=BD.又∵BD∥y轴 A D ∴∠OAB=∠ABD,∠BAD=∠ABD,∴∠OAB=∠BAD. C 又∵∠AOB=∠ABC,∴△ABO∽△ACB,OBBC1 t1 B O x E AOAB2,∴= ,∴t=3,即B(3,0). ∴62Ⅱ.若AB=AD.延长AB 与CE交于点G, 1 C 又∵BD∥CG∴AG=AC过点A画AH⊥CG 于H.∴CH=HG= CG y D 2GEAO18由△AOB∽△GEB,得=,∴GE= . BEOBt A H t181t18 E 又∵HE=AO=6,CE=∴+6=×(+)2t22t x O B G ∴t2-24t-36=0 解得:t=12±65. 因为t≥0,所以t=12+65,即B(12+65,0). Ⅲ.由已知条件可知,当0≤t<12时,∠ADB为钝角,故BD ≠ AB. D 当t≥12时,BD≤CE<BC<AB. ∴当t≥0时,不存在BD=AB的情况. ②当-3≤t<0时,如图,∠DAB是钝角.设AD=AB, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F. tt A 可求得点C的坐标为(t+3,),∴CF=OE=t+3,AF=6-,22由BD∥y轴,AB=AD得,∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB∴∠BAO=∠FAC, E O 又∵∠AOB=∠AFC=90°,∴△AOB∽△AFC, x B C F 11t6 BOAO tt 3 6 CFAF2 ,∴,∴∴t2-24t-36=0 解得:t=12±65.因为-3≤t<0,所以t=12-65,即B (12-65,0). ③当t<-3时,如图,∠ABD是钝角.设AB=BD, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F, A tt可求得点C的坐标为(t+3,),∴CF= -(t+3),AF=6-,22∵AB=BD,∴∠D=∠BAD. E B xO 又∵BD∥y轴,∴∠D=∠CAF,∴∠BAC=∠CAF. 又∵∠ABC=∠AFC=90°,AC=AC,∴△ABC≌△AFC,∴AF=AB,CF=BC, F C t∴AF=2CF,即6- =-2(t+3),解得:t=-8,即B(-8,0). 2综上所述,存在点B使△ABD为等腰三角形,此时点B坐标为: D B1 (3,0),B2 (12+65,0),B3 (12-65,0),B4(-8,0). ...........................4分【099】解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分) (2) 情形1 如图21,AB为弦,CD为垂直于弦AB 的直径. ..............................3分结论:(垂径定理的结论之一). (4)分证明:略(对照课本的证明过程给分). ……………………………………………………………7分情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交结论:. D 证明:略. mn 于点P. PA PB PC PD n情形3 (图略)AB为弦,CD为弦,且与在圆外相交于结论:. m 证明:略. A B P 点P. PA PB PC PD OC 情形4 如图23,AB为弦,CD为弦,且AB∥CD. 第25题图结论: = . BC AD 证明:略. (上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C和点E重合,则由圆的对称性,知点C和点D关于直径AB对称. …………………………………………8分 BAC x BAD x ABC 90 x设,则,.…………………………………………9分ABC又D是的中D 180 ABC2 CAD CAD AC点,所以,2 2x 180 (90 x)即 (10)分x BAC 30 解得.………………………………………………………………………………………11分3AB AC AF 3 FB2(若求得或等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆12 n E C D C D n G m B A O O F OB的十二等分点,然后说明)【100】解:(1)令得2 (2b) 4(m a)(m a) 0222a b m由勾股定理的逆定理和抛物线的对称性知a b△ABM是一个以、为直角边的等腰直角三角形2y a(x 2) 1(2)设,∵△ABM是等腰直角三角形∴斜边上的中线等于斜边的一半,又顶点M(-2,-1) 1AB 12∴,即AB=2,∴A(-3,0),B(-1,0) 2y a(x 2) 1a 1将B(-1,0) 代入中得∴抛物线的解析式为,即y k x(3)设22y (x 2) 1y x 4x 3平行于轴的直线为y k 2解方程组得,(21y x 4x 3k 1)x 2 k 1x 2 k 1k 1 k2k 1x∴线段CD的长为,∵以CD为直径的圆与轴相切,据题意得,1 51 51 5k ( 2,)( 2,)2k k 1222∴,解得,∴圆心坐标为和 13。

2011年上海市中考数学试卷

2011年上海市中考数学试卷

2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。

专题:计算题。

分析:本题需根据有理数的除法法则分别对每一项进行计算,即可求出结果.解答:解:A∵=0.3…故本选项错误;B、∵=0.2故本选项正确;C、=0.142857…故本选项错误;D、=0.1…故本选项错误.故选B.点评:本题主要考查了有理数的除法,在解题时要根据有理数的除法法则分别计算是解题的关键.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.考点:不等式的性质。

专题:计算题。

分析:根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.点评:此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.考点:最简二次根式。

专题:计算题。

分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、=,被开方数含分母,不是最简二次根式;故此选项错误B、=,被开方数含分母,不是最简二次根式;故此选项错误C、,是最简二次根式;故此选项正确;D.=5,被开方数,含能开得尽方的因数或因式,故此选项错误故选C.点评:此题主要考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)考点:二次函数的性质。

2011年上海市宝山区、嘉定区中考数学模拟卷(含答案)

2011年上海市宝山区、嘉定区中考数学模拟卷(含答案)

宝山、嘉定2011年学业考试数学模拟卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列根式中,与2为同类二次根式的是(▲) (A )21; (B )a 2; (C )2.0; (D )12.2.关于二次函数2)1(2+-=x y 的图像,下列判断正确的是(▲)(A )图像开口向上; (B )图像的对称轴为直线1=x ; (C )图像有最低点; (D )图像的顶点坐标为(1-,2). 3.关于等边三角形,下列说法不.正确的是(▲) (A )等边三角形是轴对称图形; (B )等边三角形是中心对称图形; (C )等边三角形是旋转对称图形; (D )等边三角形都相似.4.把一块周长为20cm ,面积为202cm 的纸片裁成四块形状、大小完全相同的小三角形纸片(如图1),则每块小三角形纸片的周长和面积分别为(▲) (A )10cm ,52cm ; (B )10cm ,102cm ; (C )5cm ,52cm ; (D )5cm ,102cm .5.已知1e 、2e 是两个单位向量,向量12e a =,22e b -=,那么下列结论中正确的是(▲). (A )21e e =; (B )b a -=; (C )b a =; (D )b a -=. 6.图2反映了一辆汽车从甲地开往乙地的过程中,汽车离开甲地的距离s (千米)与所用时间t (分)之间的函数关系.已知汽车在途中停车加油一次,根据图像,下列描述中,不.正确的是(▲) (A )汽车在途中加油用了10分钟; (B )汽车在加油前后,速度没有变化;(C )汽车加油后的速度为每小时90千米; (D )甲乙两地相距60千米.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.计算:=⋅-a a 2)( ▲ .8.计算:=---112m mm m ▲ .(图1)S (千米) t (分)6030 553525 0(图2)9.在实数范围内分解因式:222--x x = ▲ . 10.方程x x -=+32的解为: ▲ .11.已知12)(3-=x x f ,且3)(=a f ,则=a ▲ .12.已知函数2-+=k kx y 的图像经过第一、三、四象限,则k 的取值范围是 ▲ . 13.把抛物线x x y 22-=向左平移一个单位,所得抛物线的表达式为: ▲ .14.已知关于x 的方程042=+-m x x ,如果从1、2、3、4、5、6六个数中任取一个数作为方程的常数项m ,那么所得方程有实数根的概率是 ▲ .15.如图3,已知梯形ABCD 中,AB ∥CD ,AB=5,CD=3,AD=BC=4,则=∠DAB cos ▲ . 16.如图4,小芳与路灯相距3米,他发现自己在地面上的影子(DE )长2米,如果小芳的身高为1.6米,那么路灯离地面的高度(AB )是 ▲ 米.17.如图5,已知AB 是⊙O 的直径,⊙O 1、⊙O 2的直径分别是OA 、OB ,⊙O 3与⊙O 、⊙O 1、⊙O 2均相切,则⊙O 3与⊙O 的半径之比为 ▲ .18.已知A 是平面直角坐标系内一点,先把点A 向上平移3个单位得到点B ,再把点A 绕点B 顺时针方向旋转90°得到点C ,若点C 关于y 轴的对称点为(1,2),那么点A 的坐标是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸上]19.(本题满分10分) 计算:1312)23(6)8()13(-+--+-.(图4)CBED A(图5)ABO O 1O 2O 3CD(图3)BA如图6,已知一个正比例函数与一个反比例函数的 图像在第一象限的交点为A (2,4). (1)求正比例函数与反比例函数的解析式; (2)平移直线OA ,平移后的直线与x 轴交于点B , 与反比例函数的图像在第一象限的交点为C (4,n ). 求B 、C 两点的距离.21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图7,△ABC 中,AB=AC ,54cos =∠ABC ,点D 在边BC 上,BD =6,CD=AB .(1) 求AB 的长; (2) 求ADC ∠的正切值.A (2,4)yxO(图6)DCBA(图7)如图8,已知B 是线段AE 上一点,ABCD 和BEFG 都是正方形,联结AG 、CE . (1) 求证:AG =CE ; (2) 设CE 与GF 的交点为P ,求证:AG PE CG PG .23.(本题满分12分,每小题各4分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图9所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1) 该班级女生人数是 ▲ ,女生收看“两会”新闻次数的中位数是 ▲ ; (2) 对于某个群体,我们把一周内 收看某热点新闻次数不低于3次的人 数占其所在群体总人数的百分比叫做 该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻 的“关注指数”比女生低5%,试求 该班级男生人数;(3) 为进一步分析该班级男、女生 收看“两会”新闻次数的特点,小明 给出了男生的部分统计量(如表1).根据你所学过的统计知识,适当 计算女生的有关统计量,进而比较该 班级男、女生收看 “两会”新闻次数 的波动大小.统计量 平均数(次) 中位数(次)众数(次)方差…… 该班级男生3 34 2……ABCDEFG P(图8)0 14 23 次数(次)2 3 5 6 7人数(人)O5(图9)1女生 男生4 (表1)如图10,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OB OA =. (1) 求c b +的值;(2) 若点C 在抛物线上,且四边形OABC 是 平行四边形,试求抛物线的解析式;(3) 在(2)的条件下,作∠OBC 的角平分线, 与抛物线交于点P ,求点P 的坐标.CBAOy x(图10)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知⊙O 的半径长为1,PQ 是⊙O 的直径,点M 是PQ 延长线上一点,以点M 为圆心作圆,与⊙O 交于A 、B 两点,联结PA 并延长,交⊙M 于另外一点C .(1) 若AB 恰好是⊙O 的直径,设OM=x ,AC=y ,试在图12中画出符合要求的大致图形,并求y 关于x 的函数解析式;(2) 联结OA 、MA 、MC ,若OA ⊥MA ,且△OMA 与△PMC 相似,求OM 的长度和⊙M 的半径长;(3) 是否存在⊙M ,使得AB 、AC 恰好是一个正五边形的两条边?若存在,试求OM 的长度和⊙M 的半径长;若不存在,试说明理由.图12Q POM备用图QPOAB图11CQ P O M宝山、嘉定2011年九年级数学模拟测试评分参考标准一、1. A ; 2. D ; 3. B ; 4. A ; 5. C ; 6. B.二、7. 3a ; 8. m ; 9. )31)(31(--+-x x ; 10. 1-=x ;11. 32; 12. 20<<k ; 13. 12-=x y ; 14.32; 15.41; 16. 4; 17. 3:1; 18. )1,2(-. 三、19.解:原式=2362324+--- (5分)=)23(6322--- (2分) =3223322+-- (2分) =232- (1分)20.解(1)设正比例函数的解析式为x k y 1=,反比例函数的解析式为xk y 2= (1分)根据题意得:241⨯=k ,242k = (2分) 解得:21=k ,82=k所以,正比例函数的解析式为x y 2=,反比例函数的解析式为xy 8=. (2分) (2)因为点C (4,n )在反比例函数xy 8=的图像上 所以,248==n ,即点C 的坐标为)2,4( (1分) 因为AO ∥BC ,所以可设直线BC 的表达式为b x y +=2 (1分) 又点C 的坐标为)2,4(在直线BC 上所以,b +⨯=422,解得6-=b ,直线BC 的表达式为62-=x y (1分) 直线BC 与x 轴交于点B ,设点B 的坐标为)0,(m可以得:620-=m ,解得3=m ,所以点B 的坐标为)0,3( (1分) ∴ 5=BC ……………………1分21.解:(1)过点A 作AH ⊥BC ,垂足为H (1分)∵AC AB = ∴BC HC BH 21== (1分)设x CD AC AB === ∵6=BD∴6+=x BC , 26+=x BH (1分)在Rt △AHB 中,ABBH ABC =∠cos ,又54cos =∠ABC∴5426=+x x (2分) 解得:10=x ,所以10=AB (1分)(2)821===BC HC BH2810=-=-=CH CD DH (1分)在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH (1分) 在Rt △AHD 中,326tan ===∠DHAH ADC∴ADC ∠的正切值是3 (2分)22.证明:(1)∵四边形ABCD 和BEFG 是正方形∴CB AB =,BE BG =,︒=∠=∠90CBE ABG (3分)∴△ABG ≌△CBE (1分) ∴CE AG = (1分) (2)∵PG ∥BE∴CBCG BEPG =,CEPE CB BG = (2分)∵BE BG =,CE AG =∴CBBG CGPG =,AGPE CB BG = (2分)∴AGPE CGPG = (1分)23.(1)20 (2分), 3 (2分);(2)由题意:该班女生对“两会”新闻的“关注指数”为%65%1002013=⨯ (1分) 所以,男生对“两会”新闻的“关注指数”为%60 (1分) 设该班的男生有x 人则 %60)631(=++-x x (1分), 解得:25=x (1分)答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为3202554635221=⨯+⨯+⨯+⨯+⨯, (2分)女生收看“两会”新闻次数的方差为:101320)53(2)43(5)33(6)23(5)13(222222=-+-+-+-+-因为2>1013,所以男生比女生的波动幅度大. (2分)24.解:(1)由题意得:点B 的坐标为),0(c ,其中0>c ,c OB = (1分) ∵OB OA =,点A 在x 轴的负半轴上,∴点A 的坐标为)0,(c - (1分) ∵点A 在抛物线c bx x y ++-=2上,∴c bc c +--=20 (1分) ∴ 1=+c b (因为0>c ) (1分) (2)∵四边形OABC 是平行四边形∴c AO BC ==,又BC ∥x 轴,点B 的坐标为),0(c∴点C 的坐标为),(c c (1分) 又点C 在抛物线上,∴c bc c c ++-=2∴0=-c b 或0=c (舍去) (1分)又 由(1)知:1=+c b ∴21=b ,21=c . 抛物线的解析式为21212++-=x x y . (2分) (3)过点P 作⊥PM y 轴,⊥PN BC ,垂足分别为M 、N ∵ BP 平分CBO ∠ ∴ PN PM = (1分)设点P 的坐标为)2121(2++-x x x ,∴x x x =++--)2121(212 (1分) 解得:23=x 或0=x (舍去) (1分) 所以,点P 的坐标为)21,23(- (1分)25.(1)图画正确 (1分)过点M 作AC MN ⊥,垂足为N∴y NC AN 21== 由题意得:AB PM ⊥, 又AB 是圆O 的直径∴1==OP OA ∴︒=∠45APO , 2=PA∴y PN 212+=(1分) 在Rt △PNM 中,PMPNNPM =∠cos 又x PM +=1,︒=∠45NPM∴ 22121245cos =++=︒x y∴ y 关于x 的函数解析式为22-=x y (1>x ) (2分)(2)设圆M 的半径为r因为 OA ⊥MA ,∴∠OAM=90°,12+=r OM又△OMA 与△PMC 相似,所以△PMC 是直角三角形。

2011年上海市中考数学试卷【答案+解析】

2011年上海市中考数学试卷【答案+解析】

2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A. B. C. D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A. B. C. D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3= _________ .8.(2011•上海)因式分解:x2﹣9y2= _________ .9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m= _________ .10.(2011•上海)函数的定义域是_________ .11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________ .12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________ (填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________ .14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________ .15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量= _________ (结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________ .17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________ .18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m= _________ .三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________ ;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________ (填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________ ;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________ 名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC 或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A. B. C. D.考点:有理数的除法。

2011年中考数学压轴题预测(含答案)

2011年中考数学压轴题预测(含答案)

2011 年中考数学压轴题预测(1-10 题)【01】如图,已知抛物线 2y a(x 1) 3 3(a≠0)经过点A( 2,0) ,抛物线的顶点为 D ,过O 作射线OM ∥AD .过顶点D 平行于x轴的直线交射线OM 于点C ,B 在x轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O出发,以每秒 1 个长度单位的速度沿射线OM 运动,设点P 运动的时间为t(s) .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C OB ,动点P 和动点Q分别从点O和点B 同时出发,分别以每秒 1 个长度单位和2 个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s),连接PQ ,当t为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.y MDCPAO QB x【02】如图16,在Rt△ABC中,∠C=90°,AC= 3,AB = 5.点P 从点C出发沿CA以每秒 1 个单位长的速度向点 A 匀速运动,到达点 A 后立刻以原来的速度沿AC返回;点Q 从点 A 出发沿AB 以每秒1 个单位长的速度向点 B 匀速运动.伴随着P、Q 的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q 同时出发,当点Q 到达点 B 时停止运动,点P 也随之停止.设点P、Q 运动的时间是t 秒(t>0).B (1)当t = 2 时,AP= ,点Q 到AC的距离是;(2)在点P 从C向A 运动的过程中,求△APQ的面积S与t 的函数关系式;(不必写出t 的取值范围)(3)在点E从B 向C运动的过程中,四边形QBED能否成EQ为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE经过点C时,请直.接.写出t 的值.DA CP图161【03】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).2+bx 过A、C两点.抛物线y=ax(1)直接写出点 A 的坐标,并求出抛物线的解析式;(2)动点P 从点 A 出发.沿线段A B 向终点 B 运动,同时点Q 从点C出发,沿线段C D向终点 D 运动.速度均为每秒 1 个单位长度,运动时间为t 秒.过点P 作PE⊥AB 交AC于点E,①过点E 作EF⊥AD 于点F,交抛物线于点G.当t 为何值时,线段E G最长?②连接EQ.在点P、Q 运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t 值。

2011年上海市各区中考数学二模压轴题图文解析

2011年上海市各区中考数学二模压轴题图文解析
2
图1
动感体验
请打开几何画板文件名“11 宝山 24” ,拖动点 B 在 y 轴正半轴上运动,观察 b 随 c 变化 的跟踪图像,可以体验到, b+c 等于定值 1;在运动过程中,△AOB 保持等腰直角三角形, 四边形 OABC 保持平行四边形.双击按钮“点 C 落在抛物线上” ,可以看到,此时点 B 与点 C 关于抛物线的对称轴对称,△BPM 是等腰直角三角形.

2011 年上海市宝山区中考模拟第 25 题
图4 由 y x2
图5
图6
1 1 1 1 1 1 1 x (2 x 1)( x 1) ,知 A( , 0) , B(0, ) , C ( , ) . 2 2 2 2 2 2 2 1 1 ; x ,得 Q(-1,-1 ) 2 2
如图 4,当 AQ//BC 时,根据对称性,易知点 Q 的坐标为(1, 0) ; 如图 5,当 CQ//AB 时,设 Q(x,x) ,解方程 x x 2
目录
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·5

且 OA=OB.
2011 年上海市宝山区中考模拟第 24 题
如图 1,已知抛物线 y=-x + bx+c 与 x 轴负半轴交于点 A,与 y 轴正半轴交于点 B , (1)求 b+c 的值; (2)若点 C 在抛物线上,且四边形 OABC 是平行四边形,试求抛物线的解析式; (3)在(2 )的条件下,作∠OBC 的角平分线,与抛物线交于点 P,求点 P 的坐标.
2 2
1 . 2
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·5
此时抛物线的解析式为 y x 2
1 1 x . 2 2
(3)过点 P 作 PM⊥y 轴,垂足为 M. 因为 BP 平分∠ CBO,所以△BPM 是等腰直角三角形. 设点 P 的坐标为 ( x, x2 由 BM=PM,列方程 解得 x

2011年上海市宝山区初中数学一模卷试题及参考答案【纯word版,完美打印】

2011年上海市宝山区初中数学一模卷试题及参考答案【纯word版,完美打印】

2009学年宝山区第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共26题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列算式中,正确的是( ). (A )523121=+; (B ) 532=+; (C ) 632=⨯; (D ) 222)(b a b a -=-.2.已知b a >,那么下列结论一定成立的是( ). (A )22b a >; (B )b a 2121-<-; (C )11-<-b a ; (D )b a 11<.3.根据你对相似的理解,下列命题中,不.正确的是( ). (A )相似三角形的对应角相等; (B )相似三角形的对应边成比例; (C )相似三角形的周长比等于相似比; (D )相似三角形的面积比等于相似比. 4.直线x y 2=与x 轴正半轴的夹角为α,那么下列结论正确的是( ). (A )2tan =α; (B )2cot =α ; (C )2sin =α; (D )2cos =α.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O . 下列命题中,正确的是( ). (A )=; (B )2=+; (C=; (D )AB OB OA =-.(O xyα6.已知c bx ax x f ++=2)((其中c b a 、、为常数,且0≠a ),小明在用描点法画)(x f y =的图像时,列出如下表格.根据该表格,下列判断中,不.正确的是( )向下; (B ) 抛物线(A )抛物线)(x f y =开口)(x f y =的对称轴是直线1=x ;(C )2)3(-=f ; (D ))8()7(f f <.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7. 4的平方根是 .8. 不等式012<-x 的解集是 .9. 方程1112-=-x x x 的解为 . 10. 平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是 .11. 抛物线2)1(2++-=x y 的顶点坐标为 .12. 把抛物线23x y =先向右平移2个单位,再向下平移1个单位,这时抛物线的解析式为: .13. 一条抛物线具有下列性质:(1)经过点)3,0(A ;(2)在y 轴左侧的部分是上升的,在y 轴右侧的部分是下降的. 试写出一个满足这两条性质的抛物线的表达式. . 14. 某小山坡的坡长为200米,山坡的高度为100米,则该山坡的坡度i = .15. 在平面直角坐标系中,已知点)0,1(A 、)2,0(B 、)2,2(C .记向量=,则-= (用表示).16. 已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且DE ∥BC . 若ADE ∆的面积与四边形BCED 的面积相等,则ABAD的值为 . x … 1- 0 1 2 …y… 2- 2.5 4 2.5 …17. 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是AD 、BC 的中点,AB DE ⊥,垂足为点E . 若四边形BCDE 是正方形,且点M 、N 关于直线DE 对称,则DAE ∠的余切值为 .18.如图,已知菱形ABCD 中,︒=∠60ABC ,点E 在边BC 上,︒=∠25BAE .把线段AE 绕点A 逆时针方向旋转,使点E 落在边CD 上,则旋转角α的 度数为 .(︒<<︒1800α)三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分) 19. 先化简,再求代数式12)1311(2-÷-+++x xx x x 的值.其中︒-︒=45cos 60sin x .20. 如图,已知向量、,求作向量x ,满足2)2(21a b a x -=+-. (不要求写作法,但要保留作图痕迹,并写出结论)21.如图,ABC ∆中,点D 在边BC 上,DE ∥AB ,DE 交AC 于点E ,点F 在边AB 上,且AECE FB AF =.(1)求证:DF ∥AC ;ADBE(第17题图)AEDM N. . B (第16题图)ab(2)如果2:1:=DC BD ,ABC ∆的面积为182cm ,求四边形AEDF 的面积.22、为了预防“流感”,某学校对教室进行“药熏”消毒。

2011中考数学真题解析压轴题1(含答案)

2011中考数学真题解析压轴题1(含答案)

2011全国中考真题解析压轴题1一、选择题1. (2011•台湾34,4分)如图1,有两全等的正三角形ABC ,DEF ,且D ,A 分别为△ABC ,△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )A 、2:1B 、3:2C 、4:3D 、5:4考点:旋转的性质;等边三角形的性质。

分析:设三角形的边长是x ,则(1)中阴影部分是一个内角是60°的菱形,图(2)是个角是30°的直角三角形,分别求得两个图形的面积,即可求解. 解答:解:设三角形的边长是x ,则高长是x 23. 图(1)中,阴影部分是一个内角是60°的菱形,AD=×x 23=x 33. 另一条对角线长是:2×21×x 33sin30°=31x . 则阴影部分的面积是:21×31x•63x=363x 2; 图(2)中,AD=×x 23=x 33. 是一个角是30°的直角三角形.则阴影部分的面积=21AD•sin30°•AD•cos30°=21×x•××x•23=363x 2. 两个三角形重迭区域的面积比为:363x 2:363x 2=4:3. 故选C .点评:本题主要考查了三角形的重心的性质,以及菱形、直角三角形面积的计算,正确计算两个图形的面积是解决本题的关键.2. (2011台湾,34,4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分( )A .3322B .16+πC .18D .19考点:解直角三角形的应用;钟面角。

上海市中考数学模拟试题压轴题分析11宝山

上海市中考数学模拟试题压轴题分析11宝山

例 2011年上海市宝山区中考模拟第25题如图1,已知⊙O的半径长为1,PQ是⊙O的直径,点M是PQ延长线上一点,以点M为圆心作圆,与⊙O交于A、B两点,联结P A并延长,交⊙M于另外一点C.(1) 若AB恰好是⊙O的直径,设OM=x,AC=y,试在图12中画出符合要求的大致图形,并求y关于x的函数解析式;(2) 联结OA、MA、MC,若OA⊥MA,且△OMA与△PMC相似,求OM的长度和⊙M 的半径长;(3) 是否存在⊙M,使得AB、AC恰好是一个正五边形的两条边?若存在,试求OM的长度和⊙M的半径长;若不存在,试说明理由.图1 备用图备用图动感体验请打开几何画板文件名“11宝山25”,双击按钮“A、O、B共线”,再拖动点M运动,从图像中可以看到y是x的一次函数;双击按钮“第(2)题”,拖动点M运动,可以体验到△PMC保持直角三角形,双击按钮“∠P=∠AMO”,可以准确显示两个三角形相似;双击按钮“第(3)题”,先拖动点A,使得点C落在射线P A上,再双击按钮“⊙M过点C”,可以体验到,⊙A与⊙M关于AB对称.请打开超级画板文件名“11宝山25”,思路点拨1.这三道题目强烈地考验大家的画图能力,图形画好了,思路就显示出来了.2.第(1)题先画直径AB与PQ互相垂直平分,等腰直角三角形一目了然.3.第(2)题根据∠OAM=90°画出点M,再画⊙M,△PMC就是直角三角形,如果△OMA与△PMC相似,Rt△OAM的两个锐角的关系就很显然.4.第(3)题没有图不直观,画图更难办.倒行逆施:先画好正五边形ACDEB、外接圆M以及对称轴MD,延长CA与对称轴MD的交点不就是点P?看看图形的对称性吧,思路豁然开朗.满分解答(1)图画:画直径AB垂直PQ;以M为圆心,过点A画圆交射线P A于点C.如图2,过点M作MH⊥AC,垂足为H,那么AH=CH=12y.因为AB 与PQ 互相垂直平分,所以△P AO 、△PMH 都是等腰直角三角形. 由于PO =1,OM =x ,所以P A =2,PH =122y +,PM =1+x . 由PM =2PH ,得1+x =2(122y +). 整理,得y 关于x 的函数解析式为22y x =-.(2)如图3,因为OA ⊥MA ,所以∠1与∠2互余.又因为∠1=∠C ,∠2=∠P ,所以∠C 与∠P 互余,△CMP 为直角三角形. 因为∠3=2∠P ,所以△OMA 与△PMC 相似,只存在∠4=∠P 的情况.在Rt △OAM 中,∠3=2∠4,所以∠4=30°.所以OM =2OA =2,⊙M 的半径AM =3.图2 图3 图4(3)如图4,假设存在⊙M ,使得AB 、AC 恰好是正五边形ACDEB 的两条边, 那么正五边形ACDEB 的对称轴是直线PQ ,∠ADB =36°.由于正五边形ACDEB 的外角等于72°,所以△P AB 的顶角∠APB =36°. 因此点P 与点E 关于直线AB 是对称的.所以⊙M 与是⊙A 等圆,半径为1.如图5,设⊙M 与OM 交于点G ,那么△MAG 与△AQG 都是顶角为36°的等腰三角形.因此AG =AQ =QM .设AQ =m ,那么m 2=1-m .解得51m -=. 所以OM =OQ +QM =51511-++=. 考点伸展第(3)题求OM 的长,关键是求QM 的长.36°的等腰三角形,不由得让人联想起黄金三角形、黄金分割、黄金分割数.如图5,由△MAG ∽△AQG ,得MA AG AG GQ=.通过解方程m 2=1-m ,得51m -=.因此点Q 就是MG 的一个黄金分割点.图5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 2011年上海市宝山区中考模拟第25题
如图1,已知⊙O的半径长为1,PQ是⊙O的直径,点M是PQ延长线上一点,以点M为圆心作圆,与⊙O交于A、B两点,联结P A并延长,交⊙M于另外一点C.
(1) 若AB恰好是⊙O的直径,设OM=x,AC=y,试在图12中画出符合要求的大致图形,并求y关于x的函数解析式;
(2) 联结OA、MA、MC,若OA⊥MA,且△OMA与△PMC相似,求OM的长度和⊙M 的半径长;
(3) 是否存在⊙M,使得AB、AC恰好是一个正五边形的两条边?若存在,试求OM的长度和⊙M的半径长;若不存在,试说明理由.
图1 备用图备用图
动感体验
请打开几何画板文件名“11宝山25”,双击按钮“A、O、B共线”,再拖动点M运动,从图像中可以看到y是x的一次函数;双击按钮“第(2)题”,拖动点M运动,可以体验到△PMC保持直角三角形,双击按钮“∠P=∠AMO”,可以准确显示两个三角形相似;双击按钮“第(3)题”,先拖动点A,使得点C落在射线P A上,再双击按钮“⊙M过点C”,可以体验到,⊙A与⊙M关于AB对称.
请打开超级画板文件名“11宝山25”,
思路点拨
1.这三道题目强烈地考验大家的画图能力,图形画好了,思路就显示出来了.
2.第(1)题先画直径AB与PQ互相垂直平分,等腰直角三角形一目了然.
3.第(2)题根据∠OAM=90°画出点M,再画⊙M,△PMC就是直角三角形,如果△OMA与△PMC相似,Rt△OAM的两个锐角的关系就很显然.
4.第(3)题没有图不直观,画图更难办.倒行逆施:先画好正五边形ACDEB、外接圆M以及对称轴MD,延长CA与对称轴MD的交点不就是点P?看看图形的对称性吧,思路豁然开朗.
满分解答
(1)图画:画直径AB垂直PQ;以M为圆心,过点A画圆交射线P A于点C.
如图2,过点M作MH⊥AC,垂足为H,那么AH=CH=1
y.
2
因为AB 与PQ 互相垂直平分,所以△P AO 、△PMH 都是等腰直角三角形.
由于PO =1,OM =x ,所以P A ,PH 12y ,PM =1+x .
由PM ,得1+x 1
2y ).
整理,得y 关于x 的函数解析式为y =-
(2)如图3,因为OA ⊥MA ,所以∠1与∠2互余.
又因为∠1=∠C ,∠2=∠P ,所以∠C 与∠P 互余,△CMP 为直角三角形. 因为∠3=2∠P ,所以△OMA 与△PMC 相似,只存在∠4=∠P 的情况.
在Rt △OAM 中,∠3=2∠4,所以∠4=30°.
所以OM =2OA =2,⊙M 的半径AM
图2 图3 图4
(3)如图4,假设存在⊙M ,使得AB 、AC 恰好是正五边形ACDEB 的两条边, 那么正五边形ACDEB 的对称轴是直线PQ ,∠ADB =36°.
由于正五边形ACDEB 的外角等于72°,所以△P AB 的顶角∠APB =36°. 因此点P 与点E 关于直线AB 是对称的.
所以⊙M 与是⊙A 等圆,半径为1.
如图5,设⊙M 与OM 交于点G ,那么△MAG 与△AQG 都是顶角为36°的等腰三角形.因此AG =AQ =QM .
设AQ =m ,那么m 2=1-m .解得2m =
所以OM =OQ +QM =122+=.
考点伸展
第(3)题求OM 的长,关键是求QM 的长.36°的等腰三角形,
不由得让人联想起黄金三角形、黄金分割、黄金分割数.如图5,由△
MAG ∽△AQG ,得M A A G
A G G Q =.通过解方程m 2=1-m ,得2m =因
此点Q 就是MG 的一个黄金分割点.
图5。

相关文档
最新文档