高三数学一轮复习 第11课时 幂函数及基本初等函数的应用学案
2019届高三数学一轮复习目录(理科)
2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。
高中数学《幂函数》教案 新人教A版必修1
高中数学《幂函数》教案新人教A版必修1【教学目标】【知识与技能】1.理解幂函数的概念.2.通过具体实例研究幂函数的图象和性质,并初步进行应用.【过程与方法】通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法.【情感、态度价值观】1.进一步渗透数形结合、分类讨论的思想方法.2.体会幂函数的变化规律及蕴含其中的性质.3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中渗透辩证唯物主义的观点.【重点难点】重点:通过六个具体的幂函数认识概念,研究性质,体会图象的变化规律.难点:画六个幂函数的图象并由图象概括幂函数的一般性质.【突破方式】教师引导学生动手作图、媒体演示多个幂函数图象,深化学生对图象的直观认识;观察幂函数图象,归纳幂函数的性质,加强学生对幂函数性质的理解和记忆.【教学策略】【教学顺序】复习引入,归纳定义,研究图象,归纳性质,应用性质.【教学方法与手段】1.采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义和性质,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性.2.利用投影仪及计算机辅助教学.超级链接到课件3.3幂函数(1)(个人独立制作)【教学过程】创设情境前面我们学习了函数定义,研究了函数的一般性质,并且研究了指数函数和对数函数.函数这个大家庭有很多成员,如一次函数、二次函数、反比例函数、指数函数、对数函数等.它们在数学中的都承担着各自的任务,每个成员又都有它们各自鲜活的个性.今天,我们利用研究指数函数、对数函数的研究方法,再来认识一位新成员.请大家看如下问题.(板书:.,,,,,12132 -=====x y x y x y x y x y )抽取这几个解析式结构上的共同特征:我们能够发现它们的右端都是幂的形式,并且底数是自变量x ,幂指数是常数. 也就是说,它们可以写成ax y =的形式,这种形式的函数就是幂函数.(板书课题:幂函数) 探究新知幂函数的定义(形式定义)一般地,形如)(R x y ∈=αα的函数称为幂函数,其中α是常数.自变量x 是幂的底数,换句话说,幂的底数是单变量x ,幂指数是个常数,幂的系数是1,符合上述形式的函数,就是幂函数.请同学们举出一个具体的幂函数.从引例和同学们刚才举的例子中,我们可以发现,幂指数α可以是正数、负数,也可以是0.幂函数与指数函数,对数函数一样,都是基本初等函数. 课堂练习1.指出下列函数中的幂函数..,,,,5xy x y x y x x y xy 51222===+==探究新知按照从特殊到一般的原则,我们先来研究几个具有代表意义的幂函数..,,,,,212132--======x y x y x y x y x y x y请同学们用描点法在平面直角坐标系中画出上述函数的图象.我们在前面的课程中已经研究过了函数y x =与2y x =的性质,它们的图象已经呈现在坐标纸中了,在这里,我们只画出余下四个函数的图象.(时间关系,分四组)根据手里作出的图象,以小组为单位对照函数图象,讨论以下四个问题: 1.描点法画函数图象的步骤;(列表、描点、连线) 2.互相检查函数图象的画法,图象是否一致; 3.讨论在画图象过程中出现的问题;4.探究幂函数图象的变化规律,归纳幂函数的性质.通过刚才观察同学们作图,其中几个同学的图象特别规范,请看. 变化趋势. 首先可以很明显的看到,上述六个幂函数的图象都过同一个定点(1,1).从这些函数的图象我们可以看到,幂函数随着幂指数的取值不同,它们的性质和图象也存在着差异,请同学们根据这个表格,寻找这6个幂函数的共性?定义域不同,但有公共区间(0,+∞).为了更好地观察函数图象特征,总结幂函数的性质,我们把6个幂函数的图象画在同一平面直角坐标系中.(这是幂函数……的图象……)总结性质虽然这6个幂函数图象所分布的象限不同,但是我们还是不难发现它们共同的特征.这6个幂函数在(0,+∞)都有定义,图象都过点(1,1).注意到这6个幂函数在第一象限内的单调性的差异,我们来观察当0>α时的函数图象,(演示几何画板,隐藏0<α时图象)很明显,它们的图象除了过点(1,1)外,还过原点,并且在区间),0[+∞上是增函数.再来观察当0<α时的函数图象,(演示几何画板,显示0<α时图象,隐藏0>α时图象)幂函数在区间),0(+∞上是减函数.在第一象限内,当自变量x 取值从右边趋于0时,图象在y 轴右方无限地靠近y 轴,但不与y 轴相交,当自变量x 取值趋于∞+时,图象在x 轴上方无限地靠近x 轴,但不与x 轴相交.演示画板,改变幂指数的值,观察函数图象的变化趋势,不难发现,所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);当幂指数0>α时,幂函数都过原点,在),0[+∞上是增函数;当幂指数0<α时,在),0(+∞上是减函数,在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴.0>α 0<α在(0,+∞)有定义,图象过点(1,1);在),0[+∞上是增函数 在),0(+∞上是减函数 图象过原点在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴.下面我们应用幂函数的性质来解决问题. 例题解析例1 比较下列两个代数式值的大小:.2,)2)(4(;,)1)(3(;)3(,)2)(2(;4.2,3.2)1(323225.15.123234343----++a a a分析:观察所给的两个代数式,都是幂的形式.又因为幂指数相同,而底数不同,所以想到要利用幂函数的性质解决此类问题.(1)解:考察幂函数43x y =,因为43x y =在(0,+∞)上单调递增,而且2.3<2.4,所以43434.23.2<.以下各题同理可解:.2)2)(4(;)1)(3(;)3()2)(2(323225.15.12323----≤+>+>a a a例2 讨论函数32x y =的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性. 解:要使3232x x y ==有意义,x 可以取任意实数,故函数定义域为R .∵f (-x )=3232)(x x =-=f (x ), ∴函数32x y =是偶函数; x1 2 3 4 … y x = 01 1.59 2.08 2.52 …幂函数32x y =在[0,+∞)上单调递增,在(-∞,0)上单调递减.思考与讨论幂函数)(R x y ∈=αα,当,5,,3,1 =α(正奇数)时,函数有哪些性质? (演示画板)定义域为R ,值域为R ,是奇函数,在(-∞,+∞)上是增函数. 当,6,,4,2 =α(正偶数)时,这类幂函数的性质和特点,留做同学们课下讨论. 课堂练习2.幂函数43x y =的单调递增区间是________.答案:[)+∞,0 3.2121211.1,9.0,2.1===-c b a 的大小关系是________.答案a >b >c归纳小结本节课我们学习了幂函数的定义,通过作出6个具有代表意义的幂函数的图象,归纳总结幂函数的共同性质,这也是我们研究函数的一般思想方法. 布置作业作出函数23x y =的图象,根据图象讨论这个函数有哪些性质,并给出证明.通过本节课的学习,相信幂函数已经在大家的头脑中留下十分深刻的印象.最后,让我们在悠扬的音乐声中给大家展示一个数学公式,这是作为基本初等函数的幂函数在高等数学中的应用,用含有阶乘的幂指数是正整数的幂函数形式来表示xe ——泰勒公式.)(!!3!2132R x n x x x x e nx∈++++++=。
高中数学幂函数教案试讲
高中数学幂函数教案试讲
目标:学生能够理解幂函数的概念、性质及应用,并能够解决相关问题。
一、引入
1. 引导学生回顾指数函数的概念和性质。
2. 引出幂函数的定义,并介绍幂函数的概念。
3. 提出问题:幂函数与指数函数的联系是什么?
二、概念解释
1. 讲解幂函数的定义:f(x) = ax^b,其中a和b为常数且a ≠ 0。
2. 讲解幂函数的图像特点:当b为正偶数时,图像开口朝上;当b为正奇数时,图像开口朝上或朝下;当b为负数时,图像在x轴上方或下方。
三、性质探讨
1. 讲解幂函数的增减性与最值:根据b的奇偶性讨论函数的增减性及最大值最小值。
2. 讨论幂函数的奇偶性质。
四、应用拓展
1. 解决一些幂函数相关的实际问题,并让学生进行解答和讨论。
2. 引导学生自行研究其它类型的幂函数,并分享给全班同学。
五、练习与作业
1. 完成相关习题,巩固所学知识。
2. 布置作业:设计一个实际问题,用幂函数来解答并讨论。
六、总结
1. 回顾本节课所学内容,强调幂函数的重要性和应用。
2. 鼓励学生勤奋学习,积极思考。
以上为本节课的教案范本,敬请参考。
人教版高中必修一《幂函数》教案
人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。
二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。
2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。
3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。
4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。
5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。
四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。
五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。
六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。
七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。
高考数学第一轮复习教案-专题2函数概念与基本初等函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.
人教版高中数学必修一《基本初等函数》之《幂函数》教学学案
2.3 幂函数三维目标定向〖知识与技能〗(1)了解幂函数的概念;(2)会画函数21132,,,,x y x y x y x y x y =====-的图象,并了解它们的变化情况。
〖过程与方法〗通过画21132,,,,x y x y x y x y x y =====-的图象,由特殊到一般,归纳出幂函数的图象和性质。
〖情感、态度与价值观〗通过大量实例,感受幂函数的概念,体会幂函数在客观现实中的应用,学会应用数学的方法,形成一定的数学应用意识。
教学重难点:幂函数的图象和性质。
教学过程设计一、实例剖析引例:(1)如果张红购买了每千克1元的蔬菜x 千克,那么她需要支付y = 元; (2)如果正方形的边长为x ,那么正方形的面积y = ; (3)如果立方体的边长为x ,那么立方体的体积y = ;(4)如果一个正方形场地的面积为x ,那么这个正方形的边长为y = ; (5)如果某人x s 内骑车行进了1km ,那么他骑车的平均速度y = km / s 。
问题:以上函数具有什么共同特征?共同特征:函数解析式是幂的形式,且指数是常数,底数是自变量。
二、幂函数的图象和性质(一)定义:函数αx y =叫做幂函数。
(其中x 为自变量,α为常数)探究1:你能指几个学过的幂函数的例子吗? 探究2:你能说出幂函数与指数函数的区别吗?探究3:如何判断一个函数是幂函数还是指数函数? 看看自变量x 是指数(指数函数)还是底数(幂函数)。
练习:1、下面几个函数中,哪几个函数是幂函数?(1)21y x=;(2)22y x =;(3)2y x x =+;(4)y ;(5)2x y =。
2、已知幂函数y = f (x )的图象经过点(3 ,求这个函数的解析式。
3、如果函数2()(1)mf x m m x =--⋅是幂函数,求实数m 的值。
(二)幂函数性质的探究:对于幂函数,我们只讨论21,1,3,2,1-=α时的情况, 即:21132,,,,x y x y x y x y x y =====-探究4:结合前面指数函数与对数函数的方法,我们应如何研究幂函数呢? 作具体幂函数的图象 → 观察图象特征 → 总结函数性质探究5:在同一平面直角坐标系内作出幂函数21132,,,,x y x y x y x y x y =====-的图象:探究6:性质:三、例题例1:证明幂函数x x f =)(在),0[+∞上是增函数。
数学必修一+幂函数及复习教案
3.5.1幂函数学习目标:通过具体实例了解幂函数的图象和性质,体会幂函数的变化规律及蕴含其中的对称性并能进行简单的应用.学习重点:从五个具体幂函数中认识幂函数的一些性质.学习难点:画五个幂函数的图象并由图象概括其性质.学习过程:一、新课引入:(1)边长为的正方形面积,这里是的函数;(2)面积为的正方形边长,这里是的函数;(3)边长为的立方体体积,这里是的函数;(4)某人内骑车行进了1,则他骑车的平均速度,这里是的函数;(5)购买每本1元的练习本本,则需支付元,这里是的函数.观察上述五个函数,有什么共同特征?(指数定,底变)二、学习新课:1、学习幂函数的图象与性质① 给出定义:一般地,形如的函数称为幂函数,其中为常数.② 练:判断在函数中,哪几个函数是幂函数?③ 作出下列函数的图象:(1);(2);(3);(4);(5).④ 引导学生观察图象,归纳概括幂函数的的性质及图象变化规律:(Ⅰ)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(Ⅱ)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(Ⅲ)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.2、例题学习:例1(P78例1).证明幂函数上是增函数证:任取<则==因<0,>0所以,即上是增函数.例2. 比较大小:与;与;与.三、巩固练习:1、论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.2. 比较下列各题中幂值的大小:与;与;与.四、小结:提问方式:(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?(2)你能根据函数图象说出有关幂函数的性质吗?五、作业P79页1、2、3题3.5.2基本初等函数习题课课型:复习课学习要求:掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质.学习重点:指数函数的图象和性质.学习难点:指数函数、对数函数、幂函数性质的简单应用.学习过程:一、复习准备:1. 提问:指数函数、对数函数、幂函数的图象和性质.2. 求下列函数的定义域:;;3. 比较下列各组中两个值的大小:;;二、典型例题:例1:已知=,54b=3,用的值例2、函数的定义域为 .例3、函数的单调区间为 .例4、已知函数.判断的奇偶性并予以证明.例5、按复利计算利息的一种储蓄,本金为元,每期利率为,设本利和为元,存期为,写出本利和随存期变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)?(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息. )(小结:掌握指数函数、对数函数、幂函数的图象与性质,会用函数性质解决一些简单的应用问题. )三、巩固练习:1.函数的定义域为 .,值域为 .2. 函数的单调区间为 .3. 若点既在函数的图象上,又在它的反函数的图象上,则=______,=_______4. 函数(,且)的图象必经过点 .5. 计算.6. 求下列函数的值域:;;;四、小结本节主要是通过讲炼结合复习本章的知识提高解题能力五、课后作业:教材P82 复习参考题A组1——8题答案:3.5.2基本初等函数习题课例1:已知=,54b=3,用的值解法1:由=3得=b∴==解法2:由设所以即:所以因此得:。
幂函数指数函数和对数函数单元教学设计
活动意图说明: 点评 考察定义,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数. 环节二:教师活动2知识点二 五个幂函数的图象与性质 1.在同一平面直角坐标系内函数(1)y =x ;(2)12y x =;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞) 上减, 在(-∞,0) 上减知识点三 一般幂函数的图象特征一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称; (5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列. 学生活动学生把自己的作图结果展示并比较,讨论,校对。
教师最后可以用课件动态展示结果。
并得出正确的图像。
学生先相互讨论,如有不足老师再提醒或补充。
活动意图说明学生通过作图从熟悉的图像到陌生的图像进一步学会做图和看图,学会图像这个工具进一步研究性质。
2019-2020年高三数学总复习 幂函数教案 理
2019-2020年高三数学总复习幂函数教案理教材分析幂函数是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,全面掌握有理指数幂和根式的基础上来研究的一种特殊函数,是对函数概念及性质的应用.从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x-1三种幂函数,这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.知识的安排环环紧扣,非常紧凑,充分体现了知识的发生、发展过程.对幂函数进行系统的理论研究,在研究过程中得出相应的结论固然重要,但更为重要的是,要让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究.教学目标1. 通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力.2. 使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力.任务分析学生对抽象的幂函数及其图像缺乏感性认识,不能够在理解的基础上来运用幂函数的性质.为此,在教学过程中让学生自己去感受幂函数的图像和性质是这一堂课的突破口.因此,这节课的难点是幂函数图像和性质的发现过程,教学重点是幂函数的性质及运用.首先,从学生已经掌握的最简单的幂函数y=x,y=x2和y=x-1的知识出发,利用实例,由师生共同归纳、总结出幂函数的定义,认清幂函数的特点,深刻理解其定义域.其次,举出几个简单的幂函数引导学生从定义出发研究其定义域、值域、奇偶性、单调性、是否过公共定点这几个性质,让学生自己去探究,把主动权交给学生.然后,再由学生自己结合性质去画幂函数的图像,让学生在获得一定的感性认识的基础上,通过归纳、比较上升为理性认识,从而形成对概念与性质的完整认识.最后通过例题3与练习,让学生利用图像与性质,比较两个数的大小,从而提高学生获取知识的能力.教学设计一、问题情景下列问题中的函数各有什么共同特征?(1)如果张红购买了每千克1元的蔬菜w(kg),那么她应支付p=w元.这里p是w的函数.(2)如果正方形的边长为a,那么正方形的面积为S=a2.这里S是a的函数.(3)如果立方体的边长为a,那么立方体的体积为V=a3.这里V是a的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长为a=.这里a是S的函数.(5)如果某人t(s)内骑车行进了1km,那么他骑车的平均速度为v=t-1(km/s).这里v是t的函数.由学生讨论,总结,即可得出:p=w,s=a2,a=,v=t-1都是自变量的若干次幂的形式.教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数.二、建立模型定义:一般地,函数y=x a叫作幂函数,其中x是自变量,a是实常数.教师指出:由于无理指数幂的意义我们还没学到,因此目前只讨论a是有理数的情况.思考讨论:在幂函数y=x n中,当n=0时,其表达式怎样?定义域、值域、图像如何?教师指出:此时y=x0=1;定义域为(-∞,0)∪(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图像是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外.三、解释应用[例题一]1. 求下列函数的定义域.解:(1)R.(2)R.(3){x|x≥0}.(4){x|x∈R且x≠0).(5){x|x >0}.2. 求下列函数的定义域,并判断函数的奇偶性.解:(1){x|x∈R且x≠0)},偶函数.(2)R,非奇非偶函数.(3)R,奇函数.(4){x|x>0},非奇非偶函数.[问题探究]1. 对于幂函数y=x a,讨论当a=1,2,3,,-1时的函数性质.表13-1以上问题给学生留出充分时间去探究,教师引导学生从函数解析式出发来研究函数性质.2. 在同一坐标系中,画出y=x,y=x2,y=x3,y=,y=x-1的图像,并归纳出它们具有的共同性质.教师讲评:幂函数的性质.(1)所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1).(2)如果a>0,则幂函数的图像通过原点,并在区间[0,+∞)上是增函数.(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴.思考讨论:(1)在幂函数y=x a中,当a是正偶数时,这一类函数有哪种重要性质?(2)在幂函数y=x a中,当a是正奇数时,这一类函数有哪种重要性质?教师讲评:(1)在幂函数y=x a中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数.(2)在幂函数y=x a中,当a是正奇数时,函数是奇函数,在第一象限内是增函数.[例题二]比较下列各题中两个值的大小.解:(1)∵幂函数y=x1.5是增函数,又0.7>0.6,∴0.71.5>0.61.5.(2)∵幂函数y=是减函数,又2.2>1.8,∴注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1.5与y=的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路.[练习]比较下列各题中两个值的大小.四、拓展延伸1. 如果把函数图像向上凸的函数称为凸函数,把函数图像向下凸的函数称为凹函数,对于幂函数y=x a,x∈[0,+∞),当a>0且a≠1时,研究其凸凹性.2. 研究幂指数与幂函数奇偶性的关系.3. 研究幂指数与幂函数单调性的关系.(以上问题的探究可以借助计算机来完成)点评这篇案例的突出特点是,紧紧围绕教学目标,遵循直观式、启发式原则而展开.在这节课中,教师放手让学生去探索与研究,并在一旁适时地引导学生根据几个实例函数的公共特点归纳、总结幂函数的定义,对几个特殊幂函数的性质先进行初步探索,再根据研究的结果结合描点作图画出幂函数的图像,让学生观察和分析所作的图像,归纳得出图像特征,并由图像特征得到相应的函数性质,让学生充分体会系统研究函数的方法.整个教学过程的绝大部分时间都给了学生,让学生动脑动手.通过对同类旧知识的回忆,充分引导学生利用数形结合,找出与新知识的连接点,并在对照、类比分析中找出规律.这些均提高了学生学习的积极性和自学能力,培养了他们的科学精神和创新思维习惯.最后“拓展延伸”的设计又把学生的思维推向了更广阔的空间.2019-2020年高三数学总复习平面与平面垂直教案理教材分析两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.教学目标1. 掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.2. 培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.3. 通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.任务分析判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.教学设计一、问题情境1. 建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)2. 什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?二、建立模型如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.[问题]1. 建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:定理如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.2. 如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即,也就是从平面与平面垂直出发,能否推出直线与平面垂直?平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).于是,有定理:定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,ABα,AB⊥CD,求证:AB⊥β.分析:要证AB⊥β,只需在β内再找一条直线与AB垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CDβ,BEβ,所以AB⊥β.三、解释应用[例题]1. 已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.解:连接BC.因为AC⊥AB,所以AC⊥β,AC⊥BD.因为BD⊥AB,所以BD⊥α,BD⊥BC.所以,△CBD是直角三角形.在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm).2. 已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC.因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.得AB=AC=BC.所以∠BAC=60°.[练习]1. 如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.2. 已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点.求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.四、拓展延伸能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.点评这篇案例结构完整,构思新颖.案例开始以一个生活中常见的例子引入问题,得到了两平面垂直的定义.还是这个例子,改变了问法又得到了两平面垂直的判定定理.即把学科理论和学生的生活实际相结合,激起了学生探索问题的热情.对性质定理和判定定理的引入和证明也不是平铺直叙,而是充分展现了定理的发现和形成过程.通过学生的认真参与,师生之间的民主交流,培养了学生的主体意识和乐于探索、勇于创新的科学精神.。
数学(理)一轮复习 第二章 基本初等函数、导数及其应用 第讲 二次函数与幂函数
第4讲二次函数与幂函数1.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x错误!,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α〈0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a〉f(x)=ax2+bx+0)c(a<0)图象定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在错误!上单调递减;在错误!上单调递增在错误!上单调递增;在错误!上单调递减对称性函数的图象关于x=-错误!对称1.辨明两个易误点(1)对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.会用两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.1.错误!幂函数y=f(x)经过点(2,错误!),则f(9)为( )A.81 B.错误!C。
错误!D.3D 设f(x)=xα,由题意得错误!=2α,所以α=错误!。
高考数学一轮复习 2.11 幂函数学案
一、高考目标
1、理解幂函数的概念.
2、结合函数 的图像,掌握幂函数 的图像及性质.
二、知识再现
1、幂函数的概念
形如函数叫做幂函数,其中是自变量,是任意的常数.
① ② ③ ④ ⑤ ⑥ 其中是幂函数的是
2 、在同一坐标系中画出下列函数的图像
3、幂函数 的性质
图像都通过点
图像都通过点
在第 一象限内,函数值随 的增大而
在第一象限内,函数值随 的增大而
在第一象限内, ,图像向凸;
图像向凸.
在第一象限内,图像向凸;向上与
无限接近,向右与无限 接近.
在第一 象限内,过 后,图像向无限伸展.
在第一象限内,过 后, 越大,图像下落的.
三、考点例析
人教版高中数学必修一《基本初等函数》之《幂函数》教学案
[学习目标] 1.了解幂函数的概念,会求幂函数的解析式.2.结合幂函数y =x ,y =x 2,y =x 3,y =1x,y =x 21的图象,掌握它们的性质.3.能利用幂函数的单调性比较指数幂的大小.知识点一 幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.思考 (1)任意一次函数和二次函数都是幂函数吗?若函数y =mx α是幂函数,m 应满足什么条件?(2)幂函数与指数函数有何区别?答 (1)并不是所有一次函数和二次函数都是幂函数,只有其中的y =x 和y =x 2是幂函数.若y =mx α是幂函数,则必有m =1.(2)幂函数与指数函数不同点在于:幂函数形式为y =x α(α∈R ),其自变量x 处于底数位置,常数α处于指数位置;而指数函数形式为y =a x (a >0且a ≠1),其自变量x 处于指数位置,常数a 处于底数位置,且a 须满足大于0而且不等于1. 知识点二 幂函数的图象与性质题型一 幂函数的概念例1 (1)已知(2,2)在幂函数f (x )的图象上,求f (2)的值; (2)已知函数f (x )=(a 2-3a +3)255-+a a x (a 为常数)为幂函数,且在(0,+∞)上单调递减,求实数a 的值.解 (1)设f (x )=x α, ∵(2,2)在f (x )的图象上, ∴f (2)=(2)α=2,∴α=2. 故f (x )=x 2,f (2)=22=4.(2)∵f (x )为幂函数,∴a 2-3a +3=1, 得a =1或a =2.当a =1时,f (x )=x ,在(0,+∞)上单调递增,不合题意. 当a =2时,f (x )=x -1,在(0,+∞)上单调递减,符合题意.综上,得a 的值为2.反思与感悟 1.幂函数的特点:系数为1,底数为自变量,指数为常数.2.当α>0时,幂函数在第一象限内单调递增;当α<0时,幂函数在第一象限内单调递减.跟踪训练1 函数f (x )=(m 2-m -1)23+-mm x是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.解 根据幂函数定义得,m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数, 当m =-1时,f (x )=x-3在(0,+∞)上是减函数,不合题意.∴f (x )的解析式为f (x )=x 3. 题型二 幂函数的图象例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于c 1,c 2,c 3,c 4的n 依次为( )A.-2,-12,12,2B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-12答案 B解析 考虑幂函数在第一象限内的增减性.注意当n >0时,对于y =x n ,n 越大,y =x n 递增速度越快,n <0时看|n |的大小.根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2,故选B.反思与感悟 幂函数图象的特征:(1)在第一象限内,直线x =1的右侧,各幂函数图象对应的指数逆时针增大;在第一象限内,直线x =1的左侧,指数也呈逆时针增大.(2)幂函数y =x α,若α>0,在第一象限内函数单调递增;若α<0,在第一象限内函数单调递减.(3)图象的凹凸性:在第一象限内,当0<α<1,曲线上凸;当α>1,曲线下凹;当α<0,曲线下凹.跟踪训练2 如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A.-1<n <0<m <1B.n <-1,0<m <1C.-1<n <0,m >1D.n <-1,m >1答案 B解析 方法一 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,如图所示.根据“点低指数大”,有0<m <1,n <-1.方法二 根据幂函数图象增减性知m >0,n <0,由x =1右侧指数逆时针增大,知n <-1,由图象上凸知0<m <1,故选B. 题型三 比较幂的大小 例3 比较下列各组数的大小. (1)325-和3.125-;(2)898-和(19)98;(3)(34)-2和3-4;(4)(-13)-3和251. 解 (1)函数y =x25-在(0,+∞)上为减函数,又3<3.1,所以325->3.125-.(2)函数y =x 98在(0,+∞)上为增函数,又18>19,所以(18)98>(19)98,即898->(19)98.(3)3-4=(32)-2=9-2,函数y =x-2在(0,+∞)上为减函数,又34<9,所以(34)-2>9-2,即(34)-2>3-4.(4)因为(-13)-3<0,251>0,所以(-13)-3<251.反思与感悟 1.比较幂值的大小,关键在于构造适当的函数:(1)若指数相同而底数不同,则构造幂函数;(2)若指数不同而底数相同,则构造指数函数.2.若指数与底数都不同,需考虑是否能把指数或底数化为相同,是否可以引入中间量. 跟踪训练3 比较下列各组数的大小: (1)⎝⎛⎭⎫230.5与⎝⎛⎭⎫350.5;(2)-3.143与-π3; (3)⎝⎛⎭⎫1243与⎝⎛⎭⎫3421.解 (1)∵y =x 0.5在[0,+∞)上是增函数且23>35,∴⎝⎛⎭⎫230.5>⎝⎛⎭⎫350.5.(2)∵y =x 3是R 上的增函数,且3.14<π, ∴3.143<π3,∴-3.143>-π3.(3)∵y =⎝⎛⎭⎫12x是减函数,∴⎝⎛⎭⎫1243<⎝⎛⎭⎫1221. y =x 21是[0,+∞)上的增函数, ∴⎝⎛⎭⎫3421>⎝⎛⎭⎫1221.∴⎝⎛⎭⎫3421>⎝⎛⎭⎫1243. 题型四 幂函数的奇偶性 例4 判断下列函数的奇偶性: (1)y =x 31;(2)y =x -2;(3)y =x32-.解 (1)f (-x )=(-x )31=-x 31=-f (x ), 又∵y =x 31定义域为R ,∴y =x 31为奇函数.(2)f (x )=x -2=1x 2,定义域为(-∞,0)∪(0,+∞),又f (-x )=1(-x )2=1x 2=f (x ), ∴f (x )为偶函数. (3)f (x )=x32-=321x=1x 3. ∴f (x )的定义域为(0,+∞),不关于原点对称. ∴f (x )为非奇非偶函数.反思与感悟 幂函数的奇偶性.y =x n ,当n =pq (p ,q ∈Z )是最简分数时,若p ,q 均为奇数,则y =x n 是奇函数;若p 为偶数,q 为奇数,则y =x n 是偶函数;若q 为偶数,则y =x n 为非奇非偶函数.跟踪训练4 函数y =x 59在[-1,1]上是( ) A.增函数且是奇函数 B.增函数且是偶函数 C.减函数且是奇函数 D.减函数且是偶函数答案 A解析 由幂函数的性质知当α>0时,y =x α在第一象限内是增函数, ∴y =x 59在x ∈[0,1]上是增函数.设f (x )=x 59,x ∈[-1,1],则f (-x )=(-x )59=-x 59=-f (x ),∴f (x )=x 59是奇函数. ∵奇函数的图象关于原点对称, ∴x ∈[-1,0]时,y =x 59也是增函数.当x =0时,y =0,故y =x 59在[-1,1]上是增函数且是奇函数.故选A.忽略幂函数定义致误例5 函数y =(a 2+1)211-a x是幂函数,求a 的取值范围.错解 根据幂函数的定义y =x α,α为常数, 知指数11-a2有意义,有1-a 2≠0,即a ≠±1,所以a 的取值范围是{a |a ≠±1}.正解 根据幂函数的定义y =x α,α为常数, 知a 2+1=1,即a =0, 此时指数11-a 2有意义,所以a 的取值范围为{0}. 易错警示跟踪训练5 幂函数y =(m 2-m -1)223--m m x ,当x ∈(0,+∞)时为减函数,求实数m 的值,并求函数的定义域. 解 因为y =(m 2-m -1)223--m m x为幂函数,所以m 2-m -1=1,即(m -2)(m +1)=0, 所以m =2或m =-1.当m =2时,m 2-2m -3=-3,y =x-3是幂函数,且在(0,+∞)上是减函数.当m =-1时,m 2-2m -3=0,y =x 0=1(x ≠0)不是减函数, 所以m =2,此时y =x -3.所以函数的定义域是{x |x ∈R 且x ≠0}.1.下列给出的函数中,是幂函数的是( ) A.y =3x B.y =2x 3 C.y =x -3D.y =x 3-1答案 C2.若函数y =(k 2-k -5)x 2是幂函数,则实数k 的值为( ) A.3 B.2 C.3或-2 D.k ≠3且k ≠-2 答案 C解析 由幂函数的概念可知k 2-k -5=1,即k 2-k -6=0,得k =-2,或k =3. 3.幂函数f (x )=x 23的大致图象为( )答案 B解析 由于f (0)=0,所以排除C ,D 选项,而f (-x )=(-x )23=3(-x )2=3x 2=x 23=f (x ),且f (x )的定义域为R ,所以f (x )是偶函数,图象关于y 轴对称.故选B. 4.设f (x )=(m -1)22-m x,若f (x )为正比例函数,则m =________;若f (x )是反比例函数,则m=________;若f (x )是幂函数,则m =________. 答案 ±3 -1 2解析 f (x )=(m -1)22-mx.若f (x )是正比例函数,则⎩⎪⎨⎪⎧m -1≠0,m 2-2=1,∴m =±3.若f (x )是反比例函数,则⎩⎪⎨⎪⎧ m -1≠0,m 2-2=-1,即⎩⎪⎨⎪⎧m ≠1,m 2=1,∴m =-1.若f (x )是幂函数,则m -1=1,∴m =2.5.若a =(12)53,b =(15)53,c =(-2)3,则a ,b ,c 的大小关系为________.答案 a >b >c解析 ∵y =x 53在(0,+∞)上为增函数. ∴(12)53>(15)53,即a >b >0. 而c =(-2)3=-23<0,∴a >b >c .1.幂函数y =x α的底数是自变量,指数是常数,而指数函数正好相反,底数是常数,指数是自变量.2.幂函数在第一象限内指数变化规律在第一象限内直线x =1的右侧,图象从上到下,相应的指数由大变小;在直线x =1的左侧,图象从下到上,相应的指数由大变小.3.简单幂函数的性质(1)所有幂函数在(0,+∞)上都有定义,并且当自变量为1时,函数值为1,即f (1)=1. (2)如果α>0,幂函数在[0,+∞)上有意义,且是增函数. (3)如果α<0,幂函数在x =0处无意义,在(0,+∞)上是减函数.一、选择题1.下列函数是幂函数的是( ) A.y =5x B.y =x 5 C.y =5x D.y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数. 2.已知幂函数f (x )的图象经过点⎝⎛⎭⎫2,22,则f (4)的值为( ) A.16 B.116 C.12 D.2答案 C解析 设f (x )=x a ,则有2a=22,解得a =-12,即f (x )=x 21-,所以f (4)=421-=12.3.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A.1,3B.-1,1C.-1,3D.-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又∵y =x α的定义域为R ,则α=1,3. 4.设a =⎝⎛⎭⎫2553,b =⎝⎛⎭⎫2552,c =⎝⎛⎭⎫3552,则a ,b ,c 的大小关系是( ) A.a >b >c B.c >a >b C.a <b <c D.b >c >a答案 C解析 ∵函数y =⎝⎛⎭⎫25x 在R 上是减函数,又35>25, ∴⎝⎛⎭⎫2553<⎝⎛⎭⎫2552,即a <b .又∵函数y =x 52在R 上是增函数,且35>25,∴⎝⎛⎭⎫3552>⎝⎛⎭⎫2552,即c >b ,∴a <b <c . 5.函数y =x 31的图象是( )答案 B解析 函数y =x 31是幂函数,幂函数在第一象限内的图象恒过定点(1,1),排除A 、D.当x >1时,x >x 31,故幂函数y =x 31图象在直线y =x 的下方,排除C.6.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”.那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( ) A.7个 B.8个 C.9个 D.无数个 答案 C解析 值域为{1,4},∴其定义域由1,-1,2,-2组成,∴有{1,2},{1,-2},{-1,2}{-1,-2},{1,-1,-2},{1,-1,2},{1,2,-2},{-1,2,-2},{1,-1,2,-2},共有9种情况. 二、填空题7.已知幂函数f (x )=x m 的图象经过点(3,13),则f (6)=________.答案136解析 依题意13=(3)m =32m,所以m2=-1,m =-2,所以f (x )=x -2,所以f (6)=6-2=136.8.若y =249--a a x是偶函数,且在(0,+∞)内是减函数,则整数a 的值是________.答案 1,3,5,-1解析 由题意得,a 2-4a -9应为负偶数, 即a 2-4a -9=(a -2)2-13=-2k (k ∈N *), (a -2)2=13-2k ,当k =2时,a =5或-1;当k =6时,a =3或1.9.已知幂函数f (x )=x 21,若f (10-2a )<f (a +1),则a 的取值范围是________. 答案 (3,5]解析 因为f (x )=x 21=x (x ≥0), 易知f (x )在(0,+∞)上为增函数, 又f (10-2a )<f (a +1), 所以⎩⎪⎨⎪⎧a +1≥0,10-2a ≥0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a ≥-1,a ≤5,a >3.所以3<a ≤5.10.幂函数f (x )=(m 2-m -1)x 2m -3在(0,+∞)上是减函数,则实数m =________.答案 -1解析 ∵f (x )=(m 2-m -1)x 2m -3为幂函数,∴m 2-m -1=1, ∴m =2或m =-1.当m =2时,f (x )=x ,在(0,+∞)上为增函数,不合题意,舍去;当m =-1时,f (x )=x -5,符合题意.综上可知,m =-1. 三、解答题11.已知幂函数f (x )的图象过点(25,5). (1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域. 解 (1)设f (x )=x α,则由题意可知25α=5, ∴α=12,∴f (x )=x 21.(2)∵g (x )=f (2-lg x )=2-lg x , ∴要使g (x )有意义,只需2-lg x ≥0, 即lg x ≤2,解得0<x ≤100.∴g (x )的定义域为(0,100],又2-lg x ≥0,∴g (x )的值域为[0,+∞).12.已知函数f (x )=(a 2-a +1)x a+1为幂函数,且为奇函数. (1)求a 的值;(2)求函数g (x )=f (x )+[f (x )]2在[0,12]上的值域. 解 (1)因为函数f (x )=(a 2-a +1)x a +1为幂函数,所以a 2-a +1=1,解得a =0或a =1.当a =0时,f (x )=x ,函数是奇函数;当a =1时,f (x )=x 2,函数是偶函数.故a =0.(2)由(1)知g (x )=x +x 2=(x +12)2-14. 当x =0时,函数取得最小值g (0)=0;当x =12时,函数取得最大值g (12)=12+14=34. 故g (x )在区间[0,12]上的值域为[0,34]. 13.已知幂函数f (x )=(m -1)2242-+m m x在(0,+∞)上单调递增,函数g (x )=2x -k . (1)求m 的值;(2)当x ∈[1,2]时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,求实数k 的取值范围. 解 (1)依题意,得(m -1)2=1,解得m =0或m =2.当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去.∴m =0.(2)由(1)可知f (x )=x 2.当x ∈[1,2]时,f (x ),g (x )单调递增,∴A =[1,4],B =[2-k,4-k ].∵A ∪B =A ,∴B ⊆A ,∴⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,⇒0≤k ≤1. ∴实数k 的取值范围是[0,1].。
高考数学一轮复习 3.3 幂函数教案 新课标
3.幂函数主要知识: 1.幂函数:函数叫做幂函数,其中x 是自变量,a 是常数(这里我们只讨论a 是有理数n 的情况).2.会作下列函数的图象,结合图象,了解幂函数的图象变化情况及性质(1)x y =;(2)21x y =; (3)2x y =;(4)1-=x y ; (5)3x y =. 3.4.幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.幂函数y x =≠αα(,)01在第一象限的图象,可分为如图中的三类:题型分析:题型一:幂函数概念 例1、(1)下列函数中不为幂函数的为( D )A .x y =B .2x y =C .0x y =D .x y 2= (2)下列命题中,正确命题的序号是 ④①当0=α时函数α=x y 的图象是一条直线; ②幂函数的图象都经过(0,0)和(1,1)点;③若幂函数α=x y 是奇函数,则α=x y 是定义域上的增函数; ④幂函数的图象不可能出现在第四象限. 例2(1)函数2122--=x )(xy 的定义域是(B )A .{x |x ≠0或x ≠2}B.(-∞,0)(2,+∞)C .(-∞,0)[2,+∞ )D .(0,2) (2)已知幂函数97222199--+-=m m )xm (my 的图象不过原点,则m 的值为_________。
3题型二:幂函数图象性质例3(1)当x∈(1,+∞)时,函数ax y =的图象恒在y=x 的下方,则a 的取值范围是_________。
2015届高三数学一轮教学资料 幂函数活动导学案
《幂函数》活动导学案
【学习目标】
1.了解幂函数定义,并能求简单幂函数
2.了解简单幂函数性质
【重难点】总结归纳幂函数相关性质 【活动过程】
一、自学质疑:五种常见幂函数的图像与性质
函数
特征 性质
y =x y =x 2 y =x 3
2
1x y
y =x -1
图像
定义域
值域 奇偶性
单调性
公共点
1.幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的解析式为______________________.
2.(2013·南通二调)已知幂函数f (x )=k ·x α
的图像过点 12,22,则k +α=________.
3.图中曲线是幂函数y =x α
在第一象限的图像.已知n 取±2,±12四个值,
则相应于
曲线C 1,C 2,C 3,C 4的α值依次为____________.
4.设a = 3552,b = 2553,c =
2552
,则a ,b ,c 的大小关系是________.
二、互动研讨
活动一、已知函数f (x )=(m 2
-m -1)x -5m -3
,m 为何值时,f (x )是幂函数,且在(0,+∞)上是增函数?
三、检测反馈
1、(2011江苏8)在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2
)(
的图象交于P 、Q
两点,则线段PQ 长的最小值是________.
2、幂函数y =f (x )的图象经过点(-2,-1
8
),则满足f (x )=27的x 的值是__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省监利县第一中学2015届高三数学一轮复习 第11课时 幂函数及基
本初等函数的应用学案
【学习目标】
1.了解幂函数的概念.
2.结合函数y =x ,y =x 2
,y =x 3
,y =1
x
,的2
1x y =图像,
了解它们的变化情况.
预 习 案 1.幂函数的定义
函数 叫做幂函数,其中x 是自变量,α是常数
2.幂函数的图像(如下图)
3.幂函数的性质
(1)所有的幂函数在(0,+∞)有定义,并且图像都通过点 .
(2)如果α>0,那么幂函数的图像过原点,并且在区间[0,+∞)上为 . (3)如果α<0,那么幂函数图像在区间(0,+∞)上是 .在第一象限内,当x 从右边趋向于原点时,图像在y 轴右方无限地逼近y 轴,当x 趋向于+∞时,图像在x 轴上方无限地逼近x 轴.
(4)当α为奇数时,幂函数为 ,当α为偶数时,幂函数为 .
【预习自测】
1.下列命题正确的是 ( )
A .y =x 0
的图像是一条直线 B .幂函数的图像都经过点(0,0),(1,1)
C .幂函数的图像不可能出现在第四象限
D .若幂函数y =x n 是奇函数,则y =x n
是增函数
2.当x ∈(1,+∞)时,下列函数中图像全在直线y =x 下方的增函数是 ( )
A .2
1x y = B .y =x 2
C .y =x 3
D .y =x -1
3.已知幂函数f (x )=x α
的图像经过点(2,22
),则f (4)的值等于
( )
A .16
B .116
C .1
2
D .2
4.已知x =ln π,y =log 52,2
1-
=e z ,则 ( ) A .x <y <z B .z <x <y C .z <y <x D .y <z <x
5.f (x )=a x
,g (x )=log a x (a >0,且a ≠1),若f (3)·g (3)<0,则y =f (x )与y =g (x )在同一坐标系内的图像可能是下图中的 ( )
探 究 案 题型一 幂函数的图像
例1. 如图,为幂函数y =x n
在第一象限的图像,则C 1、C 2、C 3、C 4的大小关系为 ( ) A .C 1>C 2>C 3>C 4 B .C 2>C 1>C 4>C 3 C .C 1>C 2>C 4>C 3 D .C 1>C 4>C 3>C 2
探究1 如图是幂函数y =x m 和y =x n
在第一象限内的图像,则 ( )
A .-1<n <0<m <1
B .n <-1,0<m <1
C .-1<n <0,m >1
D .n <-1,m >1
题型二 幂函数的性质
例2. 比较下列各组数的大小.
(1)1,9.0,1.12
121 ; (2)34
3232)1.1(,)7
10(,)22(----
.
探究2. 比较下列各组数的大小.
(1)2
5
3-
和2
51.3-
;(2)8
78-
-和87)91(-;(3)32)32(--和32)6
(-
-π;(4)32528.3,1.4-和53
)9.1(--.
例3. 已知幂函数)(3
22
+--∈=N m x y m m
的图像关于y 轴对称,且在(0,+∞)上是减函数,
求满足 3
3
)
23()
1(m m a a -
--<+的a 的取值范围.
探究3. 已知幂函数3
1)(a x x f -=在(-∞,0)上是增函数,在(0,+∞)上是减函数,那么最
小的正整数a =________.
题型三 幂、指、对函数的应用
例4. 将下列各数按从大到小的顺序排列:log 89,log 79, )2
1
(,)21(,9log
,3log 32
2
12
1.
探究 4. (1)下列大小关系正确的
是 (
)
A .0.43<30.4<log 40.3
B .0.43<log 40.3<30.4
C .log 40.3<0.43<30.4
D .log 40.3<30.4<0.43
(2)若log a 2<log b 2<0,则下列结论正确的
是 (
)
A .0<a <b <1
B .0<b <a <1
C .a >b >1
D .b >a >1
我的学习总结:
(1)我对知识的总结 . (2)我对数学思想及方法的总结。