数字图像处理复习资料

合集下载

复习资料 数字图像处理

复习资料 数字图像处理

一、名词解释1.数字图像数字图像是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。

2.图像锐化图像锐化(image sharpening)就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。

3.中值滤波值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

4.数据压缩数据压缩是指在不丢失有用信息的前提下,缩减数据量以减少存储空间,提高其传输、存储和处理效率,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间的一种技术方法。

数据压缩包括有损压缩和无损压缩。

5.图像图像是客观对象的一种相似性的、生动性的描述或写真,是人类社会活动中最常用的信息载体。

或者说图像是客观对象的一种表示,它包含了被描述对象的有关信息。

它是人们最主要的信息源图像根据图像记录方式的不同可分为两大类:模拟图像和数字图像6.无损压缩所谓无损压缩格式,是利用数据的统计冗余进行压缩,可完全恢复原始数据而不引起任何失真灰度直方图灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率。

如果将图像总像素亮度(灰度级别)看成是一个随机变量,则其分布情况就反映了图像的统计特性,这可用probability density function (PDF)来刻画和描述,表现为灰度直方图。

7.无失真编码无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。

8.像素的邻域9.采样采样(sampling)其他名称:取样,指把时间域或空间域的连续量转化成离散量的过程10.像素的邻域11.细化细化是提取线宽为一个像元大小的中心线的操作12.直方图均衡化它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像原取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。

(完整word版)数字图像处理期末复习资料

(完整word版)数字图像处理期末复习资料

1图像的特点:1)直观形象2)易懂3)信息量大2 图像的分类:1)按灰度分类:二值图像,多灰度图像2)按色彩分类:单色图像,动态图像3)按运动分类:静态图像,动态图像4)按时空分布分类:二维图像,三维图像3 数字图像处理的主要内容:1)图像获取2)图像变换3)图像增强4)图像复原5)图像编码6)图像分析7)图像识别8)图像理解4数字图像处理方法:1)空域法2)变换域法5什么是数字图像的采样和量化?采样:将模拟图像在空间上连续的点按照一定的规则变换成离散点的操作。

量化:由于采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理,所以要对采样后的图像进行量化,即将连续的像素灰度值转换成离散的整数值的过程。

6图像像素间的邻接、连接和连通的区别?邻接:两个像素是否邻接就看它是否接触,一个像素和在它邻域中的像素是邻接的。

邻接仅仅考虑了像素间的空间关系。

连接:对两个像素,要确定它们是否连接,要考虑两点:①空间上要邻接;②灰度值要满足某个特点的相似准则第二章1 试述图像采集系统的结构及其各部分的功能?2 连续图像随机过程可以用哪些数字特征来描述?概率密度,一阶矩或平均值,二阶矩或自相关函数,自协方差,方差3 为什么说只要满足采样定理,就可以有离散图像无失真的重建元连续图像?这是由图像的连续性决定的,由图像上某一点的值可以还原出该点的一个小邻域里的值,这个图像连续性越好,这个邻域就可以越大,抽样次数可以很少就可以无失真还原。

而抽样定理对应这个邻域最小的情况即抽样次数最多的情况,大概是每周期两个样本4与标量量化相比,向量量化有哪些优势?合理地利用样本间的相关性,减少量化误差提高压缩率,5 Matlab图像处理工具箱提供了哪几类类型的数字图像?它们之间能否转换?如果可以如何转换?二进制图像,索引图像,灰度图像,多帧图像,RGB图像,它们之间可以相互转换,转换函数(23页6 数字图像的空间分辨率和采样间隔有什么联系?采样间隔是决定图像分辨率的主要参数1 FFT的基本思想是什么??利用DFT系数的特性,合并DFT运算中的某些项,把长序列DFT变成短序列DFT,从而减少其运算量。

吉首大学【数字图像处理】期末复习资料】

吉首大学【数字图像处理】期末复习资料】

第一章数字图像处理概论*图像是对客观存在对象的一种相似性的、生动性的描述或写真。

*数字图像空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。

是图像的数字表示,像素是其最小的单位。

*数字图像处理(Digital Image Processing)利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。

(计算机图像处理)图像处理:【图像输入——(图像处理<增强、复原、编码、压缩等>)——图像输出)图像识别:【图像输入——(图像预处理<增强、复原>)——(图像分割)——(特征提取)——(图像分类)——类别、识别结果】图像理解:【图像输入——(图像预处理)——(图像描述)——(图像分析和理解)——图像解释】第二章数字图像处理基础取样:图像空间坐标的数字化量化值太小出现伪轮廓!取样值太小出现棋盘格!量化:图像函数值(灰度值)的数字化存储一幅M×N的数字图像,需要的存储位数为:b = M × N × k 字节数为:B=b/8优先采用4邻接空间操作:单像素操作,领域操作!第三章图像变换领域与预定义的操作一起称为空间滤波器**直方图均衡化是将原图象的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图象。

*图象均衡化处理后,图象的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图象看起来就更清晰了。

*直方图均衡化实质上是减少图象的灰度级以换取对比度的加大。

*在均衡过程中,原来的直方图上频数较小的灰度级被归入很少几个或一个灰度级内,故得不到增强。

*若这些灰度级所构成的图象细节比较重要,则需采用局部区域直方图均衡。

均值:平均值灰度方差:对比度第四章**同态滤波(1)灰度级动态范围很大,即黑的部分很黑,白的部分很白,而我们感兴趣的图中的某一部分灰度级范围又很小,分不清物体的灰度层次和细节。

数字图像处理复习资料

数字图像处理复习资料

图像是对客观对象的一种相似性的、生动性的描述或写真。

数字图像是一种空间坐标和灰度均不连续的、用离散数字表示的图像。

数字图像处理就是利用计算机对数字图像进行系列操作,从而达到某种预期目的的技术。

数字图像处理可分为狭义图像处理、图像分析、图像理解。

图像内容随时间变化的系列图像称为运动图像,反之为静止图像。

将空间上连续的图像变换成离散点的操作称为采样。

将像素灰度转换成离散的整数值的过程叫量化。

采样、量化、数字图像化间的关系:采样间隔越大,所得图像像素数越少,空间分辨率越低,质量差,严重是出现像素呈块状的国际棋盘效应,反之相反但数据量大;量化等级越多,所得图像层次越丰富,灰度分辨率越高,质量越好,但数据量大,反之相反;极少情况下当图像大小固定时,减少灰度级能改善质量,产生这种情况最可能的原因是减少灰度级一般会增加图像的对比度。

灰度直方图以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图。

直方图的性质:只能反映图像的灰度分布情况,而不能反映图像像素的位置,丢失了像素的位置信息;一幅图像对应唯一的灰度直方图,反之不成立;一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。

熵,熵反映了图像信息丰富程度,在图像编码和图像质量评价中有重要意义。

在对输入图像进行处理时,计算某一输出图像值由输入图像像素的小邻域中的像素值确定,这种处理称为局部处理,包括图像的移动平均平滑法和空间域锐化。

图像对比度增强、图像二值化属于点处理。

傅里叶变换属于全局处理。

细化处理属于迭代处理。

图像特征包括自然特征和人工特征。

自然特征包括光谱特征、几何特征、时相特征。

人工特征包括直方图特征、灰度边缘特征等。

噪声就是妨碍人的视觉器官或系统传感器对所接收图像信息进行理解或分析的各种因素。

可分为内部噪声和外部噪声。

图像变换的目的:使图像处理问题简化;有利于图像特征提取;有助于从概念上增强对图像信息的理解。

正交变换的特点是在变换域中图像能量集中分布在低频率上,边缘、线信息反映在高频率成分上。

数字图像处理复习材料

数字图像处理复习材料

图像处理复习材料一、选择填空题1、采样是指将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

2、量化是将各个像素所含的明暗信息离散化后,用数字来表示。

一般的量化值为整数。

3、采样间隔越大,图像质量越差,图像所占空间越小。

4、数字图像处理是指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术.5、数字图像的描述(三种图像的颜色数目的比较)二值图像:指图像的每个像素只能是黑或白,没有中间过渡,故称为2值图像,2值图像的像素值为0、1。

灰度图像:是指每个像素的信息由一个量化的灰度级来描述的图像,没有彩色信息。

彩色图像:指每个像素的信息由RGB 三原色构成的图像,其中RGB 由不同的灰度级来描述。

彩色图像不能用一个矩阵来描述,一般是用三个矩阵同时描述。

6、图像输出设备:显示器、打印机、投影仪等7、一幅图像对应唯一的灰度直方图,但是多幅图像可以对应同一个直方图。

(直方图与图像之间的关系) 8、直方图均衡化后,图像亮度、对比度发生变化,颜色数目不变。

9、图像平滑使用的是低通滤波器;图像锐化使用的是高通滤波器。

10、图像平滑使用的算子(或模板):均值滤波器模板、中值滤波器模板。

图像锐化使用的算子(或模板):Laplacian 算子、Sobel 算子。

11、梯度算子是一阶微分方程,其他(Laplac ian 、Sobel 等)是二阶微分方程。

12、图像压缩算法的好坏的评价(几个等级对应的图像质量) 等级0→差;等级5→好二、填空题:1、假设图像的灰度级概率密度如图所示。

其中p 1 (z )对应于目标, p 2 (z )对应于背景。

如果P 1 = P 2 ,试求分割目标与背景的最佳门限。

解:由图可以看出p 1 (z ) = (z −1)/2,p 2 (z )=1−z /2 将其代入式P 1 = P 2, 有p 1 (z ) = p 2 (z ) ∴2121z z -=-⇒ 23=z解得最优阈值为T = 3/ 2 。

数字图像处理复习资料

数字图像处理复习资料

一、填空题(每空1分,共10分)填空题主要是一些常见知识。

三、论述题(每小题8分,共40分)下面的内容包括简答和论述题的部分1.简述线性位移不变系统逆滤波恢复图像原理。

答:设退化图象为g(x,y),其傅立叶变换为G(u,v),若已知逆滤波器为1/H(u,v)则对G(u,v)作逆滤波得F(u,v)=G(u,v)/H(u,v) (2分)对上式作逆傅立叶变换得逆滤波恢复图象f(x,y)f(x,y)=IDFT[F(u,v)]以上就是逆滤波恢复图象的原理。

(2分)若存在噪声,为避免H(u,v)=0,可采用两种方法处理。

(0.5分)①在H(u,v)=0时,人为设置1/H(u,v)的值;②使1/H(u,v)具有低同性质。

即H-1(u,v)=1/H(u,v) 当D≤DH-1(u,v)=0 当D>D(0.5分)2.直方图均衡化。

如果对一幅图像已经用直方图均衡化方法进行了处理,那么对处理后的图像再次应用直方图均衡化,处理结果会不会更好?答:1. 直方图均衡化的基本思想是对原始图像中的像素灰度图做某种映射变换,使变换后图像灰度的概率密度是均匀分布的,即变换后图像是一幅灰度级均匀分布的图像,这意味着图像灰度的动态范围得到了增加,从而可提高图像的对比度。

2.处理结果与处理前结果大致相同,没有太大的变化,只是平均值稍有所变。

3. 图像锐化与图像平滑有何区别与联系?答:区别:图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;(2分)图象平滑用于去噪,对图象高频分量即图象边缘会有影响。

(2分)联系:都属于图象增强,改善图象效果。

(1分)4.什么是中值滤波,有何特点?答:中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波是非线性的处理方法,在去噪的同时可以兼顾到边界信息的保留。

中值滤波首先选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把该窗口中所含的像素点按灰度级的升(或降)序排列,取位于中间的灰度值,来代替该点的灰度值。

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理《数字图像处理》复习第⼀章绪论数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表⽰与描述)、彩⾊图像处理和多光谱及⾼光谱图像处理、形态学图像处理第⼆章数字图像处理基础2-1 电磁波谱与可见光1.电磁波射波的成像⽅法及其应⽤领域:⽆线电波(1m-10km)可以产⽣磁共振成像,在医学诊断中可以产⽣病⼈⾝体的横截⾯图像☆微波(1mm-1m)⽤于雷达成像,在军事和电⼦侦察领域⼗分重要红外线(700nm-1mm)具有全天候的特点,不受天⽓和⽩天晚上的影响,在遥感、军事情报侦察和精确制导中⼴泛应⽤可见光(400nm-700nm)最便于⼈理解和应⽤最⼴泛的成像⽅式,卫星遥感、航空摄影、天⽓观测和预报等国民经济领域☆紫外线(10nm-400nm)具有显微镜⽅法成像等多种成像⽅式,在印刷技术、⼯业检测、激光、⽣物学图像及天⽂观测X射线(1nm-10nm)应⽤于获取病⼈胸部图像和⾎管造影照⽚等医学诊断、电路板缺陷检测等⼯业应⽤和天⽂学星系成像等伽马射线(0.001nm-1nm)主要应⽤于天⽂观测2-2 ⼈眼的亮度视觉特征2.亮度分辨⼒——韦伯⽐△I/I(I—光强△I—光照增量),韦伯⽐⼩意味着亮度值发⽣较⼩变化就能被⼈眼分辨出来,也就是说较⼩的韦伯⽐代表了较好的亮度分辨⼒2-3 图像的表⽰3.⿊⽩图像:是指图像的每个像素只能是⿊或⽩,没有中间的过渡,⼀般⼜称为⼆值图像(⿊⽩图像⼀定是⼆值图像,⼆值图像不⼀定是⿊⽩图像)灰度图像:是指图像中每个像素的信息是⼀个量化了的灰度级的值,没有彩⾊信息。

彩⾊图像:彩⾊图像⼀般是指每个像素的信息由R、G、B三原⾊构成的图像,其中的R、B、G是由不同的灰度级来描述的。

4.灰度级L、位深度k L=2^k5.储存⼀幅M×N的数字图像所需的⽐特 b=M×N×k例如,对于⼀幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit)2-4 空间分辨率和灰度级分辨率6.空间分辨率是图像中可分辨的最⼩细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。

数字图像处理复习

数字图像处理复习

数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。

图-是物体透射或反射光的分布,是客观存在的。

像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。

数字图像是物体的一个数字表示,是以数字格式存放的图像。

2. 数字图像处理的概念。

数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。

3. 数字图像处理的优点。

精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。

3.光强度与主观亮度曲线。

P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。

(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。

采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。

采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。

设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。

(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。

8. 领域空间内像素距离的计算。

(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在程控交换机工程设计中BHCA值的计算方法赵睿*在程控交换机工程设计中,呼叫处理能力的确定是很重要的,而呼叫处理能力是以忙时最大试呼次数值(BHCA)来表征的。

因此可用下列换算公
6)图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

4.按照量化级的划分方式分,数字图像的量化有均匀量化和非均匀量化。

均匀量化:ADC输入动态范围被均匀地划分为2^n份。

非均匀量化:ADC输入动态范围的划分不均匀,一般用类似指数的曲线进行量化。

非均匀量化是针对均匀量化提出的,因为一般的语音信号中,绝大部分是小幅度的信号,且人耳听觉遵循指数规律。

为了保证关心的信号能够被更精确的还原,我们应该将更多的bit用于表示小信号。

常见的非均匀量化有A律和μ率等,它们的区别在于量化曲线不同。

4.
如何用MATLAB让图像进行对数变换。

要源代码,比如图像名字为ST.JPG
>>x=imread('sar.bmp');
>>x1=double(x)+1;
>>x2=log(x1);
>>y=uint8(x2)-1;
>>t=im2uint8(mat2gray(y));
>>imshow(t);
灰度直方图(histogram)是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。

它是多种空间域处理技术的基础。

直方图操作能够有效用于图像增强;提供有用的图像统计资料,其在软件中易于计算,适用于商用硬件设备。

灰度直方图性质:1)表征了图像的一维信息。

只反映图像中像素不同灰度值出现的次数(或频数)而未反映像素所在位置。

2)与图像之间的关系是多对一的映射关系。

一幅图像唯一确定出与之对应的直方图,但不同图像可能有相同的直方图。

3)子图直方图之和为整图的直方图
椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。

椒盐噪声往往由图像切割引起的,去除脉冲干扰及椒盐噪声最常用的算法是中值滤波。

椒盐噪声是指两种噪声,一种是盐噪声(salt noise),另一种是胡椒噪声(pepper noise)。

盐=白色,椒=黑色。

前者是高灰度噪声,后者属于低灰度噪声。

一般两种噪声同时出现,呈现在图像上就是黑白杂点路面图像属于结构光图像,使用区域分割技术中的阈值分割法消除白噪声及部分椒盐噪声,而不能使用中值滤波对白噪声及椒盐噪声进行滤波,因为滤波模板在图像中漫游时会改变光条中像素的真实灰度分布,给随后的重心法细化过程带来负面影响。

大量的实验研究发现,由摄像机拍摄得到的图像受离散的脉冲、椒盐噪声和零均值的高斯噪声的影响较严重。

噪声给图像处理带来很多困难,对图像分割、特征提取、图像识别等具有直接影响。

因此,实时采集的图像需进行滤波处理。

消除图像中的噪声成份叫做图像的平滑化或滤波操作。

滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;二是为适应计算机处理的要求,消除图像数字化时所混入的噪声。

对滤波处理的要求有两条:一是不能损坏图像轮廓及边缘等重要信息;二是使图像清晰,视觉效果好。

均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。

再用模板中的全体像素的平均值来代替原来像素值。

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。

线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的
若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m∑f(x,y)m为该模板中包含当前像素在内的像素总个数。

高斯噪声是图像的每一点都有噪声,噪声的幅度成正态分布,幅度是随机的;
椒盐噪声是噪声的幅度大小固定,但是位置不固定,位置是随机的。

对于椒盐噪声,均值滤波不能很好的去除,因为算子区域内的均值不为0,而中值滤波可以很好的去除,因为噪声点可能被其他点代替了。

对于高斯噪声,中值滤波不能很好的去除,因为算子区域中都是噪声点,但是均值滤波可以很好的去除,因为正态分布的均值为0。

高斯低通滤波器gauss low frequency filter
亦称高斯滤波快速频移键控,基带数字信号经高斯低通滤波器处理的最小频移键控(MSK)调制。

...GMSK产生一个几乎恒定的包络,具有比较集中的功率频谱,比MSK的带外辐射及占用带宽均大为减小。

它适用于陆地移动通信。

相关文档
最新文档