二次根式【精华版】
二次根式知识点
二次根式知识点二次根式是初中数学中的一个重要概念,它在数学的学习和实际应用中都有着广泛的用途。
接下来,咱们就来详细聊聊二次根式的相关知识。
首先,咱们得搞清楚啥是二次根式。
一般地,形如√a(a≥0)的式子叫做二次根式。
这里要特别注意,根号下的数 a 必须是非负数,不然就没有意义啦。
那二次根式有哪些性质呢?这可是重点哟!性质一:(√a)²= a(a≥0)。
也就是说,一个非负数开平方再平方,还是它本身。
性质二:√a² =|a|。
当a≥0 时,√a² = a;当 a<0 时,√a² = a。
这个性质在化简二次根式的时候经常用到。
性质三:√ab =√a × √b(a≥0,b≥0)。
性质四:√a/b =√a /√b(a≥0,b>0)。
了解了这些性质,咱们来看看二次根式的运算。
二次根式的加减法,关键是要把二次根式化成最简二次根式,然后把被开方数相同的二次根式(也就是同类二次根式)进行合并。
比如,√8 +√18 =2√2 +3√2 =5√2。
二次根式的乘法,就可以直接运用√ab =√a × √b 这个性质。
例如,√2 × √6 =√12 =2√3 。
二次根式的除法,运用√a/b =√a /√b 进行计算。
比如,√12÷√3=√4 = 2 。
在进行二次根式的运算时,一定要注意化简,把结果化成最简二次根式。
那啥是最简二次根式呢?满足以下两个条件的二次根式,叫做最简二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。
比如说,√8 就不是最简二次根式,因为 8 可以分解成 4×2,4 还能开方得 2,所以√8 =2√2,2√2 就是最简二次根式。
再来说说二次根式的化简。
化简二次根式的时候,经常要用到分母有理化。
分母有理化就是把分母中的根号去掉。
比如,1 /√2 ,分母有理化就是给分子分母同乘以√2 ,得到√2 / 2 。
【精华版】二次根式计算专题训练(附答案)
二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣= 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)= 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.。
【精华版】二次根式计算专题训练-(附答案)
二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣= 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)= 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.。
二次根式相关公式
二次根式相关公式二次根式这玩意儿,在数学里可有着自己独特的“小脾气”和规律呢。
咱先来说说二次根式的定义,形如\(\sqrt{a}\)(\(a\geq 0\))的式子就叫二次根式。
这就好比一个有规矩的小团体,只有符合“\(a\geq 0\)”这个条件才能加入。
二次根式有两个重要的公式,一个是\(\sqrt{a^2} = |a|\),另一个是\(\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))。
就拿\(\sqrt{a^2} = |a|\)这个公式来说,比如说有个二次根式\(\sqrt{(-3)^2}\),那它的值可不是\(-3\),而是\(3\),因为\(\sqrt{(-3)^2} = |-3| =3\)。
我记得之前给学生们讲这个知识点的时候,有个小家伙就总是搞混,他在做题的时候,愣是把\(\sqrt{(-5)^2}\)算成了\(-5\)。
我就问他:“你想想,一个数的平方再开根号,能是负数吗?”他挠挠头,恍然大悟的样子特别可爱。
再说说\(\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}\)这个公式。
假如我们要计算\(\sqrt{24}\),就可以把\(24\)分解成\(4\times 6\),那\(\sqrt{24} =\sqrt{4\times 6} = \sqrt{4} \times \sqrt{6} = 2\sqrt{6}\)。
在实际应用中,二次根式的公式用处可大了。
比如在解决几何问题的时候,计算图形的边长或者面积;在物理中,计算一些与距离、速度相关的问题也会用到。
记得有一次,我们班组织了一场数学小竞赛,其中有一道题就是让大家化简一个复杂的二次根式式子。
大多数同学都能熟练运用这两个公式,把式子化简得漂漂亮亮的。
但也有几个小迷糊,公式用错了,结果闹了笑话。
总之,二次根式的这些公式就像是我们解题的“秘密武器”,只要掌握好了,就能在数学的世界里“披荆斩棘”。
二次根式讲解大全
【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2) 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0); b ba a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式 1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x ya (a >0) ==a a 2 a -(a <0)0 (a =0);例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式 例. 在实数范围内分解因式。
二次根式知识点精华(完整版 汤涛)
a n b p c mnp abc 2ab +b 2 =(a b) 2
(3)两个平方公式依然适用 A 平方差公式 a 2 -b 2 =(a b )(a b ) B 完全平方公式 a 2
2、除法法则:
a b
a ( a 0, b 0) ; b
正用:两个算术平方根的商,等于它们被开方数的算术平方根 逆用:商的算术平方根,等于各因数算术平方根的商 注意: (1)若被开方数是带分数或小数,应先化成假分数;若积中含有完全平方数,一定要移到根号外。
一、二次根式的定义和性质 1.二次根式的定义:式子
a ( a ≥0)叫做二次根式。判定式子是否是二次根式根指数是 2 被开方数(式)非负数
单个二次根式 a 有意义: a 0 多个二次根式 a + b + + n有意义: a 0, b 0 n 0 b 2.二次根式有意义的条件: 二次根式作分式的分母 有意义: a 0 a 二次根式与分式之和 a + 1 有意义: a 0, b 0 b
( a - b)的有理化因式是( a + b),( a + b)的有理化因式是( a - b)
1 1 a a 类 型 1: = = a a a a
三种类型: 类 型 2:
1 1 ( a + b) = a - b ( a - b) ( a + b) 1 1 ( a -b) a -b = = 2 a + b ( a + b) ( a -b) a-b
a +n a +p a (m +n +p) a
二、二次根式的乘除
1、乘法法则:
ab = a · b (a≥0,b≥0);
(完整word版)二次根式知识点复习,文档
二次根式复习【知识回忆】1. 二次根式: 式子 a 〔 a ≥ 0〕叫做二次根式。
2. 最简二次根式: 必定同时满足以下条件:⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母 ; ⑶分母中 不含根式 。
3. 同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。
4. 二次根式的性质:〔1〕〔2〔 a ≥ 0〕;〔2〕a 〕 = a 2aa 5. 二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,尔后合并同类二次根式即可。
⑵二次根式的乘除运算:a 〔 a >0〕0 〔 a =0〕;a 〔 a < 0〕① ab =a ?b 〔 a ≥ 0,b ≥ 0〕;②aaba 0,b 0b【例题讲解】例 1 计算:〔1〕 (3)2 ;〔2〕 (2 ) 2 ; 〔3〕 ( a b )2〔a+b ≥ 0〕3解析:依照二次根式的性质可直接获取结论。
例 2 计算:⑴6·15⑵ 1 ·24⑶ a 3 · ab 〔 a ≥ 0,b ≥ 0〕2解析:本例先利用二次根式的乘法法那么计算, 再利用积的算术平方根的意义进行化简得出计算结果。
例 3计算:〔1〕32+23-22+3〔 2〕12 +18 - 8 -32〔 3〕40 -1 +10510【基础训练】1.化简:〔 1〕72____ ;〔2〕252242___ __;〔3〕612 18 ____;〔4〕75x3 y2 (x0, y0) ____;〔5〕204_______ 。
2.(08 ,安徽 ) 化简42=_________。
3. 〔 08,武汉〕计算 4 的结果是A .2B.± 2C. -2D. 44. 化简:〔1〕〔 08,泰安〕9 的结果是;〔 2〕〔 08,南京〕12 3 的结果是;〔3〕(08 ,宁夏 ) 528 =;〔 4〕〔 08,黄冈〕 5 x -2x =_____ _;5.〔 08,重庆〕计算82的结果是A、 6B、 6C、 2D、 26.〔 08,广州〕 3 的倒数是。
(完整版)二次根式知识点归纳及题型总结精华版
二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。
〕1.〕。
A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。
〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。
x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。
8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。
m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。
二次根式的知识点汇总
二次根式的知识点汇总二次根式是数学中的重要概念之一,常见于代数、几何以及物理等领域。
下面将系统地总结和介绍与二次根式相关的知识点,包括定义、性质、运算、求解等内容。
定义:二次根式,也称为根式,通常表示为√a,其中a是一个非负实数,被称为被开方数。
根号√表示求平方根的运算,是指找到一个非负实数b,使得b的平方等于a,即b²=a。
其中,b被称为二次根式的值。
常见的二次根式有:1.√1=1,√0=0,√4=2,√9=3,√16=4,√25=5,√36=6,√49=7,……可以继续一直往下找;2.√2≈1.414,√3≈1.732,√5≈2.236,√6≈2.449,……这些值是无限不循环的无理数,不能精确表示为有限小数或分数。
性质:1.非负实数的平方根是非负实数,即对于任意非负实数a,有√a≥0;2.如果a≥b,则√a≥√b;3.对于任意的非负实数a和b,有√(a·b)=√a·√b;4.对于任意的非负实数a和b,有√(a/b)=√a/√b(其中b不等于0);5.对于任意非负实数a和b,有√(a+b)≠√a+√b;6.对于非负实数a和b,有,√a-√b,≤√(,a-b,);运算:1.二次根式的加减法:-两个相同根式相加或相减,直接将根号内的数相加或相减,根号不变。
-不同根式相加或相减,可以通过有理化的方法转换为相同根式后再进行运算。
2.二次根式的乘法:-两个二次根式相乘,可以直接将根号内的数相乘,根号不变。
3.二次根式的除法:-两个二次根式相除,可以直接将根号内的数相除,根号不变。
4.二次根式的化简:-化简一个二次根式,可以将根号内的数进行因式分解,并利用根式的性质进行合并和简化。
求解:在代数方程中,二次根式经常出现在方程的根的求解中。
一般而言,求解二次根式可以经过以下几个步骤:1.通过解方程的方法将二次根式转化为一个方程;2.平方处理,将方程中的二次根式平方并合并同类项;3.解得一个或两个方程,并判断方程的解是否满足题目给定的条件。
二次根式——精选推荐
二次根式定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。
a可以是具体的数,也可以是含有字母的代数式。
二次根式即:若,则x叫做a的平方根,记作x=。
其中a叫被开方数。
其中正的平方根被称为算术平方根。
关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
性质:二次根式1.任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣;最简形势中被开方数不能有分母存在。
二次根式2.零的平方根是零,即;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
二次根式4.无理数可用有理数形式表示, 如:。
几何意义二次根式1°(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];二次根式2°,都是非负数;当a≥0时,;而中a取值范围是a≥0,中取值范围是全体实数。
二次根式3°c=表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4° 逆用可将根号外的非负因式移到括号内,如二次根式二次根式﹙a>0﹚,﹙a<0﹚二次根式﹙a≥0﹚,﹙a<0﹚二次根式7° 注意:,即具有双重非负性。
算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。
0的算术平方根为0.开平方运算化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
最简二次根式二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。
运算法则乘除法1.积的算数平方根的性质二次根式(a≥0,b≥0)2. 乘法法则二次根式(a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
九年级数学二次根式知识点
九年级数学二次根式知识点一、二次根式1. 定义:二次根式是形如√a的表达式,其中a是非负实数。
2. 运算规则:(1) 乘法规则:√a * √b = √(a * b)(2) 除法规则:√a / √b = √(a / b),其中b不能为0(3) 幂运算规则:(√a)^n = (√a)^(n / 2),其中n为偶数,a为非负实数3. 合并同类项:(1) 如果二次根式的底数相同,则可以合并为一个根号,即√a ±√a = ±2√a(2) 如果二次根式的根次相同,则可以合并为同一个根次的根号,即√a^n ±√a^n = ±2√a^n(3) 如果二次根式的底数和根次都相同,则可以合并为同一个根号,即√a^n * √a^n = a^n,(√a^n) / (√a^n) = 1二、二次根式的化简1. 因式分解法:将二次根式的底数a分解为素数的乘积,然后利用乘法规则、除法规则和合并同类项的规则将二次根式化简为最简形式。
2. 有理化分母法:利用有理化分母公式将二次根式的分母有理化。
(1) a + √b有理化分母:a + √b = (a + √b) * (a - √b) / (a - √b)(2) a - √b有理化分母:a - √b = (a - √b) * (a + √b) / (a + √b)(3) 1 / (a + √b)有理化分母:1 / (a + √b) = (a - √b) / (a^2 - b)(4) 1 / (a - √b)有理化分母:1 / (a - √b) = (a + √b) / (a^2 - b)三、二次根式的运算1. 加减运算:将二次根式化为最简形式,然后合并同类项。
2. 乘法运算:将二次根式的底数和根次分别相乘。
3. 除法运算:将二次根式的底数和根次分别相除。
4. 化简运算:利用因式分解法或有理化分母法将二次根式化简为最简形式。
四、二次根式的应用二次根式在实际问题中具有广泛的应用,例如计算物体的体积、面积等。
(完整word版)二次根式的基本定义
知识点一:二次根式的概念 【知识要点】 二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.注意理解:1、定义是从结构形式上定义的,必须含有二次根号。
根指数省略不写.不能从化简结果上判断,如,都是二次根式。
2、被开方数是一个数,也可以是含有字母的式子.但前提条件是必须是大于或等于0.3、如果是给定的式子,就是有意义的.、4、形如b (a 的式子也是二次根式,b 与是相乘关系,当b 是分数时,写成假分数。
5、式子(a表示的是非负数。
6、+b (a 和形式是含有二次根式的式子,不能叫二次根式。
二次根式定义: 【例1】下列各式22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). 变式练习:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个3、下列的式子一定是二次根式的是( ) A .B .C .D .4、式子:① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ⑧ 中是二次根式的代号为( ) A .①②④⑥ B .②④⑧C .②③⑦⑧D .①②⑦⑧【例2】若是正整数,最小的整数n 是( )A .6B .3C .48D .2变式练习: 1、已知: 是整数,则满足条件的最小正整数n 的值是( )A .0B .1C .2D .52、二次根式 是一个整数,那么正整数a 最小值是 .注意掌握:1、二次根式具有双重非负性。
(a,2、如果式子中既含有二次根式又含有分式,那么它有意义的条件是:二次根式中的被开方数是非负数,分式中的分母不为0.3、如果式子中含有零指数幂或负整数指数幂,有意义的条件是,度数不为0。
【例3】来式子有意义的x 的取值范围是 源:学*科*网Z*X *X*K]变式练习:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x 〉3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42221x x -+-x 的取值范围是 3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 【例4】若y=5-x +x -5+2009,则x+y=变式练习:1、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。
【精华】二次根式教案
【精华】二次根式教案一、教学内容本节课选自人教版《数学》八年级下册第17章《二次根式》的第1节。
详细内容包括:理解二次根式的概念,掌握二次根式的性质,以及学会二次根式的乘除运算。
二、教学目标1. 理解二次根式的定义,能够识别和书写二次根式。
2. 掌握二次根式的性质,能够进行简单的二次根式化简和乘除运算。
3. 培养学生的数学思维能力和解决问题的能力。
三、教学难点与重点难点:二次根式的乘除运算。
重点:二次根式的定义和性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的图片(如平方根标志、建筑物的对角线等),引导学生发现二次根式的存在,激发学生学习兴趣。
2. 知识讲解(15分钟)(1)讲解二次根式的定义,引导学生理解和掌握二次根式的概念。
(2)讲解二次根式的性质,并通过例题进行演示。
3. 例题讲解(15分钟)(1)化简二次根式:如化简√12。
(2)二次根式的乘除运算:如计算√3 × √4 和√27 ÷ √3。
4. 随堂练习(10分钟)让学生完成教材上的练习题,巩固所学知识。
5. 互动环节(5分钟)学生互相提问,解答疑问,加深对二次根式的理解。
六、板书设计1. 二次根式的定义2. 二次根式的性质3. 例题及解答步骤4. 课堂练习题目七、作业设计1. 作业题目:(1)化简二次根式:√20,√48。
(2)计算二次根式的乘除:√2 × √5,√18 ÷ √2。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对二次根式的定义和性质掌握情况,以及乘除运算的熟练程度。
2. 拓展延伸:引导学生探索二次根式的加减运算,为下节课的学习打下基础。
重点和难点解析一、教学难点与重点1. 难点:二次根式的乘除运算。
2. 重点:二次根式的定义和性质。
补充说明:(1)在讲解二次根式的乘除运算时,应强调“化简为最简二次根式”的原则,即在进行乘除运算后,要将结果化简为最简二次根式。
二次根式知识点总结及习题带答案
二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。
()注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。
1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。
二次根式(精选13篇)
二次根式(精选13篇)二次根式篇1一、教学目标1.了解的意义;2. 掌握用简单的一元一次不等式解决中字母的取值问题;3. 掌握的性质和,并能灵活应用;4.通过的计算培养学生的逻辑思维能力;5. 通过性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)中字母的取值范围.难点:确定中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:定义:式子叫做.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫,是吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是,而,提问学生:2是吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是?分析:,,,、、、四个是. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为:(1) (2) (3) (4)分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.(2)-3x≥0,x≤0,即x≤0时,是.(3),且x≠0,∴x>0,当x>0时,是.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是.例4 下列各式是,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是分析:(2)中,,是;(5)是. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材p.172习题11.1;a组1;b组1.六、板书设计二次根式篇2一、教学目标1.了解的意义;2. 掌握用简单的一元一次不等式解决中字母的取值问题;3. 掌握的性质和,并能灵活应用;4.通过的计算培养学生的逻辑思维能力;5. 通过性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)中字母的取值范围.难点:确定中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:定义:式子叫做.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫,是吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是,而,提问学生:2是吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是?分析:,,,、、、四个是. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为:(1) (2) (3) (4)分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.(2)-3x≥0,x≤0,即x≤0时,是.(3),且x≠0,∴x>0,当x>0时,是.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是.例4 下列各式是,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是分析:(2)中,,是;(5)是. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材p.172习题11.1;a组1;b组1.六、板书设计二次根式篇3一、教学目标1.了解的意义;2. 掌握用简单的一元一次不等式解决中字母的取值问题;3. 掌握的性质和,并能灵活应用;4.通过的计算培养学生的逻辑思维能力;5. 通过性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)中字母的取值范围.难点:确定中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:定义:式子叫做.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫,是吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是,而,提问学生:2是吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是?分析:,,,、、、四个是. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为:(1) (2) (3) (4)分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.(2)-3x≥0,x≤0,即x≤0时,是.(3),且x≠0,∴x>0,当x>0时,是.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是.例4 下列各式是,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是分析:(2)中,,是;(5)是. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材p.172习题11.1;a组1;b组1.六、板书设计二次根式篇4一、教学目标1.了解的意义;2. 掌握用简单的一元一次不等式解决中字母的取值问题;3. 掌握的性质和,并能灵活应用;4.通过的计算培养学生的逻辑思维能力;5. 通过性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)中字母的取值范围.难点:确定中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:定义:式子叫做.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫,是吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是,而,提问学生:2是吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是?分析:,,,、、、四个是. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为:(1) (2) (3) (4)分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.(2)-3x≥0,x≤0,即x≤0时,是.(3),且x≠0,∴x>0,当x>0时,是.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是.例4 下列各式是,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是分析:(2)中,,是;(5)是. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材p.172习题11.1;a组1;b组1.六、板书设计二次根式篇5一、教学目标1.了解的意义;2. 掌握用简单的一元一次不等式解决中字母的取值问题;3. 掌握的性质和,并能灵活应用;4.通过的计算培养学生的逻辑思维能力;5. 通过性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)中字母的取值范围.难点:确定中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:定义:式子叫做.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫,是吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是,而,提问学生:2是吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个的例子,并说明为什么是.下面例题根据定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是?分析:,,,、、、四个是. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为:(1) (2) (3) (4)分析:由的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是.(2)-3x≥0,x≤0,即x≤0时,是.(3),且x≠0,∴x>0,当x>0时,是.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是.例4 下列各式是,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即:只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是分析:(2)中,,是;(5)是. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材p.172习题11.1;a组1;b组1.六、板书设计二次根式篇6(第1课时)一、教学目标1.掌握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法二、教学设计对比、归纳、总结三、重点和难点1.重点:理解并掌握二次根式的性质2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学步骤(一)教学过程【复习引入】1.求值、、、…求值、、、…结论:当时,;当时, .2.求值、…结论:当时,式子有意义,,对于,不能为负数.3.求值、…结论:当时, .问:若根号内这个式子中的底数,根式还有意义吗?其值等于什么?例如,,其中-2与2互为相反数;,其中-3与3互为相反数;,其中与互为相反数.【讲解新课】提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆.例1 化简:(1);(2) .解:(略).注:可看作,把先写为;可看作,把先写为 .例2 化简: .分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得 .∴ .解:(略).例3 化简下列各式:(1)();(2)();(3)();(4)().解:(1)∵∴ .∴.(2)∵∴ ,即 .∴.(3)∵∴ ,即 .∴.(4)∵ ,∵ ,即 .∴ .注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.(二)随堂练习1.求值:(1);(2);(3)();(4);(5) .解:(1) .(2) .(3) .(4) .(5) .注:,学生易与相混淆.2.化简:(1);(2);(3);(4)();(5)().解:(1) .(2) .(3) .(4) .(5) .(三)总结、扩展对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断.(四)布置作业教材P213中1(2)、(3);2(1)、(2).(五)板书设计标题1.复习题 4.练习题2.公式3.例题二次根式篇7一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式?分析:,,,、、、四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此,与不是二次根式.例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0时,是二次根式.(3),且x≠0,∴x>0,当x>0时,是二次根式.(4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:(1);(2);(3);(4)分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是二次根式分析:(2)中,,是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义?五、作业教材p.172习题11.1;a组1;b组1.六、板书设计二次根式篇8一、教学目标1.掌握二次根式的混合运算.2.掌握混合运算的应用.3.通过二次根式的混合运算,培养学生的运算能力.4.通过混合运算知识拓展,培养学生的探索精神二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:二次根式的混合运算.2.教学难点:混合运算的应用.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【例题】例1 化简:(1);(2) .解:(1).(2).说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把先变为,这样则为1,继续运算可避免错误.例2 解下列方程(组):(1)(2)(3)解:(1).(2)①× ,得③②× ,得④③-④,得把代入①,得解得 .∴ 是原方程组的解.(3)由②,得③①× ,得④③-④,得把代入①,得.∴ 是原方程组的解.例3 已知,,求的值.解: ..,,∴ .例4 已知,,求的值.解:, ..(二)随堂练习1.教材中P206中8.2.解不等式: .解:∴ .3.已知,,求的值.解:3. ,或 ..∴.4.已知,,求:的值.解 4..5.已知,求的值.解 5. ..6.不求方根的值比较与的大小.解6.∵∴∴(三)总结、扩展根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.(四)布置作业教材中P207B组1、3和补充作业 .补充作业:1.已知,求的值.2.已知,,求的值.(五)板书设计标题1.例题…… 3.例题……2.练习题 4.练习题八、背景知识与课外阅读二次根式的混和运算方法和顺序1.方法(1)应用二次根式乘法、除法和加减法运算法则.(2)在实数范围内运算律仍适用.(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.2.顺序先乘方、后乘除,最后加减,有括号的先算括号内的数. 二次根式篇9教学建议知识结构.重难点分析本节的重点是的化简.本章自始至终围绕着与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.教法建议1.性质的引入方法很多,以下2种比较常用:(1)设计问题引导启发:由设计的问题1)、、各等于什么?2)、、各等于什么?启发、引导学生猜想出(2)从算术平方根的意义引入.2.性质的巩固有两个方面需要注意:(1)注意与性质进行对比,可出几道类型不同的题进行比较;(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.(第1课时)一、教学目标1.掌握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法二、对比、归纳、总结三、重点和难点1.重点:理解并掌握二次根式的性质2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学过程一、导入新课我们知道,式子()表示非负数的算术平方根.问:式子的意义是什么?被开方数中的表示的是什么数?。
初中数学知识点归纳二次根式
初中数学知识点归纳二次根式二次根式是初中数学中的一个重要知识点,它是一个数的平方根,或者可以表示成形如√a的形式,其中a是一个正整数。
在学习二次根式的过程中,我们需要掌握二次根式的化简、计算与运算等基本技巧。
下面我将详细介绍二次根式的相关知识点。
1.二次根式的定义与性质二次根式可以表示成√a的形式,其中a是一个正整数。
二次根式有以下基本性质:(1)√a=b,其中b是一个正数,那么a=b²;(2)√a=b,其中b是一个正数,那么b²=a,即b是a的一个正平方根;(3)0<√a<√b,其中a<b。
2.二次根式的化简化简二次根式是指将一个二次根式以最简形式表达出来。
(1)对于根号中的数,可以找出完全平方数因式,然后求出根号中被平方的数的平方根。
(2)对于根号外的系数,可以利用乘方运算法则进行整理。
3.二次根式的运算二次根式之间的运算包括加法、减法、乘法和除法。
(1)加减法:二次根式的加减法可以转化为同类项相加减的问题,将根号内的数进行化简和整理即可。
(2)乘法:乘法运算可以通过合并同类项、运用公式进行展开、化简来求解。
(3)除法:除法运算需要利用有理化技巧,将二次根式的被除数和除数分别乘以一个适当的有理化因子,使得分子没有根号。
4.二次根式的应用二次根式在初中数学中常常与勾股定理、平方差公式等知识点相结合,应用于解决各种几何问题。
(1)使用二次根式计算直角三角形的边长:根据勾股定理,可以利用二次根式计算直角三角形的边长。
(2)使用二次根式计算面积:利用二次根式可以计算各类面积,如矩形、正方形、圆等。
5.二次根式的估算在实际生活和解题过程中,我们常常需要对二次根式进行估算。
可以利用四舍五入和近似计算的方法对二次根式进行估算,得到一个较为接近的结果。
以上就是关于初中数学中二次根式的相关知识点的归纳。
通过学习和掌握这些知识,可以更好地理解和运用二次根式,提高数学解题的能力。
二次根式的公式全部
二次根式的公式全部二次根式这玩意儿,其实在数学的世界里就像是一个个调皮的小精灵,有时候让人欢喜,有时候让人愁。
咱先来说说二次根式的定义哈。
形如√a(a≥0)的式子就叫二次根式。
这里面可得注意了,a 必须大于等于 0,要不然这小精灵可就闹脾气啦。
接下来,咱们瞅瞅二次根式的基本性质。
首先是(√a)² = a(a≥0),这就好比给二次根式穿上了一件神奇的外衣,一变身就变成了原本的底数。
比如说,√5 的平方,那就是 5 嘛。
还有√a² = |a| ,这可得小心处理。
当a≥0 时,它就是 a;当 a<0 时,它就变成了 -a 。
就像有个小伙伴考试,成绩正数的时候开开心心,成绩负数的时候就垂头丧气。
再说说二次根式的乘法法则,√a × √b = √ab(a≥0,b≥0)。
这个就像搭积木,两个小积木(二次根式)拼在一起,就变成了一个大积木(新的二次根式)。
除法法则呢,是√a ÷ √b = √(a÷b)(a≥0,b>0)。
这就好比分糖果,要保证糖果数量够分,而且不能是负数。
咱来个实际例子感受感受。
比如说要计算√12 × √3 ,那就把 12 拆成 4×3,所以√12 就变成2√3 ,然后2√3 ×√3 = 2×3 = 6 。
是不是还挺简单的?还有个化简二次根式的重要技巧。
比如√20 ,可以把 20 拆成 4×5,那√20 就等于2√5 。
这就像是整理书包,把乱糟糟的东西分类整理好,书包就整齐啦。
二次根式的加减法也有讲究。
只有被开方数相同的二次根式才能合并。
比如说3√2 + 5√2 ,那就是8√2 。
我记得有一次给学生讲二次根式,有个小同学怎么都弄不明白为啥√4 等于 2 。
我就跟他说,你想想啊,什么数的平方是 4 呀?他眨眨眼睛,想了半天,终于恍然大悟。
那一刻,我心里那个乐呀,感觉自己就像个神奇的魔法师,把知识的魔法传递给了他。
初三数学二次根式 (4)
初三数学二次根式一、什么是二次根式二次根式,顾名思义,就是根号下面带有一次方程的式子,通常表示为√(a + √b) 或√(a - √b) 的形式。
其中,a 和 b 是实数,满足a ± √b ≥ 0。
a + √b 和 a - √b 都是二次根式。
二、二次根式的运算1. 加减运算二次根式的加减运算与一般的加减运算类似,只需要把根号内的数字分别相加或相减即可,其他部分保持不变。
例如:√(3 + √2) + √(4 - √3) = √3 + √4 + (√2 - √3) = √2 + 1√(5 + √2) - √(3 - √2) = √5 - √3 + (√2 - √2) = √5 - √32. 乘法运算二次根式的乘法运算可以通过展开,并进行相应的整理和合并得到结果。
例如:(√2 - √3) * (√2 + √3) = (√2)^2 - (√3)^2 = 2 - 3 = -1(√5 + √3) * (√5 - √3) = (√5)^2 - (√3)^2 = 5 - 3 = 23. 除法运算二次根式的除法运算可以通过有理化的方法进行。
例如:(√8 - √2) / (√2) = (√8 - √2) / (√2) * (√2) / (√2) = (√16 - √4) / 2 = (4 - 2) / 2 = 14. 平方运算二次根式的平方运算可以通过展开,然后合并同类项来简化。
例如:(√3 + √2)^2 = (√3)^2 + 2 * √3 * √2 + (√2)^2 = 3 + 2√6 + 2 = 5 + 2√6(√5 - √2)^2 = (√5)^2 - 2 * √5 * √2 + (√2)^2 = 5 - 2√10 + 2 = 7 - 2√10三、二次根式的化简二次根式的化简是指将二次根式写成更简单的形式,一般是将根号内有理化或合并同类项。
1. 根号内有理化将二次根式中根号内含有无理数的部分进行有理化,例如将√2 + √3 化为无理数的形式。
二次根式知识点
二次根式知识点一、二次根式的定义形如\(\sqrt{a}(a\geq0)\)的式子叫做二次根式。
其中,\(a\)叫做被开方数。
需要注意的是,二次根式有意义的条件是被开方数为非负数。
例如,\(\sqrt{5}\),\(\sqrt{16}\),\(\sqrt{x^2 +1}\)(其中\(x\)为任意实数)都是二次根式。
而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数,不符合定义。
二、二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a\geq0\)时,\(\sqrt{a^2} = a\);当\(a<0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{3^2} = 3\),\(\sqrt{(-5)^2} = 5\)。
2、\((\sqrt{a})^2 = a\)(\(a\geq0\))这一性质表明,先开方再平方,结果就是被开方数本身,但前提是被开方数必须是非负的。
比如,\((\sqrt{7})^2 = 7\)。
3、\(\sqrt{ab} =\sqrt{a} \cdot \sqrt{b}\)(\(a\geq0\),\(b\geq0\))这意味着,两个非负实数的积的算术平方根等于这两个数的算术平方根的积。
例如,\(\sqrt{12} =\sqrt{4 \times 3} =\sqrt{4} \times \sqrt{3} = 2\sqrt{3}\)4、\(\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}\)(\(a\geq0\),\(b>0\))这表示,非负实数的商的算术平方根等于被除数和除数的算术平方根的商。
比如,\(\sqrt{\frac{8}{2}}=\frac{\sqrt{8}}{\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{2}}= 2\)三、二次根式的化简1、把被开方数分解质因数,将能开得尽方的因数移到根号外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习内容与过程知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】1、下列各式中,一定是二次根式的是( )A 、aB 、10-C 、1a +D 、21a +2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是 .[来源:学*科*网Z*X*X*K] 举一反三:1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠4 2、如果代数式m nm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=举一反三:1、若11x x ---2()x y =+,则x -y 的值为( )A .-1B .1C .2D .32、当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。
已知a 是5整数部分,b 是 5的小数部分,求12a b ++的值。
举一反三:1、若3的整数部分是a ,小数部分是b ,则=-b a 3 。
2、若17的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a aa 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数.(3)a 2和()a 2的运算结果都是非负的.【典型例题】【例4】若()22340a b c -+-+-=,则=+-c b a . 举一反三:1、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1D .– 1 2、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______. 3、若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。
(公式)0()(2≥=a a a 的运用)【例5】 化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4(公式⎩⎨⎧<-≥==)0a (a )0a (a a a 2的应用) 【例6】已知2x <,则化简244x x -+的结果是A 、2x -B 、2x +C 、2x --D 、2x -举一反三:1、已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a2、若a -3<0,则化简a a a -++-4962的结果是( )(A) -1 (B) 1 (C) 2a -7 (D) 7-2a3、当a <l 且a ≠0时,化简a a a a -+-2212= .4、已知0a <,化简求值:22114()4()a a a a -+-+- 【例7】如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a 举一反三:实数a 在数轴上的位置如图所示:化简:21(2)______a a -+-=.【例8】化简21816x x x ---+的结果是2x -5,则x 的取值范围是( )(A )x 为任意实数 (B )1≤x ≤4 (C ) x ≥1 (D )x ≤1举一反三:若代数式22(2)(4)a a -+-的值是常数2,则a 的取值范围是( )A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =【例9】如果11a 2a a 2=+-+,那么a 的取值范围是( )A. a=0B. a=1C. a=0或a=1D. a ≤11- 01 2 a ob a举一反三: 若03)3(2=-+-x x ,则x 的取值范围是( )(A )3>x (B )3<x (C )3≥x (D )3≤x【例10】化简二次根式22aa a +-的结果是 (A )2--a (B)2---a (C)2-a (D)2--a知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式; 分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
【典型例题】【例11】在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)解题思路:掌握最简二次根式的条件。
举一反三:1、)b a (17,54,b 40,212,30,a 45222+中的最简二次根式是 。
2、下列根式不是最简二次根式的是( )A.21a +B.21x +C.24b D.0.1y 5、把下列各式化为最简二次根式: (1)12 (2)b a 245 (3)x y x 2【例12】下列根式中能与3是合并的是( )A.8B. 27C.25D. 21 举一反三:1、如果最简二次根式83-a 与a 217-能够合并为一个二次根式, 则a=__________.知识点四:二次根式计算——分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a ⋅=来确定,如:a a 与,a b a b ++与,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a b +与a b -,a b a b +-与,a x b y a x b y +-与分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
【典型例题】【例13】 把下列各式分母有理化(1)148 (2)4337- 【例14】把下列各式分母有理化2a b - 【例15】把下列各式分母有理化: 5353+- 小结:一般常见的互为有理化因式有如下几类:①与; ②与; ③与; ④与.知识点五:二次根式计算——二次根式的乘除【知识要点】1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
ab =a 〃b (a ≥0,b ≥0)2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
a 〃b =ab .(a ≥0,b ≥0)3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根a b =a b(a ≥0,b>0) 4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
a b=a b (a ≥0,b>0) 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.【典型例题】【例16】能使等式22x x x x =--成立的的x 的取值范围是( ) A 、2x > B 、0x ≥ C 、02x ≤≤ D 、无解知识点六:二次根式计算——二次根式的加减【知识要点】需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.【典型例题】【例17】 (1)224344x y x y x y x y --+--+ (2)a b a b a b a b--+-+ 知识点七:二次根式计算——二次根式的混合计算与求值【知识要点】1、确定运算顺序;2、灵活运用运算定律;3、正确使用乘法公式;4、大多数分母有理化要及时;5、在有些简便运算中也许可以约分,不要盲目有理化;【典型习题】【例18】 1.已知:,求的值.。