2011年湖南普通高中学业水平考试数学试卷真题+答案[1]
2011年高考湖南卷文科数学试题及答案
正视侧视俯视图1 2011年普通高等学校招生全国统一考试文科数学(湖南卷)参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N= A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}2.若,a b R ∈,i 为虚数单位,且()a i i b i +=+则 A .1a =,1b = B .1,1a b =-= C .1,1a b ==- D .1,1a b =-=- 3.“1x >”是“1x >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B .3618π+ C .9122π+D .9182π+5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc K a d c d a c b d -=++++算得,22110(43027.8605605K ⨯⨯-⨯=≈⨯⨯⨯附表:参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3C .2D .17.曲线sin 1sin cos 2x y x x =-+在点M (4π,0)处的切线的斜路为A .12-B .12C. D8.已知函数2()1,()43x f x e g x x x =-=-+-,若有()()f a g b =,则b 的取值范围为 A.22⎡⎣B.22⎡+⎣C .[]1,3D .()1,3二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应题号后的横线上. (一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分) 9.在直角坐标系xOy 中,曲线C 1的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为()cos sin 10ρθθ-+=,则C 1与C 2的交点个数为10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 (二)必做题(11~16题)11.若执行如图2所示的框图,输入11x =,2342,4,8x x x ===则输出的数等于12.已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f(2)=_________. 13.设向量a ,b 满足,b=(2,1),且a 与b 的方向相反,则a 的坐标为________.14.设1,m >在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为.15.已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为.(2)圆C 上任意一点A 到直线l 的距离小于2的概率为. 16.给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =-(1)设1k =,则其中一个函数f 在1n =处的函数值为; (2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,且满足csinA=acosC . (I )求角C 的大小; (II )(B+4π)的最大值,并求取得最大值时角A 、B 的大小.18.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份是我降雨量X (单位:毫米)有关,据统计,当X=70时,Y=460;X 每增加10,Y增加5.已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (Ⅰ)完成如下的频率分布表近20年六月份降雨量频率分布表(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19.(本小题满分12分)如图3,在圆锥PO 中,已知PO O =的直径2,,AB C AB D AC =∠点在上,且CAB=30为 的中点.(Ⅰ)证明:AC ⊥平面POD ;(Ⅱ)求直线OC 和平面PAC 所成角的正弦值.20.(本小题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(Ⅰ)求第n 年初M 的价值n a 的表达式; (Ⅱ)设12...nna a a A n+++=,若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.21.(本小题满分13分)已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,DE ,求,AD EB 的最小值.22.(本小题满分13分)设函数1()ln ()f x x a x a R x=--∈. (Ⅰ)讨论函数()f x 的单调性.(Ⅱ)若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k .问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.2011年普通高等学校招生全国统一考试(湖南卷)数学试题卷(文史类)参考答案一、选择题(共8小题,每小题5分,满分40分)1、(2011?湖南)设全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N=( )A、{1,2,3}B、{1,3,5}C、{1,4,5}D、{2,3,4}考点:交、并、补集的混合运算。
2011年高考湖南卷文科数学试题和答案
正视图 侧视图俯视图2011年普通高等学校招生全国统一考试文科数学(湖南卷)参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=M ∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N= A .{1,2,3} B . {1,3,5} C . {1,4,5} D . {2,3,4} 2.若,a b R ∈,i为虚数单位,且()a i i b i +=+则 A .1a =,1b =B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-3.“1x >”是“1x >” 的A .充分不必要条件B .必要不充分条件C . 充分必要条件D .既不充分又不必要条件 4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B .3618π+C .9122π+ D .9182π+ 5 由22()()()()()n ad bc K a d c d a c b d -=++++ 算得,22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”6.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .17.曲线sin 1sin cos 2x y x x =-+在点M (4π,0)处的切线的斜路为A . 12-B .12C .2-D .28.已知函数2()1,()43xf x eg x x x =-=-+-,若有()()f a g b =,则b 的取值范围为A .22⎡⎣ B .22⎡-+⎣C . []1,3D . ()1,3二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..卡.中对应题号后的横线上. (一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy 中,曲线C 1的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为()cos sin 10ρθθ-+=,则C 1与C 2的交点个数为10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(二)必做题(11~16题)11.若执行如图2所示的框图,输入11x =,2342,4,8x x x ===则输出的数等于 12.已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=_________. 13.设向量a ,b 满足b=(2,1),且a 与b 的方向相反,则a 的坐标为________.14.设1,m >在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .15.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2)圆C 上任意一点A 到直线l 的距离小于2的概率为 .16.给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =-(1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,且满足c sinA=acosC . (I )求角C 的大小;(II (B+4π)的最大值,并求取得最大值时角A 、B 的大小. 18.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份是我降雨量X (单位:毫米)有关,据统计,当X=70时,Y=460;X 每增加10,Y 增加5.已知近20年X 的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160. (Ⅰ)完成如下的频率分布表概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19.(本小题满分12分)如图3,在圆锥PO 中,已知PO O =的直径2,,AB C AB D AC =∠点在上,且CAB=30为的中点.(Ⅰ)证明:AC ⊥平面POD ;(Ⅱ)求直线 OC 和平面PAC 所成角的正弦值.20.(本小题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (Ⅰ)求第n 年初M 的价值n a 的表达式; (Ⅱ)设12...nn a a a A n+++=,若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.21.(本小题满分13分)已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,D E ,求,AD EB 的最小值.22.(本小题满分13分)设函数1()ln ()f x x a x a R x=--∈. (Ⅰ)讨论函数()f x 的单调性.(Ⅱ)若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k .问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.2011年普通高等学校招生全国统一考试(湖南卷)数学试题卷(文史类)参考答案一、选择题(共8小题,每小题5分,满分40分)1、(2011•湖南)设全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N=()A、{1,2,3}B、{1,3,5}C、{1,4,5}D、{2,3,4}考点:交、并、补集的混合运算。
2011年湖南省普通高中学业水平考试试卷
2011年湖南省普通高中学业水平考试试卷英语本试卷分四个部分,共7页。
时量120分钟,满分100分。
第一部分听力技能(共两节,满分20分)第一节听力理解(共“小题;每小题1分,满分16分)例听下面一段对话,回答第1小题。
How much is theshirt? A £19.15. B £9.18. C £9.15. 答案是C。
听下面一段对话,回答第1小题。
1.where does the woman want to go? A. a school B. a cinema C. a bus stop听下面一段对话,回答第2小题。
2. what does the man do? A. doctor B. a salesman C.a driver听下面一段对话,回答第3小题。
3.what will the man talk about? A. GM food B. Chinese food C. Fast food听下面一段对话,回答第4小题。
4.How many events has the man chosen? A. two B. three C. four 听下面一段对话,回答第5小题。
5. Where are the speakers? A. on a farm B. in a factory C. in a bookstore听下面—段对话,回答第6至第7两个小题。
6.What does the woman’s father want her to study?A. science and mathsB. Chinese and historyC. Arts and PE7. What does the woman want to be? A. an engineer B. an athlete C. an actress听下面一段对话,回答第8至第10三个小题。
8.what’s the relationship between the man and the woman?A. husband and wifeB. teacher and studentC. mother and son9. where does the woman want to take her holiday? A. the seaside B. the mountains C. the cities10. how long does the woman want to spend her holiday? A. 6 days B. 7 days C. 10 days 听下面一段对话,回答第11至第13三个小题。
2011湖南数学高考试题及答案
2011年普通高等学校夏季招生全国统一考试数学(湖南卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a,b∈R,i为虚数单位,且(a+i)i=b+i,则()A.a=1,b=1 B.a=-1,b=1C.a=-1,b=-1 D.a=1,b=-12.设集合M={1,2},N={a2},则“a=1”是“N M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.如图是某几何体的三视图,则该几何体的体积为…()A.92π+12 B.92π+18C.9π+42 D.36π+184.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由22()()()()()n ad bcKa b c d a c b d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.附表:P(K2≥k)0.0500.0100.001k 3.841 6.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”5.设双曲线2221(0)9x yaa-=>的渐近线方程为3x±2y=0,则a的值为()A.4 B.3 C.2 D.16.由直线ππ,,033x x y=-==与曲线y=cos x所围成的封闭图形的面积为()A.12B.1 C.32D.37.设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z =x +my 的最大值小于2,则m 的取值范围为( )A .(1,12)+B .(12,)++∞C .(1,3)D .(3,+∞)8.设直线x =t 与函数2(),()ln f x x g x x ==的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1B .12 C . 52 D . 22 二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做,则按前两题记分.)9.在直角坐标系xOy 中,曲线C 1的参数方程为cos ,1sin x y αα=⎧⎨=+⎩,(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,则C 1与C 2的交点个数为______.10.设x ,y ∈R ,且xy ≠0,则222211()(4)x y y x++的最小值为______. 11.如图,A ,E 是半圆周上的两个三等分点,直径BC =4,AD ⊥BC ,垂足为D ,BE 与AD 相交于点F ,则AF 的长为______.(二)必做题(12~16题)12.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=______.13.若执行如图所示的框图,输入1231,2,3,2x x x x ====,则输出的数等于______. 14.在边长为1的正三角形ABC 中,设2,3BC BD CA CE == ,则AD BE ⋅= ______.15.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则。
2011年湖南省高考数学文科试题及答案
2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试题卷包括选择题、填空题、解答题三部分,共6页,时量120分钟,满分150分参考公式:(1)()(|)()P AB P B A P A =,其中,A B 为两个基本事件,且()0P A >. (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (3)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D . {2,3,4} 2. 若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B . 1,1a b =-=C . 1,1a b ==-D . 1,1a b =-=-3. “1x >”是“||1x >”的( )A .充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 4. 设图1是某几何体的三视图,则该几何体的体积为 ( )A .942π+B .3618π+C .9122π+ D .9182π+ 5. 通过询问110名性别不同的的大学生是否爱好某项运动,得到如下的列联表.由22()()()()()n ad bc K a b c d a c b d -=++++算得,22110(40302020)7.860506050K ⨯-⨯=≈⨯⨯⨯,附表如右下,参照附表,得到的正确结论( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6. 设双曲线2221(0)9x y a a -=>的渐近线方程为320x y =±,则a 的值为( ) A .4 B .3 C .2 D .1 7. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .-12B . 12C . -22D . 228. 已知函数2()1,()4 3.x f x e g x x x =-=-+-若有()()f a g b =,则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C . [1,3]D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10两题中任选一题作答,如果全做,则按前一题记分)9. 在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10ρθθ-+=,则1C 与2C 的交点个数为 .10. 已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 (只写出其中一个也正确). (二)必做题(11~16题)11. 若执行如图2所示的框图,输入12341,2,4,8,x x x x ==== 则输出的数等于 .12. 已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f = .13. 设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为 .14. 设1m >,在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的大值为4,则m 的值为 。
2011年湖南省普通高中学业水平考试数学试卷及答案
2011年湖南省普通高中学业水平考试数学试卷时间:120分钟 总分:100分 姓名: 得分: 一、选择题:本大题共10小题,每小题4分,满分40分.1.已知集合{,}M a b =,{,}N b c =,则M N 等于( )A .{,}a bB .{,}b cC .{,}a cD .{}b2.已知一个几何体的三视图如图所示,则该几何体是( ). A.圆柱 B. 三棱柱 C.球 D.四棱柱 3.函数()sin ,f x x x R =∈的最小正周期是( ) A .π B .2π C .4π D .2π 4.已知向量(2,1),(1,).x ==a b 若⊥a b ,则实数x 的值为( ) A .2- B .1- C .0 D .1 5.在区间(0,)+∞为增函数的是( ) A .()f x x =- B .1()f x x = C .()lg f x x = D .1()2xf x ⎛⎫= ⎪⎝⎭6.某检测箱中有10袋食品,其中由8袋符合国际卫生标准,质检员从中任取1袋食品进行检测,则它符合国家卫生标准的概率为( ) A .18B .45C .110D .157.在平面直角坐标系中,O 为原点,点P 是线段AB 的中点,向量(3,3),(1,5),OA OB ==- 则向量OP =( )A .(1,2)B .(2,4)C .(1,4)D .(2,8)8.如图所示,在正方体1111ABCD A B C D -中,直线11B D 与平面1BC D 的位置关系是( )A .平行B .垂直C .相交但不垂直D .直线11B D 在平面1BC D 内9.函数()23x f x =-的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若60,45,A B ==6b =,则a =( ) A .3B .2C .3D .6 二、填空题:本大题共5小题,每小题4分,满分20分. 11.样本数据3,9,5,2,6的中位数是 ..12.已知某程序框图如图所示,若输入的x 的值为3,则输出的值为 . 13.已知0,x >则函数1y x x=+的最小值是 . 14.如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,四边形ABCD 是平行四边形,PA AD =,则异面直线PD 与BC 所成角的大小是 ..15.已知点(,)x y 在如图所示的阴影部分内运动,且3z x y m =-+的最大值为2,则实数m = . 三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知1sin ,(0,)22παα=∈(1)求cos α的值;(2)求sin2cos2αα+的值.17.(本小题满分8分)某中学有高一学生1200人,高二学生800人参加环保知识竞赛,现用分层抽样的方法从中抽取200名学生,对其成绩进行统计分析,得到如下图所示的频率分布直方图.(1)求从该校高一、高二学生中各抽取的人数; (2)根据频率分布直方图,估计该校这2000名学生中竞赛成绩在60分(含60分)以上的人数.正视图 侧视图 俯视图 O 500.030.0250.020.0150.010.0054060708090100成绩频率组距开始x输入0?x >x 输出x 输出-结束 是否第12题图P C BD A 第14题图 第15题图A BC D1A 1B 1C 1D18.(本小题满分8分)已知二次函数2()f x x ax b =++,满足(0)6f =,(1)5f =. (1)求函数()y f x =的解析式;(2)当[2,2]x ∈-,求函数()y f x =的最小值与最大值. 19.(本小题满分8分)在数列{}n a 中,已知*112,2(2,)n n a a a n n N -==≥∈. (1)试写出23,a a ,并求数列{}n a 的通项公式n a ; (2)设2log n n b a =,求数列{}n b 的前n 项和n S .20.(本小题满分10分)已知关于,x y 的二元二次方程22240()x y x y k k R ++-+=∈表示圆.C(1)求圆心C 的坐标; (2)求实数k 的取值范围(3)是否存在实数k 使直线:240l x y -+=与圆C 相交于,M N 两点,且OM ON ⊥(O 为坐标原点)?若存在,请求出k 的值;若不存在,说明理由.2011年湖南省普通高中学业水平考试数学试卷参考答案一、选择题二、填空题11、 5 ; 12、 3 ; 13、 2 ; 14、45 ; 15、 2三、解答题:16、(1)(0,),cos 02παα∈∴>,从而cos α= (2)2sin 2cos22sin cos 12sin ααααα+=+-=17、(1)高一有:20012001202000⨯=(人);高二有20012080-=(人) (2)频率为0.015100.03100.025100.005100.75⨯+⨯+⨯+⨯=∴人数为0.7520001500⨯=(人) 18、(1)2(0)62()26(1)156f b a f x x x f a b b ===-⎧⎧⇒⇒=-+⎨⎨=++==⎩⎩ (2)22()26(1)5,[2,2]f x x x x x =-+=-+∈-1x ∴=时,()f x 的最小值为5,2x =-时,()f x 的最大值为14.19、(1)11232,2,4,8n n a a a a a -==∴==*12(2,)nn a n n N a -=≥∈,{}n a ∴为首项为2,公比为2的等比数列,1222n n n a -∴=⋅= (2)22log log 2n n n b a n ===,(1)1232n n n S n +∴=++++=20、(1)22:(1)(2)5C x y k ++-=-,(1,2)C ∴-(2)由505k k ->⇒< (3)由22224051680(1)(2)5x y y y k x y k-+=⎧⇒-++=⎨++-=-⎩设1122(,),(,),M x y N x y 则1212168,55k y y y y ++==,2241620(8)05k k ∆=-+>⇒< 112212*********24,24,(24)(24)4[2()4]5k x y x y x x y y y y y y -=-=-∴=--=-++= 1212,0,OM ON x x y y ⊥∴+=即41688240()5555k k k k -++=⇒=<满足。
2011年湖南普通高中学业水平考试数学试卷(真题)_-_副本.doc
高二年级数学水平考试试卷(2)本试题卷包括选择题、填空题和解答题三部分.时量120分钟,满分100分.一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则A B 等于( ) A .{1,2,3,4,5} B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}2.若函数()3=+f x x ,则(6)f 等于( )A .3B .6C .9D .6 3.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-]21,1[]......2,1()....2,1(21[]1--A 012-.42---∞+⋃∞≥+-D C B x x ),,(的解集为不等式8-D .11-C .11B .5A ,08}{.52552。
为则中,已知在等比数列ss a a a n =+)21()(.........lg )(...........1)(.........)(A 0.6xx f D x x f C x x f B x x f ===-=∞+)上为增函数的是,下列函数中,在( 7.已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( ) A .15B .30C .31D .641501204530D .C .B .A A ABC .8222。
为则角中,在bc c b a ++=∆9.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( ) A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-10.在ABC ∆中,已知120=A ,1=b ,2=c ,则a 等于( ) A .3 B .523+ C .7D .523-二、填空题:本大题共5小题,每小题4分,满分20分.11.的取值范围是,则实数且已知集合a a x x B x x R B A },{},1{A =⋃≥=≤= _____________. 12.3log 4(3)的值是 .13.已知0m >,0n >,且4m n +=,则mn 的最大值是 . 14.(1)若幂函数()y f x =的图像经过点1(9,)3,则(25)f 的值是(2).若实数x,y 满足不等式组{{0422≥-≤-≥+y x y x y x ,则Z=2x+3y 的最小值为_________15.已知()f x 是定义在[)(]2,00,2-上的奇函数,当0x >时,()f x 的图像如图所示,那么()f x 的值域是 .三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.)上是减函数。
2011年高考湖南卷理科数学试题及答案2011年高考湖南卷理科数学试题及答案
正视图侧视图俯视图 图1 2011年普通高等学校招生全国统一考试 理科数学(湖南卷)参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+则 A .1a =,1b = B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==-2.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件3.设图1是某几何体的三视图,则该几何体的体积为 A .9122π+B .9182π+C .942π+D .3618π+4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由()()()()()22n ad bc K a b c d a c b d -=++++算得,()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.2()P K k ≥0.050 0.010 0.001 k3.8416.635 10.828参照附表,得到的正确结论是A .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .16.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为A .12B .1C .32D .37.设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .(1,12+) B .(12+,+∞)C .(1,3 )D .(3,+∞)8.设直线x=t 与函数2()f x x = ()ln g x x = 的图像分别交于点M,N,则当MN 达到最小时t 的值为A .1B .12C .52 D .22一天下午化学教案天气很热化学教案一位年轻小伙子大汗淋漓二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应号后的横线上。
2011年湖南省普通高中学业水平考试化学试题
2011年湖南省普通高中学业水平考试试卷真题化学本卷可能用到的相对原子质量:H:1 C:12 O:16 Na:23一、选择题(本题包括25道小题,每小题2分,共50分。
每小题只有一个选项符合题意)1.天然气是一种高效、低耗同、污染小的清洁能源。
天然气的主要成分是A.CH2=CH2B.COC.CH4D.H22. 下列物中,属于目前世界上用量最大、用途最广的合金是A.青铜B.钢材C.18K金D.钛合金3. 2011年3月11日在日本发生的大地震中,福岛核电站发生了核泄漏,其周边区域的空气中漂浮着放射性物质,其中含有碘的同位素131 53I,131 53I中的质子数为A.53B.78C.131D.1844. 下列图示中,属于过滤操作的是5.维生素参与生物生长发育和新陈代谢所必需的物质,中学生每天需要补充一定量的维生素C。
下列物质中维生素C含量最丰富的是A.鱼B.虾C.牛肉D.橘子6.茶油是人们生活中一种高品质的食用油,茶油中的主要成分属于A.淀粉B.油脂C.蛋白质D.糖类7.一些装有化学物质的容器上常贴有危险化学品的标志。
盛装下列气体的容器上,不需要贴右图标志的是A.H2B.COC.N2D.CH48.2011年下半年,我省第一条横跨湘江的过江隧道将建成通车,在工程建设中用量最大的硅酸盐材料是A.钢筋B.水泥C.玻璃D.陶瓷9. 为了改善食品的色、香、味,我们经常在食物中加入某些食品添加剂。
下列食品添加剂的使用不合理的是A.在烹饪食物时,加入适量食盐B.在饮料制作中,常加入适量的天然色素C.在烹饪鱼类食物时,加入适量食醋D.在火腿制作中,加入大量亚硝酸钠作为防腐剂10. 下列物质中,属于氧化物的是A.O2B.Na2OC.H2SO4D.NaOH11. 水是一种非常宝贵的资源,保护水资源已逐步成为人们的一种共识。
下列行为不会造成水体污染的是A.含重金属离子的废水大量排放B.含磷洗衣粉的大量使用C.生活污水的任意排放D.利用太阳能将海水淡化12.综合开发利用海水资源获取物质和能量具有广阔的前景。
完整word版,2011年湖南普通高中学业水平考试数学试卷真题+答案[1]
湖南普通高中学业水平考试数学试卷时量120分钟 满分100分班次:________学号:______ 姓名:___________得分:_________一、选择题:(本大题共10小题,每小题4分,满分40分)1.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则I A B 等于( ) A .{1,2,3,4,5} B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}2.若函数()3=+f x x (6)f 等于( )A .3B .6C .9D 63.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-4.两个球的体积之比为8:27,那么这两个球的表面积之比为( ) A .2:3B .4:9C 23D .2335.已知函数()sin cos =f x x x ,则()f x 是( ) A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.向量(1,2)=-r a ,(2,1)=rb ,则( )A .//r r a bB .⊥r r a bC .r a 与r b 的夹角为60oD .r a 与r b 的夹角为30o7.等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( ) A .15B .30C .31D .648.阅读右边的流程图,若输入的a ,b ,c 分别是6,2,5。
则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6C .2,5,6D .6,2,59.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点, 则b 的取值范围是( ) A .R B .(,0)-∞ C .(8,)-+∞D .(8,0)-10.在ABC ∆中,已知120=oA ,1=b ,2=c ,则a 等于( ) A 3B 523+C 7D 523-二、填空题:(本大题共5小题,每小题4分,满分20分.)11.某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师 人.12.3log 4的值是 .13.已知0m >,0n >,且4m n +=,则mn 的最大值是 . 14.若幂函数()y f x =的图像经过点1(9,)3,则(25)f = .15.已知()f x 是定义在[)(]2,00,2-U 上的奇函数,当0x >时,()f x 的图像如图所示,那么()f x 的值域是 .一、 选择题: 本大题共10小题,每小题4分,满分40分填空题: 本大题共5小题,每小题4分,满分20分.9、 ; 10、 ; 11、 ; 12、 ; 13、 ; 14、 ;15、三、解答题:本大题共5小题,满分40分. 16.(本小题满分6分)一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这个玩具先后抛掷2次,求:(1)朝上的一面数相等的概率; (2)朝上的一面数之和小于5的概率.17.(本小题满分8分)如图,圆心C 的坐标为(1,1),圆C 与x 轴和y 轴都相切. (1)求圆C 的方程;(2)求与圆C 相切,且在x 轴和y 轴上的截距相等的直线方程.18.(本小题满分8分)如图,在三棱锥P ABC -,PC ⊥底面ABC ,AB BC ⊥,D 、E 分别是AB 、PB 的中点.(1)求证://DE 平面PAC ; (2)求证:AB PB ⊥.11 0 x y19.(本小题满分8分)已知数列{}n a 的前n 项和为2n S n n =+.(1)求数列{}n a 的通项公式; (2)若()12na nb =,求数列{}n b 的前n 项和为n T .20.(本小题满分10分)设函数()f x a b =⋅r r ,其中向量(cos 21,1)a x =+r,2)b x m =+r.(1)求()f x 的最小正周期;(2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,4()4f x -<<恒成立,求实数m 的取值范围.湖南普通高中学业水平考试数学答卷一.选择题:1, C 2,A 3,B 4,B 5,A 6,B 7,A 8,C 9,C 10,C 二.填空题11, 100 12, 2 13, 4 14,)2.0(51或 15,]3,2()2,3[⋃--三.解答题: 16.(本小题满分6分)一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这个玩具先后抛掷2次,求:(1)朝上的一面数相等的概率; (2)朝上的一面数之和小于5的概率. 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (1)朝上一面数相等的次数出现6种,故发生的概率为666=⨯; (2)朝上朝上的一面数之和小于5的的情况共有6种,故发生的概率为61666=⨯。
2011年湖南高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,则 ( )A. B. C. D.【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算.给出全集与交集求.【参考答案】B【试题解析】画出韦恩图可知,2.若,为虚数单位,且则 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,进行四则运算,根据实数只有实部没有虚部的特征,判断的的值.【参考答案】C【试题解析】因,根据复数相等的条件可知.3. “”是“” 的 ( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【测量目标】命题的基本关系,充分条件与必要条件.【考查方式】主要考查命题的基本关系以及充分必要条件.【参考答案】A【试题解析】因,反之或,不一定有.4.如图是某几何体的三视图,则该几何体的体积为 ( )A. B. C. D.【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法.【考查方式】给出几何体的三视图,直接考查对其三视图的判断,画出立体图形求其体积.【参考答案】D【试题解析】有三视图可知该几何体是一个长方体和球组成的组合体,其体积5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,附表:0.0500.0100.0013.841 6.63510.828参照附表,得到的正确结论是 ( )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”【测量目标】变量间的相关关系,独立性检验.【考查方式】给出随机变量,根据卡方统计量计算出其观测值,并且的值越大,说明两者有关系成立的可能性越大,可根据表格判断.【参考答案】A【试题解析】由,而,故由独立性检验的意义可知选A.6.设双曲线的渐近线方程为,则的值为 ( )A.4 B.3 C.2 D.1【测量目标】双曲线标准方程,渐近线方程.【考查方式】给出双曲线渐近线方程,求双曲线标准方程的.【参考答案】C【试题解析】由双曲线方程可知渐近线方程为,故可知.7.曲线在点M(,0)处的切线的斜率为 ( )A. B. C. D.【测量目标】同角三角函数的基本关系式,导数的几何意义.【考查方式】给出曲线方程进行变换,根据在某点的切线的斜率即为在该点的导数值求出结果.【参考答案】B【试题解析】,.8.已知函数,若有,则b的取值范围( )A. B.C. D.【测量目标】指数函数、一元二次函数的值域、定义域,一元二次不等式.【考查方式】给出两个复合函数表达式,结合一元二次不等式求解.【参考答案】B【试题解析】由题意知,,,若有,则,即,解得.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系中,曲线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为.【测量目标】参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化.【考查方式】给出曲线的参数方程与曲线的极坐标方程,将其转化为直角坐标系下的方程,判断两曲线的交点.【参考答案】2个【试题解析】曲线,曲线,联立方程消去得,易知,故有个交点.10.已知某试验范围为,若用分数法进行次优选试验,则第二次试点可以是.【测量目标】分数法.【考查方式】利用分数法解决实际的优选问题.【参考答案】40或60【试题解析】有区间长度为80,可以将其等分8段,利用分数法选取试点:,,由对称性可知,第二次试点可以是40或60。
2011年湖南高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U M N == , {}2,4U M N = ð,则N = ( ) A .{}1,2,3 B . {}1,3,5 C . {}1,4,5 D . {}2,3,4 【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算.给出全集与交集求N . 【参考答案】B【试题解析】画出韦恩图可知,{}1,3,5N =2.若,R a b ∈,i 为虚数单位,且(i)i i a b +=+则 ( ) A .1,1a b == B . 1,1a b =-= C . 1,1a b ==- D . 1,1a b =-=- 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,进行四则运算,根据实数只有实部没有虚部的特征,判断的,a b 的值. 【参考答案】C【试题解析】因(i)i 1i i a a b +=-+=+,根据复数相等的条件可知1,1a b ==-. 3. “1x >”是“1x >” 的 ( ) A .充分不必要条件 B .必要不充分条件 C . 充分必要条件 D .既不充分又不必要条件 【测量目标】命题的基本关系,充分条件与必要条件. 【考查方式】主要考查命题的基本关系以及充分必要条件. 【参考答案】A【试题解析】因"1""1"x x >⇒>,反之"1"x >⇒"1x >或1"x <-,不一定有"1"x >. 4.如图是某几何体的三视图,则该几何体的体积为 ( )A .9π42+B .36π18+C .9π122+ D .9π182+ 【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法. 【考查方式】给出几何体的三视图,直接考查对其三视图的判断,画出立体图形求其体积. 【参考答案】D【试题解析】有三视图可知该几何体是一个长方体和球组成的组合体,其体积3439π()332π+18322V =⨯+⨯⨯=. 5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由2()()()()()n ad bc K a d c d a c b d -=++++ 算得,22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:( ) A . 有99%以上的把握认为“爱好该项运动与性别有关” B . 有99%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关” 【测量目标】变量间的相关关系,独立性检验.【考查方式】给出随机变量,根据卡方统计量计算出其观测值k ,并且k 的值越大,说明两者有关系成立的可能性越大,可根据表格判断. 【参考答案】A【试题解析】由27.8 6.635K ≈>,而2( 6.635)0.010P K =…,故由独立性检验的意义可知选A .6.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 ( )A .4B .3C .2D .1 【测量目标】双曲线标准方程,渐近线方程.【考查方式】给出双曲线渐近线方程,求双曲线标准方程的a .【参考答案】C【试题解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =. 7.曲线sin 1sin cos 2x y x x =-+在点M (π4,0)处的切线的斜率为 ( )A . 12-B . 12C .2- D .2【测量目标】同角三角函数的基本关系式,导数的几何意义.【考查方式】给出曲线方程进行变换,根据在某点的切线的斜率即为在该点的导数值求出结果.【参考答案】B 【试题解析】22cos (sin cos )sin (cos sin )1(sin cos )(sin cos )x x x x x x y x x x x +--'==++, ∴π2411ππ2(sincos )44x y ='==+. 8.已知函数2()e 1,()43x f x g x x x =-=-+-,若有()()f a g b =,则b 的取值范围( ) A .2⎡+⎣ B .(2+C . []1,3D . ()1,3【测量目标】指数函数、一元二次函数的值域、定义域,一元二次不等式. 【考查方式】给出两个复合函数表达式,结合一元二次不等式求解. 【参考答案】B【试题解析】由题意知,()e 11x f x =->-,22()43(2)11g x x x x =-+-=--+…,若有()()f a g b =,则(]()1,1g b ∈-,即2431b b -+->-,解得22b <<+二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..卡.中对应号后的横线上. (一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy 中,曲线1C的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10-+=ρθθ,则1C 与2C 的交点个数为 . 【测量目标】参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化.【考查方式】给出曲线1C 的参数方程与曲线2C 的极坐标方程,将其转化为直角坐标系下的方程,判断两曲线的交点. 【参考答案】2个【试题解析】曲线221:143x y C +=,曲线2:10C x y -+=,联立方程消去y 得27880x x +-=,易知0∆>,故有2个交点.10.已知某试验范围为[]10,90,若用分数法进行4次优选试验,则第二次试点可以是 . 【测量目标】分数法.【考查方式】利用分数法解决实际的优选问题. 【参考答案】40或60【试题解析】有区间长度为80,可以将其等分8段,利用分数法选取试点:1510(9010)608x =+⨯-=,210906040x =+-=,由对称性可知,第二次试点可以是40或60。
2011年高考湖南卷理科数学试题及答案
正视图侧视图俯视图 图1 2011年普通高等学校招生全国统一考试 理科数学(湖南卷)参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+则 A .1a =,1b = B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==-2.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.设图1是某几何体的三视图,则该几何体的体积为 A .9122π+B .9182π+C .942π+D .3618π+4由()()()()()22n ad bc K a b c d a c b d -=++++算得,()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是A .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .16.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为A .12B .1CD 7.设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为A .(1,1B .(1+∞)C .(1,3 )D .(3,+∞)8.设直线x=t 与函数2()f x x = ()lng x x = 的图像分别交于点M,N,则当MN 达到最小时t 的值为A .1B .12C D 二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应号后的横线上。
2011年湖南省普通高中学业水平测验试卷
B.②③
下表是俄罗斯 1995 年 7 月人口统计结果,读表完成 11-12 题。
人口出生率(%) 1.264
11.俄罗斯人口增长模式属于
A.“高—高—高”模式
C.“高—低—高”模式
人口死亡率(%) 1.136
12.俄罗斯采取各种政策提高人口出生率(如:每生育一个孩子可获得 1 万美元的
政府补贴),从而使得 2009 年的人口出生率,自 1995 年来首次出现增长。这体现了下列
变化。这反映了自然带的
是
A.纬度地带分异规律
C.垂直分异规律
10.沪杭高铁经过的地区以平原为主,但 87%的线路采取“以桥代路”。其主要目的
C.风力侵蚀
B.亚热带常绿阔叶林
D.亚寒带针叶林
B.经度地带分异规律
D.地方性分异规律
பைடு நூலகம்
①避开崇山峻岭 ②减少占用耕地 ③降低建设成本 ④使道路平直,利于高速
A.①④
一、
2011 年湖南省普通高中学业水平考试试卷
地理
本试题卷分选择题和非选择题两部分,共 7 页。时量 90 分钟,满分 100 分。
正确答案)
选择题(本大题包括25个小题,共50分,每小题只有一个
“我和你,心连心,同住地球村。”据此完成 1-2 题。
1.人类居住的地球,在天体类型中属于
A.恒星
B.行星
D.卫星
D.内部
D.侵入岩
毛主席诗句“湘江北去,橘子洲头。看万山红遍,层林尽染……”据此完成 7-8 题。
7.橘子洲主要是下列哪种外力作用形成的
A.风力沉积
8.湖南省的典型植被类型是
A.热带雨林
C.温带落叶阔叶林
B.流水沉积
2011年湖南省高考数学试题(含答案)
,附表如右下,参照附表,得到的正确
结论( )
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
0.050
0.010
0.001
3.841
6.635
10.828
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
1.若 为虚数单位,且 ,则( )
A. B. C. D.
2.设集合 ,则“ ”是“ ”的( )
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
3. 如图1是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
4.通过询问110名性别不同的大学生是否爱好某项运动,得到如下
解法1 记 则 当 时, ,因此 在 上递增,则 在 内至多只有一个零点.又因为 则 在 内有零点.所以 在 内有且只有一个零点.记此零点为 ,则当 时, 当 时, .
所以,当 时, 单调递减.而 ,则 在 内无零点;
当 时, 单调递增,则 在 内至多只有一个零点;
从而 在 内至多只有一个零点;
综上所述, 有且只有两个零点.
因此 时, 成立.
故对任意的 成立.
(2)当 时,由(Ⅰ)知 在 上递增.则 ,即 .从而
,即 .由此猜想: .下面用数学归纳法证明.
①当 时, 显然成立.
②假设 时, 成立,
则当 时,由 ,知 .
因此 时, 成立.
故对任意的 成立.
2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)(解析版)
为( )
A.1
1
B.
2
5
C.
2
2
D.
2
二、填空题:本大题共 8 小题,考生作答 7 小题,每小题 5 分,共 35 分,把答案填在答.题.卡.中对应 号后的横线上。 (一)选做题(请考生在 9、10、11 三题中任选两题作答,如果全做,则按前两题记分)
9.在直角坐标系
xOy
中,曲线
C1
的参数方程为
x
0 ,则 a 的值为(
)
A.4 B.3 C.2 D.1
答案:C
解析:由双曲线方程可知渐近线方程为 y 3 x ,故可知 a 2 。 a
6.由直线 x , x , y 0 与曲线 y cos x 所围成的封闭图形的面积为( ) 33
A. 1 2
B.1
C. 3 2
D. 3
y x
7.设
1 4
16.对于 n N * ,将 n 表示 n a0 2k a1 2k 1 a2 2k 2 ... a k1 21 a k 20 ,当 i 0 时, ai 1 ,当1 i k 时, a1 为 0 或 1.记 I (n) 为上述表示中 ai 为 0 的个数(例如: I 1 20, 4 1 22 0 21 0 20 ),故 I (1) 0 , I (4) 2 ),则
的最小值为
。
10.9
11.如图 2,A,E 是半圆周上的两个三等分点,直径 BC=4,
AD⊥BC,垂足为 D,BE 与 AD 相交与点 F,则 AF 的长为
。
第 2页 (共 9页)
23
11.
3
(二)必做题(11~16 题)
12.设 Sn 是等差数列{an} (n N ) ,的前 n 项和,且 a1 1, a4 7 ,
2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)(解析版)
正视图 侧视图俯视图 图12011年普通高等学校招生全国统一考试(湖南卷)数学(理)试题解析本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.)若,a b R ∈,i 为虚数单位,且()a i i b i +=+则 ( )A .1a =,1b =B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 1. 解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,a =2.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.设图1是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+C .942π+D .3618π+解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+(。
4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计爱好40 20 60 不爱好20 30 50 总计60 50 110 由()()()()()22n ad bc K a b c d a c b d -=++++算得,()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.2()P K k ≥0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选C5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南普通高中学业水平考试数学试卷
时量120分钟 满分100分
班次:________学号:______ 姓名:___________得分:_________
一、选择题:(本大题共10小题,每小题4分,满分40分)
1.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则A B 等于( ) A .{1,2,3,4,5} B .{2,5,7,9}
C .{2,5}
D .{1,2,3,4,5,7,9}
2.若函数()3=+f x x ,则(6)f 等于( )
A .3
B .6
C .9
D .6
3.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )
A .(4,2)-
B .(4,2)-
C .(2,4)-
D .(2,4)-
4.两个球的体积之比为8:27,那么这两个球的表面积之比为( ) A .2:3
B .4:9
C .2:3
D .22:33
5.已知函数()sin cos =f x x x ,则()f x 是( ) A .奇函数
B .偶函数
C .非奇非偶函数
D .既是奇函数又是偶函数
6.向量(1,2)=-a ,(2,1)=b ,则( ) A .//a b
B .⊥a b
C .a 与b 的夹角为60
D .a 与b 的夹角为30
7.等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( ) A .15
B .30
C .31
D .64
8.阅读右边的流程图,若输入的a ,b ,c 分别是6,2,5。
则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6
C .2,5,6
D .6,2,5
9.已知函数2
()2=-+f x x x b 在区间(2,4)内有唯一零点, 则b 的取值范围是( ) A .R B .(,0)-∞ C .(8,)-+∞
D .(8,0)-
10.在ABC ∆中,已知120=A ,1=b ,2=c ,则a 等于( ) A .3
B .523+
C .7
D .523-
二、填空题:(本大题共5小题,每小题4分,满分20分.)
11.某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收
入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师 人.
12.3log 4
(3)的值是 .
13.已知0m >,0n >,且4m n +=,则mn 的最大值是 . 14.若幂函数()y f x =的图像经过点1(9,)3
,则(25)f = .
15.已知()f x 是定义在[)(]2,00,2-上的奇函数,当0x >时,
()f x 的图像如图所示,那么()f x 的值域是 .
一、 选择题: 本大题共10小题,每小题4分,满分40分
题号 1 2 3 4 5 6 7 8 9 10 答案
二、 填空题: 本大题共5小题,每小题4分,满分20分.
9、 ; 10、 ; 11、 ; 12、 ; 13、 ; 14、 ;15、
三、解答题:本大题共5小题,满分40分. 16.(本小题满分6分)一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这
个玩具先后抛掷2次,求:
(1)朝上的一面数相等的概率; (2)朝上的一面数之和小于5的概率.
2
3
y 2
x
O
17.(本小题满分8分)如图,圆心C 的坐标为(1,1),圆C 与x 轴和y 轴都相切. (1)求圆C 的方程;
(2)求与圆C 相切,且在x 轴和y 轴上的截距相等的直线方程.
18.(本小题满分8分)如图,在三棱锥P ABC -,PC ⊥底面ABC ,AB BC ⊥,D 、E 分别是AB 、PB 的中点.
(1)求证://DE 平面PAC ; (2)求证:AB PB ⊥.
1
1 0 x y
19.(本小题满分8分)已知数列{}n a 的前n 项和为2
n S n n =+.
(1)求数列{}n a 的通项公式; (2)若()
12
n
a n
b =,求数列{}n b 的前n 项和为n T .
20.(本小题满分10分)设函数()f x a b =⋅,其中向量(cos 21,1)a x =+,
(1,3sin 2)b x m =+.
(1)求()f x 的最小正周期;
(2)当0,6x π⎡⎤∈⎢⎥⎣⎦
时,4()4f x -<<恒成立,求实数m 的取值范围.
湖南普通高中学业水平考试数学答卷
一.选择题:1, C 2,A 3,B 4,B 5,A 6,B 7,A 8,C 9,C 10,C 二.填空题11, 100 12, 2 13, 4 14,)2.0(5
1
或 15,]3,2()2,3[⋃--
三.解答题: 16.(本小题满分6分)一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这
个玩具先后抛掷2次,求:
(1)朝上的一面数相等的概率; (2)朝上的一面数之和小于5的概率. 解:由题意可把所有可能性列表如下: 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (1)朝上一面数相等的次数出现6种,故发生的概率为
6
1666=⨯; (2)朝上朝上的一面数之和小于5的的情况共有6种,故发生的概率为
6
1666=⨯。
7.(本小题满分8分)如图,圆心C 的坐标为(1,1),圆C 与x 轴和y 轴都相切. (1)求圆C 的方程;
(2)求与圆C 相切,且在x 轴和y 轴上的截距相等的直线方程. 解:(1)根据题意和图易知圆的半径为1,有圆心坐标为(1,1) 故圆C 的方程为:1)1()1(2
2
=-+-y x ; (2)根据题意可以设所求直线方程截距式为
1=+a
y a x 整理得0=-+a y x ,直线与圆相切,圆心到直线的距离等于半径,故 r d =
12
|
11|=-+a 可得22±=a 。
18.(本小题满分8分)如图,在三棱锥P ABC -,PC ⊥底面ABC ,AB BC ⊥,D 、E 分别是AB 、PB 的中点.
(1)求证://DE 平面PAC ; (2)求证:AB PB ⊥. 证明:
(1) 在三角形ABP 中,D 、E 分别是AB 、PB 的中点
∴DE 是三角形ABP 的中位线,故DE//AP,
又PAC AP PAC DE ⊆⊄,,所以//DE 平面PAC ; (2) PC ⊥底面ABC ,ABC AB ⊆,∴PC ⊥AB,
又题目给定条件AB BC ⊥,且C BC PC = ,所以AB ⊥PBC 又 PB ⊆PBC ,所以AB PB ⊥。
1
1
0 x
y
19.(本小题满分8分)已知数列{}n a 的前n 项和为2
n S n n =+.
(1)求数列{}n a 的通项公式;
(2)若()
1
2
n
a n
b =
,求数列{}n b 的前n 项和为n T .
解:(1)当1>n ,n n n n n S S a n n n 2)]1()1[()(2
21=-+--+=-=-,
又当1=n ,2112
11=+==S a 也满足上式, 所以n a n 2=。
(2) 由n n a n n
b )41()21()
2
1(2===,知其为首项为41,公比为4
1
的等比数列, 故4
11]
)41
(1)[4
1(--=n n S =])41(1[31n - 20.(本小题满分10分)设函数()f x a b =⋅,其中向量(cos 21,1)a x =+,
(1,3sin 2)b x m =+.
(1)求()f x 的最小正周期;
(2)当0,6x π⎡⎤∈⎢⎥⎣⎦
时,4()4f x -<<恒成立,求实数m 的取值范围.
解:()f x a b =⋅=)2sin 3(11)12(cos m x x +⨯+⨯+=1)2
1
2cos 232(sin 2++⋅+⋅m x x =1)6
2sin(2+++m x π
(1)ππ
==
2
2T (2) 当0,6x π⎡⎤∈⎢⎥⎣⎦
时,。