上海市徐汇区2015年中考二模数学试题(扫描版,含答案)
2015年上海市徐汇区中考数学二模试卷及答案解析(pdf版)
•(x2+
),其中 x=
.
20.(10 分)(2015•徐汇区二模)解方程组:
.
21.(10 分)(2015•徐汇区二模)某公司市场营销部的某营销员的个人月收入与该营销员每 月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题: (1)求营销员的个人月收入 y 元与该营销员每月的销售量 x 万件(x≥0)之间的函数关系式; (2)若两个月内该营销员的销售量从 2 万件猛增到 5 万件,月收入两个月大幅度增长,且 连续两个月的月收入的增长率是相同的,试求这个增长率(保留到百分位).
.
11.(4 分)(2015•徐汇区二模)不等式组
的解是
.
12.(4 分)(2015•徐汇区二模)方程
的解是
.
13.(4 分)(2015•徐汇区二模)某商店运进 120 台空调准备销售,由于开展了促销活动,
每天比原计划多售出 4 台,结果提前 5 天完成销售任务,则原计划每天销售多少台?
若原计划每天销售 x 台,则可得方程
B、相交两圆的交点关于这两个圆的连心线所在直线对称,正确,故本选项错误; C、联结相切两圆圆心的直线必经过切点,正确,故本选项错误; D、内含的两个圆的圆心距大于零,错误,同心圆的圆心距等于 0,故本选项正确. 故选 D. 点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断 命题的真假关键是要熟悉课本中的性质定理.
A. 180,160
B. 160,180
C. 160,160
D.180,180
6.(4 分)(2015•徐汇区二模)下列命题中,假命题是( ) A. 没有公共点的两圆叫两圆相离 B. 相交两圆的交点关于这两个圆的连心线所在直线对称 C. 联结相切两圆圆心的直线必经过切点 D.内含的两个圆的圆心距大于零
2015徐汇区初三数学二模卷(含答案)
徐汇区2015年初中毕业统一学业模拟考试数学试卷(时间100分钟,满分150分) 2015.4.考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.计算()23-的结果是( ▲ )A .6;B .6-;C .9;D .9-.2 ▲ )A ;B ;CD 3.下列函数中,y 随x 的增大而减小的是( ▲ )A .13y x =;B .13y x =-; C .3y x =; D .3y x =-.4.从1,2,3,4,5,6中任意取一个数,取到的数是6的因数的概率是( ▲ ) A .12; B .13; C .23; D .16. 5.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )A .等边三角形;B .等腰梯形;C .平行四边形;D .正十边形. 6.下列命题中,假命题是( ▲ )A .一组邻边相等的平行四边形是菱形;B .一组邻边相等的矩形是正方形;C .一组对边相等且有一个角是直角的四边形是矩形;D .一组对边平行且另一组对边不平行的四边形是梯形. 二、填空题(本大题共12题,每题4分,满分48分)7.计算:()2a a b += ▲ . 8= ▲ .9.上海原世博园区最大单体建筑“世博轴”,原不等式组的解集将被改造成为一个综合性的商业中心,该项目营业面积将达130000平方米,这个面积用科学记数法表示为 ▲ 平方米.10.如果()kf x x=,()23f =-,那么k = ▲ . 11.若将直线21y x =-向上平移3个单位,则所得直线的表达式为 ▲ .12.在方程2234404x x x x+-+=-中,如果设24y x x =-,那么原方程可化为关于y 的整式方程是 ▲ .13x =的解是x = ▲ .14.用a 辆车运一批橘子,平均每辆车装b 千克橘子,原不等式组的解集若把这批橘子平均分送到c 个超市,则每个超市分到橘子 ▲ 千克.15.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是 ▲ cm . 16.如图1,AF 是BAC ∠的角平分线,EF ∥AC ,如果125∠=︒,那么BAC ∠= ▲ °.17.如图2,在ABC ∆中,点G 是重心, 设向量AB a =,GD b =,原不等式组的解集那么向量BC = ▲ (结果用a 、b 表示).18.如图3,在Rt ACB ∆中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将ACB ∆绕点A 顺时针旋转得到Rt ''AC B ∆,且'C 落在CO 的延长线上,联结'BB 交CO 的延长线于点F ,则BF = ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:111111a a a a ⎛⎫+÷+ ⎪+-+⎝⎭. 20. (本题满分10分)解不等式组:()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩并把解集在数轴上表示出来.图3 C AB O F 'C 'B 图1 A BC E F 1图221.(本题满分10分)如图4,AB 是圆O 的直径,作半径OA 的垂直平分线,交圆O 于C 、D 两点,垂足为H ,联结BC 、BD .(1)求证:BC =BD ;(2)已知CD =6,求圆O 的半径长.22.(本题满分10分)某公司组织员工100人外出旅游.公司制定了三种旅游方案供员工选择: 方案一:到A 地两日游,每人所需旅游费用1500元; 方案二:到B 地两日游,每人所需旅游费用1200元; 方案三:到C 地两日游,每人所需旅游费用1000元;每个员工都选择了其中的一个方案,现将公司员工选择旅游方案人数的有关数据整理后绘制成尚未完成的统计图,根据图5与图6提供的信息解答下列问题:(1)选择旅游方案三的员工有 ▲ 人,将图5补画完整;(2)选择旅游方案三的女员工占女员工总数的 ▲ (填“几分之几”); (3)该公司平均每个员工所需旅游费 ▲ 元;(4)报名参加旅游的女员工所需旅游费为57200元,参加旅游的女员工有 ▲ 人. 23.(本题满分12分)如图7,在正方形ABCD 中,E 为对角线AC 上一点,联结EB 、ED ,延长BE 交AD 于点F . (1)求证:∠BEC =∠DEC ;(2)当CE =CD 时,求证:2DF EF BF =.120︒方案一 方案二 方案三 公司女员工选择旅游 方案人数统计图 图6 公司员工选择旅游方案人数统计图方案 图5 A BCD E F 图7图424.(本题满分12分)已知一次函数1y x =+的图像和二次函数2y x bx c =++的图像都经过A 、B 两点,且点A 在y 轴上,B 点的纵坐标为5. (1)求这个二次函数的解析式;(2)将此二次函数图像的顶点记作点P ,求△ABP 的面积; (3)已知点C 、D 在射线AB 上,且D 点的横坐标比C 点的横坐标大2,点E 、F 在这个二次函数图像上,且CE 、DF 与y 轴平行,当CF ∥ED 时,求C 点坐标.25.(本题满分14分)如图9,已知ABC ∆中,90C ∠=︒,AC BC =,6AB =,O 是BC 边上的中点,N 是AB 边上的点(不与端点重合),M 是OB 边上的点,且MN ∥AO ,延长CA 与直线MN 相交于点D ,G 点是AB 延长线上的点,且BG AN =,联结MG ,设AN x =,BM y =.(1)求y 关于x 的函数关系式及其定义域; (2)联结CN ,当以DN 为半径的D 和以MG 为半径的M 外切时,求ACN ∠的正切值; (3)当ADN ∆与MBG ∆相似时,求AN 的长.ABCONM D G图9图8备用图aABCO备用图bABCO数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C ; 2. A ; 3.B ; 4.C ; 5. D ; 6.C . 二、填空题(本大题共12题,每题4分,满分48分)7.22a ab +; 81; 9.51.310⨯; 10.6-; 11.22y x =+; 12.2430y y ++=; 13.2; 14.abc; 15.9; 16.50; 17.26a b -+ ; 18.14. 三、解答题:(本大题共7题,满分78分) 19.解:原式()()111111a a a a a a-+++=⨯+-+……………………………………………(4分)2111a a a -=+-- ……………………………………………………(4分) 11a a +=-. …………………………………………………………(2分) 20. 解不等式组:()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩①②,由①得45x x +>-,1x >-,……………………………………………………(3分)由②得335x x -≤+,4x ≤,……………………………………………………(3分) 所以,原不等式组的解集为14x -<≤,…………………………………………(2分) 不等式组的解集原不等式组的解集在数轴上表示正确. ……………………………………………(2分)21.(1)∵AB 是圆O 的直径,且AB ⊥CD ,∴CH DH =,………………… (2分)∴BC =BD . …………………………………………………………………(2分)(2)联结OC . ………………………………………………………………………(1分)∵CD 平分OA ,设圆O 的半径为r ,则OH =12r ,∵6CD =,∴132CH CD ==,………………………………………………(1分)∵∠CHO 90=°,∴222OH CH CO +=,……………………………………(2分)∴222132r r ⎛⎫+= ⎪⎝⎭,∴r =……………………………………………… (2分)22.(1)35;(2)512;(3)1205;(4)48. ……………(2分,2分,3分,3分) 23. (1)∵四边形ABCD 是正方形,∴BC =CD ,且∠BCE =∠DCE . …………(2分)又∵CE 是公共边,∴△BEC ≌△DEC ,………………………………………… (2分) ∴∠BEC =∠DEC .………………………………………………………………… (1分) (2)联结BD .………………………………………………………………………(1分) ∵CE =CD ,∴∠DEC =∠EDC .…………………………………………………… (1分) ∵∠BEC =∠DEC ,∠BEC =∠AEF ,∴∠EDC =∠AEF . ∵∠AEF +∠FED =∠EDC +∠ECD ,∴∠FED =∠ECD .………………………………………………………………… (1分) ∵四边形ABCD 是正方形,∴∠ECD =12∠BCD =45°, ∠ADB =12∠ADC = 45°,∴∠ECD =∠ADB .… (1分)∴∠FED =∠ADB . ……………………………………………………………… (1分) 又∵∠BFD 是公共角,∴△FDE ∽△FBD ,…………………………………… (1分) ∴EF DF DF BF=,即2DF EF BF =. ………………………………………………(1分) 24.(1)A 点坐标为(0,1)…………………………………………………………(1分) 将=5y 代入1y x =+,得=4x∴B 点坐标为(4,5)…………………………………………………………………(1分) 将A 、B 两点坐标代入2y x bx c =++原不等式组的解集解得=-3=1b c ⎧⎨⎩ ∴二次函数解析式为231y x x =-+……………………………………………(2分)(2)P 点坐标为(32,54-)…………………………………………………(1分) 抛物线对称轴与直线AB 的交点记作点G ,则点G (32,52)∴PG =5515()244--=,原不等式组的解集 ∴152ABPAPG BPGSSS=+=.…………………………………………………(2分) (3)设C 点横坐标为a则C 点坐标为(,1)a a +,D 点坐标为(2,3)a a ++,…………………………(1分) E 点坐标为2(,31)a a a -+,F 点坐标为2(2,1)a a a ++-,…………………(1分)由题意,得 CE =24a a -+,DF =24a -,∵且CE 、DF 与y 轴平行,∴CE ∥DF ,又∵CF ∥ED ,∴四边形CEDF 是平行四边形,∴CE DF =,…………………………………(1分) ∴2244a a a -+=-,解得11a =21a =,…………………(1分) ∴C点坐标为(1+2+).………………………………………………(1分) 25. 解:(1)∵MN ∥AO ,∴MB BNBO AB=,……………………………………(2分) ∵90C ∠=︒,AC BC =,6AB =,∴BC =,原不等式组的解集 ∵O 是BC边上的中点,∴2BO =,………………………………………(1分) ∵AN x =,BM y =66x-=,∴)()6064x y x -=<<.………(2分)(2)∵以DN 为半径的D 和以MG 为半径的M 外切,原不等式组的解集∴DN MG DM +=,又DN MN DM +=,∴MG MN =,…………………(1分) ∴MNG G ∠=∠, 又MNG AND ∠=∠,∴AND G ∠=∠, ∵AC BC =,∴CAB CBA ∠=∠,∴DAN MBG ∠=∠,又AN BG =,∴AND ∆≌BGM ∆, ∴DN MG MN ==,…………………(1分) ∵90ACB ∠=︒,∴CN DN =,∴ACN D ∠=∠, …………………………(1分)∵90ACB ∠=︒,AC BC =,O 是BC 边上的中点,∴1tan 2CO CAO AC ∠==,(1分) ∵MN ∥AO ,∴CAO D ∠=∠,∴CAO ACN ∠=∠,∴1tan 2ACN ∠=,…(1分)(3)∵DAN MBG ∠=∠,当ADN ∆与MBG ∆相似时,原不等式组的解集 ①若D BMG ∠=∠时,过点G 作GE CB ⊥,垂足为点E . ∴1tan 2GE BMG ME ∠==,∴BM BE =,∴2y x =,………………………(1分)又)64x y -=,∴2x =.………………………………………………………(1分)②若D G ∠=∠时,过点M 作MF AB ⊥,垂足为点F .∴1tan 2G ∠=,∴BF BG =,∴2x =,……………………………………(1分)又)64x y -=,∴65x =.………………………………………………………(1分) 综上所述,当ADN ∆与MBG ∆相似时,AN 的长为2或65. (以上各题,若有其他解法,请参照评分标准酌情给分)。
2015年上海中考各区二模数学试题及答案汇总
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)
2015年上海市徐汇区中考数学二模试卷
2015年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)(2015•徐汇区二模)下列各数中,无理数是()A.B.C.πD.【考点】:无理数M129【难易度】:容易题【分析】:由无理数就是无限不循环小数,则:A、是分数,是有理数,选项错误;B、=3,是整数,是有理数,选项错误;C、是无理数,选项正确;D、=2,是整数,是有理数,选项错误.【解答】:答案C.【点评】:此题考查了无理数的定义,属于基础题,难度不大,在初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.只要熟记一些经常用到无理数,解题时可直接得出答案2.(4分)(2015•徐汇区二模)下列运算中,正确的是()A.2x﹣x=1B.x+x=2x C.(x3)3=x6D.x8÷x2=x4【考点】:整式的运算(加、减、乘、除、乘方)M212【难易度】:容易题【分析】:根据整式的运算有:A、2x﹣x=x,故此选项错误;B、x+x=2x,故此选项正确;C、(x3)3=x9,故此选项错误;D、x8÷x2=x6,故此选项错误;【解答】:答案B.【点评】:本题考查了整式的运算,是初中阶段的一个重要知识点,难度不大,熟练掌握运算法则,理清指数的变化是解题的关键.3.(4分)(2015•徐汇区二模)某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【考点】:求反比例函数的关系式M433不同位置的点的坐标的特征M417【难易度】:容易题【分析】:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.【解答】:答案A.【点评】:本题考查了反比例函数图象上点的坐标特征,属于基础题,难度不大,注意:只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式的点就一定在函数的图象上.4.(4分)(2015•徐汇区二模)如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论不正确的是()A.AB2=AC2+BC2B.CD2=AH•HB C.CH2==AH•HB D.CB=AB【考点】:相似三角形性质、判定M33M直角三角形的性质和判定M33D勾股定理M33E【难易度】:容易题【分析】:由题意,A、因为△ABC中,∠ACB=90°,所以AB2=AC2+BC2,故正确;B、因为CH是高,所以∠AHC=∠CHB=90°,则∠A+∠ACH=90°,∠ACH+∠BCH=90°,故∠A=∠BCH,所以△ACH∽△CHB,则AH:CH=CH:HB,故CH2=AH•HB,故正确;C、因为△ABC中,∠ACB=90°,CM斜边AB上的中线,所以CM=AB,故正确;D、因为∠A的度数不确定,所以CB不一定等于AB,故错误.【解答】:答案D.【点评】:此题考查了相似三角形的判定与性质以及直角三角形的性质.是中考必考的知识点,难度不大,解题的关键是准确找出图中边与角之间的关系,从而得出三角形相似.5.(4分)(2015•徐汇区二模)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160B.160,180C.160,160D.180,180【考点】:中位数、众数M524【难易度】:容易题【分析】:由众数是一组数据中出现次数最多的数,则在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是(160+160)÷2=160.【解答】:答案A.【点评】:本题考查众数与中位数的计算.难度不大,需要熟记:众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(4分)(2015•徐汇区二模)下列命题中,假命题是()A.没有公共点的两圆叫两圆相离B.相交两圆的交点关于这两个圆的连心线所在直线对称C.联结相切两圆圆心的直线必经过切点D.内含的两个圆的圆心距大于零【考点】:命题、定理和证明M611圆的有关性质M354【难易度】:中等题【分析】:由圆的性质有:A、没有公共点的两圆叫两圆相离,正确,故本选项错误;B、相交两圆的交点关于这两个圆的连心线所在直线对称,正确,故本选项错误;C、联结相切两圆圆心的直线必经过切点,正确,故本选项错误;D、内含的两个圆的圆心距大于零,错误,同心圆的圆心距等于0,故本选项正确.【解答】:答案D.【点评】:本题借助圆的性质考查了命题的真假判断,难度适中,如果一个命题的条件能推出结论,则为真命题,否则为假命题。
最新上海徐汇区初三数学二模试卷及答案word
2014学年第二学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分) 2015.4一.选择题(本大题共6题,每题4分,满分24分) 1.下列各数中,无理数是( ▲ )A .722; B .9; C . ; D .38. 2.下列运算中,正确的是( ▲ )A .2x -x =1;B .x +x =2x ;C .(x 3)3=x 6 ;D .x 8÷x 2=x 4.3.某反比例函数的图像经过点(-2,3),则此函数图像也经过点( ▲ )A .(2,3) ;B .(-3,-3) ;C .(2,-3) ;D .(-4,6)4.如图,已知△ABC 中,∠ACB =90°,CH 、CM 分别是斜边AB 上的高和中线,则下列结论不正确...的是( ▲ ) A .AB 2= AC 2+BC 2; B .CH 2=AH ·HB ; C .CM =12AB ; D .CB =12AB . 5.某课外小组的同学们实践活动中调查了20户家庭某月用电量 如下表所示:则这20户家庭用电量的众数和中位数分别是( ▲ ) A .180,160;B .160,180;C .160,160;D .180,180.6.下列命题中,假命题...是( ▲ ) A .没有公共点的两圆叫两圆相离;B .相交两圆的交点关于这两个圆的连心线所在直线对称;C .联结相切两圆圆心的直线必经过切点;D .内含的两个圆的圆心距大于零 .二.填空题(本大题共12题,每题4分,满分48分) 7.计算:-22= ▲ .8.用科学记数法表示660 000的结果是 ▲ .用电量(度) 120140 160 180 220 户数236729.函数2y=1xx -中自变量x 的取值范围是 ▲ . 10.分解因式2416a -=_ ▲ .11.不等式组2+51123x x -<⎧⎪-⎨≤⎪⎩的解是▲ .12x =的解是 ▲ .13.某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,则原计划每天销售多少台?若原计划每天销售x 台.则可得方程 ▲ .14.将1、2、3三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表。
上海市徐汇区初三数学二模考试(含答案)
上海市徐汇区初三数学二模考试(含答案)————————————————————————————————作者:————————————————————————————————日期:2013-2014学年第二学期徐汇区学习能力诊断卷(二模)九年级数学学科 2014.4(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求作答在答题纸规定位置,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1. 下列运算正确的是( ▲ )(A )236a a a ⋅=; (B )623a a a ÷=; (C )236()a a =; (D )624a a a -=. 2. 一次函数21y x =+的图像不经过的象限是( ▲ )(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 3. 如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E . 若∠1=25°,则BAF ∠的度数为( ▲ ) (A )15°; (B )50°; (C )25°; (D )12.5°4. 在ABC △中,∠A 、∠B 都是锐角,且1sin cos 2A B ==,那么ABC △的形状是( ▲ ). (A )钝角三角形; (B )直角三角形; (C )锐角三角形; (D )无法确定.5. “大衣哥”朱之文是从“我是大明星” 这个舞台走出来的民间艺人。
受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额。
已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的( ▲ )(A ) 众数; (B ) 方差; (C ) 中位数; (D )平均数. 6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,联结BC ,若∠A=36°,则∠C 等于( ▲ )(A )36°; (B )54°; (C )60°; (D )27°.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7. 函数1y x =+的定义域是 ▲ .8. 分解因式:2ab ab -= ▲ .9. 如果反比例函数的图像经过点(1,-2),那么这个函数的解析式是 ▲ .AOBC10. 2014年政府报告中安排财政赤字约为13500亿元,13500亿用科学记数法表示为 ▲ 亿.11. 不等式组320622x x ->⎧⎨-≥⎩的解集是 ▲ .12. 若关于x 的方程2430ax x -+=有两个相等的实数根,则常数a 的值是 ▲ . 13. 掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是 ▲ .14. 如图,在ABC △中,D 是BC 的中点,设AB a =,AC b =,则 BD = ▲ .15. 解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除冰雪,该部官兵每小时比原计划多清除20米,结果提前24小时完成任务,若设原计划每小时清除公路冰雪x 米,则可列出方程16. 如图,ABC △中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若5BD =,4BO =,则 AO 的长为 ▲ .17. 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为223y x x =--,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 ▲ .18.如图,已知ABC △中,90B ∠=︒,3BC =,4AB =,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将ADE △沿DE 翻折得到'A DE △,若'A EC △是直角三角形,则AD 长为 ▲ . 三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 计算: 020141182(22014)(1)22()2-÷+---+-+-.20. (本题满分10分)先化简,再求值:21111x x x x ⎛⎫⎛⎫+÷- ⎪ ⎪-+⎝⎭⎝⎭,其中3x =.21.(本题满分10分)BACD 如图,在△ABC 中,AB =AC =10,sin C =35,点D 是BC 上一点,且DC =AC .(1) 求BD 的长; (2) 求tan ∠BAD .22. (本题满分10分)春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1) 抽查了 ▲ 个班级,并将该条形统计图补充完整;(2) 扇形图中患流感人数为4名所在扇形的圆心角的度数为 ▲ ; (3) 若该校有45个班级,请估计该校此次患流感的人数. 23. (本题满分12分)已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC .(1) 求证:AO OF OC OE ⋅=⋅;(2) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形.24. (本题满分12分)如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G .(1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,联结PC ,若△PCF 和△AEM 相似,求m 的值.2班2名1名1234566名20%5名4名1名2名3名各种患流感人数情况的班级数 占抽查班级总数的百分比分布图54432人数班级个数6名5名4名3名2名1名123456抽查班级患流感人数条形统计图抽查班级患流感人数条形图25. (本题满分14分)如图,已知∠MON两边分别为OM、ON,sin∠O=35且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.图1 备用图2013-2014学年第二学期徐汇区初三年级数学学科BCA D HE 学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.D ; 3.C ; 4.B ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分) 7. 1x ≥-; 8.()1ab b -; 9.2y x=-; 10.41.3510⨯; 11.223x -<≤; 12.43a =;13.13;14.1122a b →→-; 15.150015002420x x -=+; 16.6; 17.33+; 18.78或258.三、(本大题共7题,满分78分)19.解:原式=211222+-+-- …………………………………………………(7分)=22- ………………………………………………………(3分)20.原式=2211(1)11x x x xx x -++-÷-+……………………………………………………(2分)=22211x x x x +∙- ………………………………………………………(2分) =221(1)(1)x x x x x +∙+-=11x - ……………………………………………(3分)将3x =代入11x -,11311231x +==-- ……………………………………(3分) 21.解:(1)过点A 作AH ⊥BC ,垂足为H ,则BH=CH =12BC ………………………(2分) 在Rt △ACD 中,sin C =35AH AC =, ∵AC =10,∴AH=6, ………………………………(2分) ∴22221068HC BH AC AH ==-=-= ………………………………(1分)∴BD =BC -CD =6.……………………………………………………………………(1分) (2)过点D 作DE ⊥AB ,垂足为E , …………………………………………… (1分) Rt △BED 中,sin B =ED BD 35=,BD = 6,∴185DE = ……………………………(1分)∴22245BE BD DE =-=,∴265AE = …………………………………(1分) ∴tan ∠BAD =ED AE 913=………………………………………………………(1分) 22. 解:(1)20个班级;条形统计图中,缺少的部分对应纵轴值为2;…………… (4分)(2)︒=⨯︒72204360; ………………………………………………………(2分) (3)45(122233445564)18020⨯+⨯+⨯+⨯+⨯+⨯⨯=.…………… (1分)23.(1)证明:∵点E 是BC 的中点,∴BC =2EC= 2BE .又∵BC =2AD ,∴EC=AD . ………………………………(1分)//AD EC ,∴四边形AECD 为平行四边形.……………………(1分)∴//AE CD , ………………………………………………………(1分)∴AO OEOC OF=即AO OF OC OE ∙=∙.………………………………(1分) (2)证明:∵E 、F 分别是BC 、CD 的中点,∴//EF BD 且12EF BD =.………………………………………………(1分)又//AE CD ,∴四边形EFDG 为平行四边形.………………… ……(1分)∵AD 平行且等于BE ,∴ 四边形ABED 是平行四边形.………… ……(1分) 又∵∠ABE =90°,∴ 四边形ABED 是矩形.…………………………………(1分) ∴ BD=AE 且12EG AE =12BD =…………………………………………(2分) ∴EG EF =,∴四边形EFDG 是菱形……………………………………(2分)24. 解:(1)直线44y x =+与x 轴、y 轴交于B (-1,0)、C (0,4),……………(1分)∵抛物线22y ax ax c =-+(a ≠ 0)经过点B (-1,0)、C (0,4),∴204a a c c ++=⎧⎨=⎩,解得434a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为248433y x x =-++.……(1分)∵抛物线22y ax ax c =-+的对称轴为直线1x =,∴A (3,0).……………………(1分) (2)设直线AC 的解析式为y=kx+b (k ≠ 0).∵A (3,0)、点C (0,4).F CD AO B∴304k b b +=⎧⎨=⎩,解得434k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为443y x =-+.…………(1分)∵点M 在AC 上,点P 在抛物线248433y x x =-++上,且点M 的横坐标为m , ∴M (m ,443m -+)、P (m ,248433m m -++),∴ PM=PE -ME =2443m m -+.……………………………………………………(2分)(3)由题意PG= PE -EF= 24833m m -+, CG=m ………………………………(1分)∵//ME CO ,∴所以∆AOC ∽∆AEM .∵∆PCF 和∆AEM 相似,∴∆PCF 和∆AOC 相似 ……………………………(1分)①若∆PFC ∽∆AOC ,则PCF ACO ∠=∠,有3tan tan 4PG PCG ACO CG ∠==∠=,即2483334m m m ⎛⎫-+÷= ⎪⎝⎭;解得2316m =.(2分) ②若∆PFC ∽∆ACO ,则PCF AOC ∠=∠, 有3tan tan 4CG CPG ACO PG ∠==∠=,即2484333m m m ⎛⎫-+÷= ⎪⎝⎭,解得1m =.………………………………………(2分) 综上所述,当∆PCF 和∆AEM 相似时,2316m =或1m =25.(1)解:作AF OB ⊥,垂足为点F . ……(1分) 在Rt AOF ∆中,3sin 5AFO OA∠==, 因为OA =5,∴3AF =, …………… (1分) ∴2222534OF OA AF =-=-=O D x=,∴5AB AD x ==-,……(1分) ∴2222(5)3BF AB AF x =-=--21016x x =-+……(1分),A B A C A FBC =⊥, ∴2122016y BF x x ==-+(02)x <<. …… (2分)。
徐汇区初三二模数学试卷及答案
2015年4月徐汇区二模数学试卷一、选择题(本大题共6题,每题4分,满分24分) 1、下列各数中,无理数是( )A 、227; B C 、π; D 2、下列运算中,正确的是( )A 、21x x -=;B 、2x x x +=;C 、336()x x =; D 、824x x x ÷=;3、某反比例函数的图像经过点(2-,3),则此函数图像也经过点( ) A 、(2,3); B 、(3-,3-); C 、(2,3-); D 、(4-,6);4、如图,已知ABC ∆中,90ACB ∠=o,CH 、CM 分别是斜边AB 上的高和中线,则下列结论不正确的是( )A 、222AB AC BC =+; B 、2CH AH HB =g ; C 、12CM AB =; D 、12CB AB =; 5、某课外小组的同学们实践活动中调查了20户家庭某月用电量如下表所示:则这20户家庭用电量的众数和中位数分别是( )A 、180,160;B 、160,180;C 、160,160;D 、180,180; 6、下列命题中,假命题是( )A 、没有公共点的两圆叫两圆相离;B 、相交两圆的交点关于这两个圆的连心线所在直线对称;C 、联结相切两圆圆心的直线必经过切点;D 、内含的两个圆的圆心距大于零; 二、填空题(本大题共12题,每题4分,满分48分)7、计算:22-= ; 8、用科学计数法表示660000的结果是 ; 9、函数21xy x =-中自变量x 的取值范围是 ; 10、分解因式:2416a -= ;11、不等式组251123x x -+<⎧⎪-⎨≤⎪⎩的解是 ;12x =的解是 ;13、某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,则原计划每天销售多少台?若原计划每天销售x 台,则可得方程 ; 14、将1、2、3三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表。
上海徐汇中考数学二模试卷及答案(图片版)
上海徐汇中考数学二模试卷及答案(图片
版)
2019年4月上海徐汇初三数学二模考了哪些题目?数学网中考频道第一时间为大家整理2019.4上海徐汇中考数学二模试卷及答案,更多上海中考二模试卷及答案详见
2019.4上海黄浦中考数学二模试卷及答案
2019.4上海浦东中考数学二模试卷及答案
2019.4上海徐汇中考数学二模试卷及答案
2019.4上海长宁中考数学二模试卷及答案
2019.4上海静安中考数学二模试卷及答案
2019.4上海普陀中考数学二模试卷及答案
2019.4上海闸北中考数学二模试卷及答案
2019.4上海虹口中考数学二模试卷及答案
2019.4上海杨浦中考数学二模试卷及答案
2019.4上海闵行中考数学二模试卷及答案
2019.4上海宝山中考数学二模试卷及答案
2019.4上海嘉定中考数学二模试卷及答案
2019.4上海金山中考数学二模试卷及答案
2019.4上海松江中考数学二模试卷及答案
2019.4上海奉贤中考数学二模试卷及答案
2019.4上海崇明中考数学二模试卷及答案。
2015学年第二学期徐汇区初三年级数学学科期终学习能力诊断卷(答案)
2015学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.B ; 2.C ; 3.C ; 4.D ; 5.B ; 6.A .二.填空题:(本大题共12题,满分48分)7.b a 22;8.m m 622-;9.5=x ;10.1;11.a b 3231-;12.240010400=--xx ; 13.21.0;14.答案不唯一,如:BD AC =等;15.4;16.1->x ;17.2200;18.516. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. 解:原式131313-+--+-=π;……………………………………………(5分) 3133++--=π;……………………………………………………(3分) 2-=π.……………………………………………………………………(2分)20.解:由方程②得22±=-y x ;………………………………………………………(2分)与方程①组合得方程组;(Ⅰ)⎩⎨⎧=-=-22,1y x y x 或(Ⅱ)⎩⎨⎧-=-=-;22,1y x y x ……………………………………(4分)解方程组(Ⅰ)、(Ⅱ)得⎩⎨⎧==0,1y x 或⎩⎨⎧-=-=;4,3y x .………………………………(4分) ∴原方程组的解是⎩⎨⎧==0,111y x 或⎩⎨⎧-=-=.4,322y x 21.解:(1)由题意,得021212=++⨯b ;……………………………………………(1分) 解得25-=b ; ……………………………………………………………(1分) ∴抛物线的表达式是225212+-=x x y ;………………………………(1分) 顶点)89,25(-D .……………………………………………………………(2分) (2)由题意,得)0,4(B 和)2,0(C ;……………………………………………(2分) ∴1675893212321=⨯⨯+⨯⨯=+=∆∆ADB ABC CADB S S S .………………(3分)22.解:(1)a OA 23=;………………………………………………………………(2分) (2)na h n =,a a n h n +-=')1(23;…………………………………(各2分) (3)按方案二在该种集装箱中装运铜管数多.…………………………………(1分)由题意,按方案一装运铜管数6252525=⨯=(根);…………………(1分)∵5.21.01.0)1(23≤+⨯-n ,即4865.20865.0≤n ; 得68.28≤n ,又n 是整数,∴n 的最大值是28;……………………(1分) ∴按方案二装运铜管数68624142514=⨯+⨯=(根).………………(1分)23.证明:(1)∵AC AB =,∴ABC ACB ∠=∠; …………………………………(1分) ∵ED BD =,∴DBE BED ∠=∠;…………………………………(1分)∵DBE ABC ∠=∠,∴DEB ACB ∠=∠,∴ABC ∆∽DBE ∆;…(1分) ∴BECB DB AB =; …………………………………………………………(1分) 又DBC DBE DBC ABC ∠-∠=∠-∠;即CBE ABD ∠=∠;∴ABD ∆∽CBE ∆;∴1==BD AD BE CE ;……………………………(1分) ∴BE CE =.……………………………………………………………(1分)(2)∵︒=∠=∠72ABC ACB ,∴︒=︒⨯-︒=∠36722180A ;………(1分) ∵BD AD =,∴︒=∠=∠36A DBA ;………………………………(1分)∴︒=︒-︒=∠363672DBC ;∵ABC ∆∽DBE ∆,∴︒=∠=∠36A EDB ;∴DBA EDB ∠=∠,∴AB DE //;…………………………………(1分)∵ABD ∆∽CBE ∆,∴︒=∠=∠36A ECB ;∴DBC ECB ∠=∠,∴DB CE //;…………………………………(1分)∴四边形DBFE 是平行四边形;………………………………………(1分)又DE BD =,∴四边形DBFE 是菱形.……………………………(1分)24.解:(1)过点A 作OC AG ⊥,垂足是G . 易得OD AG //;∴21===CD AC OC CG OD AG ; 由题意,得)4,0(C ,∴4=OC ;在DOC Rt ∆中,︒=∠90DOC ,2tan =∠CDO ,∴2=OD ;∴1=AG ,2=CG ;∴)6,1(A ;………………………………………(3分) ∴16k =,得6=k ;∴xy 6=. ………………………………………(1分) (2)过点O 作AB OF ⊥,垂足是F .由题意,得)0,2(-D ;∴直线AB 的表达式是42+=x y ;…………(1分) 又点B 是直线AB 与双曲线xy 6=的交点,∴)2,3(--B ,5=DB ; 在DOC Rt ∆中,可解得554=OF ,552=DF ;…………………(1分) ∴557=BF ;……………………………………………………………(1分) 在BFO Rt ∆中,︒=∠90BFO ,74tan ==∠BF OF DBO .…………(1分) (3)以AB 分别为对角线和边两种情况讨论. ︒1当AB 是对角线时,由题意,可知直线1-=x 与双曲线x y 6=的交点就是 点N ,∴)6,1(--N ;……………………………………………………(2分)︒2当AB 是边时,将AB 向右平移2个单位,点B 落在直线1-=x 上,∴)2,3(N ;………………………………………………………………(1分)当AB 是边时,将AB 向左平移2个单位,点A 落在直线1-=x 上,∴)56,5(--N ;…………………………………………………………(1分)综合︒1、︒2,)6,1(--N 或)2,3(N 或)56,5(--N .25.解:(1)过点O 作BE OF ⊥,垂足为F .设x OA =,则1-=x OP ,a x OD +=;∵OD OP OA ⋅=2, 即))(1(2a x x x +-=,解得1-=a a x ;…………………………………(1分) ∴1-=a a OA ,11-=a OP ,12-=a a OD ; 当2=a 时,可得2=OA ,4=OD ,∴52=BD ;易得BOF ∆∽DOB ∆,∴ODOB OB BF =,又2==OA OB ∴552=BF ,∴554=BE . …………………………………………(3分) (2)当点C 与点A 重合时,a PA AD PC CD ==.………………………………(1分) 当点C 与点A 不重合时,联结OC ,∵OA OC =,∴OD OP OC ⋅=2;即ODOC OC OP =,又DOC COP ∠=∠,∴OCP ∆∽ODC ∆, ∴a OC OD PC CD ==,∴aPC CD =;又1>a ,∴PC CD >;………(1分) ∵⊙P 和⊙C 相切,PC 是圆心距,∴⊙P 和⊙C 相只能内切;……(1分) ∴PC PC CD =-;即PC PC aPC =-;……………………………(1分) 解得2=a .…………………………………………………………………(1分)(3)联结BP 、OC .∵OCP ∆∽ODC ∆,∴D OCP ∠=∠;∵OB OC =,∴OCB OBC ∠=∠;∵︒=∠+∠90OBC D ,∴︒=∠+∠90OCB OCP ,即︒=∠90BCP .…………………………(1分) ∵OP BC OA PC ⋅=⋅,OB OA =,∴OBOP BC PC =; 又︒=∠=∠90BCP BOP ,∴BOP ∆∽BCP ∆;………………………(1分) ∴1==BPBP CB OB ;∴OB CB =,∴OC OB CB ==; ∴OBC ∆是等边三角形,∴︒=∠60OBC ;……………………………(1分) 在BOD Rt ∆中,︒=∠90BOD ,a OB OD DOB ==∠tan , 即360tan =︒=a ,2331+=-=a a OA .…………………………(2分)。
2015年上海中考数学二模24题整理
已知B :在平面直角坐标系中,抛物线 y = ax 2 + x 的对称轴为直线 x =2,顶点为 A .(1)求抛物线的表达式及顶点 A 的坐标; A点 P 24 题 y = ( x - m )2 + n 的顶点 D 在直线 AB 上,与 y 轴的交点为 C 。
动点之角度(2015 二模 崇明)24.(本题满分 12 分,每小题各 6 分)如图,已知抛物线 y = ax 2 + bx + c 经过点 A (0, - 4) ,点 B (-2, 0) ,点 C (4, 0) .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点 M 在 y 轴上, ∠OMB + ∠OAB = ∠ACB ,求点 M 的坐标.yy(2015 二模 奉贤)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 8 分)B OC x O C xA(备用图)(2)(第为抛物线对称轴上一点,联结 OA 、OP .x图)①当 OA ⊥OP 时,求 OP 的长;②过点 P 作 OP 的垂线交对称轴右侧的抛物线于点 B ,联结 OB ,当∠OAP =∠OBP 时,求点 B 的坐标.(2015 二模 杨浦)24.(本题满分 12 分,第(1)小题 4 分,第(2)小题 4 分,第 (3)小题 4 分,)已知:在直角坐标系中,直线 y =x +1 与 x 轴交与点 A ,与 y 轴交与点 B ,抛物线12(1)若点 C (非顶点)与点 B 重合,求抛物线的表达式;y(2)若抛物线的对称轴在y轴的右侧,且CD⊥AB,求∠CAD的正切值;(3)在第(2)的条件下,在∠ACD的内部作射线CP交抛物线的对称轴于点P,使得∠DCP=∠CAD,求点P的坐标。
动点之相似(2015二模宝山嘉定)24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(图9),双曲线y=k(k≠0)与直线y=x+2都经过点xA(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.y(2015二模金山)24.(本题满分12分)已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;B A 如图,在直角坐标系 xOy 中,抛x 物线 y = ax O 2 - 2ax + c 与 x 轴的正半轴相x 交于点 A 、与 y 轴 (3)直线 y = kx + 2 与 y 轴交于点 N ,与直线 AC 的交点为 M ,当 ∆MNC 与 ∆AOC 相似时,求点 M 的坐标.动点之面积(2015 二模 黄浦)24. (本题满第(1)小题满分 3 分,第(2) 分 12 分,小题满分 4分,第(3)小题满分 5 分)如图 7,在平面直角坐标系xOy 中,已知点 A 的坐标为(a ,3)(其中a >4),射线 OA与反比例函数y = 12 的图像交于点 P ,点 B 、C 分别在函数y = 12 的图像上,且 AB //x 轴,xxAC //y 轴.(1)当点 P 横坐标为 6,求直线 AO 的表达式;(2)联结 BO ,当 AB = BO 时,求点 A 坐标;(3)联结 BP 、CP ,试猜想:S ∆ABP 的值是否随 a 的变化而变化?如果不变,求出 S ∆ABP 的SS∆ACP∆ACP值;如果变化,请说明理由.(2015 二模 静安青浦)24.(本题满分 12 分,第(1)小题满分 8 分,第(2)小题满分 4 分)PCO 图7的正半轴相交于点 B ,它的对称轴与 x 轴相交于点 C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;如图,已知抛物线 y = x 2 - 2tx + t 2 - 2 的顶点 A 在第四象限,过点 A 作 AB ⊥y 轴于点 B ,A (-1,0),B (4,0 ),C (0,2 ).点D 是点 C 关于原点的对称C 点A ,联结 B D ,点E 是 x 轴上的E (2)如果点 D 在此抛物线上,DF ⊥OA ,垂足为 F ,DF 与线段 AB 相交于点G ,且 S∆ADG : S∆AFG= 3 : 2 ,求点 D 的坐标.y(2015 二模 长宁)24.(本题满分 12 分)BCC 是线段 AB 上一点(不与 A 、B 重合),过点 C 作 CD ⊥x 轴于点 D ,并交抛物线于点 P .(1)若点 C 的横坐标为 1,且是线段 AB 的中点,求点 P 的坐标;(2)若直线 AP 交 y 轴负半轴于点 E ,且 AC =CP ,求四边形 OEPD 的面积 S 关于 t 的函数解析式,并写出定义域;(3)在(2)的条件下,当△ADE 的面积等于 2S 时 ,求 t 的值.y动点之直角、等腰三角形存在性DO x(2015 二模 普陀 ) 如图10,在平面直角坐标系xOy 中,二次函数的图像经过点 PB一个动点,设点 E 的坐标为(m , 0),过点 E 作 x 轴的垂线 l 交抛物线于点 P .第 24 题(1)求这个二次函数的解析式;图(2)当点E 在线段 OB 上运动时,直线 l 交 BD 于点 Q .当四边形CDQP 是平行四边形时,求 m 的值;(3)是否存在点 P ,使△ B DP 是不以 BD 为斜边的直角三角形,如果存在,请直接写出点 P 的坐标;如果不存在,请说明理由.y y(2015二模松江)24.(本题满分12分,每小题各4分)C C如图,二次函数y=-x2+bx的图像与x轴的正半轴交于点A(4,0),过A点的直线与A OB x A O B xy轴的正半轴交于点B,与二次函数的图像交于另一点C,过点C作CH⊥x轴,垂足为H.设二次函数图像的顶点为D,其对称轴与直线AB及x轴分别交于点E和点F.(1)求这个二次函数的解析式;(2)如果CE=3BC,求点B的坐标;(3)如果△DHE是以DH为底边的等腰三角形,求点E的坐标.动点之梯形(2015二模徐汇)24.如图,在平面直角坐中,O为坐标原点,开口向上的抛物线与x点A(-1,0)和点B(3,0),D为抛物线的直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且∆AEC和∆AED相似,求点E的坐标;标系轴交于顶点,(3)若直角坐标平面中的点F和点A、C、D构成求点F的坐标.其他直角梯形,且面积为16,试((2015 二模 闵行)24.(本题满分 12 分,其中每小题各 4 分)如图,已知在平面直角坐标系 xOy 中,抛物线 y = ax 2 - 2ax - 4 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,其中点 A 的坐标为(-3,0).点 D 在线段 AB 上,AD = AC .(1)求这条抛物线的关系式,并求出抛物线的对称轴;(2)如果以 DB 为半径的圆 D 与圆 C 外切,求圆 C 的半径;(3)设点 M 在线段 AB 上,点 N 在线段 BC 上.如果线段 MN 被直线 CD 垂直平分,求BN 的值. CN(2015 二模 浦东)24. 本题满分 12 分,其中第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分) 已知:如图,直线 y =kx +2 与 x 轴的正半轴相交于点 A(t ,0)、与 y 轴相交于点 B ,抛物线 y = - x 2 + bx + c 经过点 A 和点 B ,点 C 在第三象限内,且 AC ⊥AB ,tan∠ACB = 1 .2(1)当 t =1 时,求抛物线的表达式;(2)试用含 t 的代数式表示点 C 的坐标;(3)如果点 C 在这条抛物线的对称轴上,求 t2020-2-8的值.。
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
上海2015二模试卷含答案(二套)
九年级数学 共5页 第1页2014学年奉贤区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+; B .633a a a =⋅ ; C .033=÷a a ; D .633)(a a =. 2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限;C .图像是轴对称图形;D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10. 6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°;B .∠BAC =90°;C .BD =AC ;D .AB =AC .(第4题图)DCB A(第6题图)九年级数学 共5页 第2页二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ;15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设AB a = ,=,那么AD →等于▲ (结果用、表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为▲米;17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ;18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.CBOA (第18题图)九年级数学 共5页 第3页20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最.小整数解.....21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值; (2)求点C 到直线DE 的距离.CB A(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.D BA九年级数学共5页第4页九年级数学 共5页 第5页24.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.九年级数学 共5页 第6页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A九年级数学 共5页 第7页奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分) 7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9; 15.32+; 16.50; 17.2或1; 18.20°. 三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分20.(本题满分10分)解:由①得:2x >- .………………………………………………………………………2分 由②得:4x ≤.………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集.………………………………………………………………2分 所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分九年级数学 共5页 第8页∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°,sin ∠D =13,BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°,sin ∠D =31=CD CM ∴CM=35.…………………2分 即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分根据题意,得4%)201(1000251000++=-x x .……………………………………4分 整理,得 0160122=-+x x .……………………………………………1分解得 20,821-==x x .……………………………………………………2分 经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.…………1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形………………………………………………………1分(2)∵EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形∴AB ∥CD AB=CD九年级数学 共5页 第9页∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分 ∴顶点A 的坐标为(2,1). ……………………………………………………………2分(2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中,AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4…………………………………………………………1分 ∴OP=524222=+……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠∴△BPF ∽△POE ,∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a九年级数学 共5页 第10页解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6∴321===CD DH CH …………………………………………………1分 ∵AD=5∴AH=4………………………………………………………………1分∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分 (2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD=x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-=……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -==…………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -=222NF AN AF -= ∴2222)43(5)4()25(x x -=-∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .九年级数学 共5页 第11页崇明县2014学年第二学期教学质量调研测试卷九年级数学(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3 (C)030-=() (D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A)(B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( )九年级数学 共5页 第12页(A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =九年级数学 共5页 第13页二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ .8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a = ,AD b = ,如果用向量,a b表示向量BC ,那么BC =▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .(第14题图)AB C D (第15题图)AC EF D (第16题图)B九年级数学 共5页 第14页18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长; (2)求sin DAE ∠的值.BACFD(第18题图)(第21题图)CABE D九年级数学 共5页 第15页22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第22题图))A BDHG FEC(第23题图)九年级数学 共5页 第16页24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)(备用图)九年级数学 共5页 第17页25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)B AC (备用图2)BAC。
徐汇区中考数学二模试卷及答案
果列表如下:
体重(千克)
频数
频率
40— 45
44
45— 50
66
50— 55
84
55— 60
86
60— 65
72
65— 70
48
7.计算: 4a3b2 2ab __▲___. 8.计算: 2m(m 3) __▲___. 9.方程 2x 1 3 0的解是 __▲ ___. 10.如果将抛物线 y (x 2)2 1向左平移 1个单位后经过点 A(1, m) ,那么 m 的值是▲ _. 11.点 E 是 ABC 的重心, AB a , AC b,那么 BE _▲ _(用 a 、b 表示). 12.建筑公司修建一条 400 米长的道路,开工后每天比原计划多修 10 米, 结果提前 2 天完
2015 学年第二学期徐汇区学习能力诊断卷 初三年级数学学科
(时间 100 分钟 满分 150 分)
考生注意∶
1.本试卷含三个大题,共 25 题;答题时,考生务必按答题要求在答题纸 规定的位置上作答,在草稿纸、本试卷上答题一律无效;
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应 位置上写出证明或计算的主要步骤.
程 y(米)与时间 t (秒)之间的函数关系(如图 3),那么这次越野 跑的全程为▲米.
18.如图 4,在 ABC 中, CAB 90 , AB 6 , AC 4 , CD 是 ABC 的
中线,将 ABC 沿直线 CD 翻折,点 B 是点 B 的对应点, 点 E 是线段
2015年上海各区中考数学二模压轴题24、25题图文解析
《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。
上海中考各区二模数学试题及答案汇总
2014学年虹口区调研测试九年级数学。
(满分分,考试时间分钟)考生注意:1.本试卷含三个大题,共题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共题,每题分,满分分).计算的结果是().;.;.; ...下列代数式中,的一个有理化因式是( ).; .;.;...不等式组的解集是( ).; .;.;...下列事件中,是确定事件的是( ).上海明天会下雨;.将要过马路时恰好遇到红灯;.有人把石头孵成了小鸭;.冬天,盆里的水结成了冰..下列多边形中,中心角等于内角的是().正三角形;.正四边形; .正六边形;.正八边形..下列命题中,真命题是().有两边和一角对应相等的两个三角形全等;.有两边和第三边上的高对应相等的两个三角形全等;.有两边和其中一边上的高对应相等的两个三角形全等;.有两边和第三边上的中线对应相等的两个三角形全等.二、填空题:(本大题共题,每题分,满分分).据报道,截止年月某市网名规模达人。
请将数据用科学记数法表示为。
.分解因式:。
.如果关于的方程有两个相等的实数根,那么。
.方程的根是。
初三数学基础考试卷—1—初三数学基础考试卷—2—(第题图) (第题图) (第题图)(第题图).函数的定义域是 。
.在反比例函数的图像所在的每个象限中,如果函数值随自变量的值的增大而增大,那么常数的取值范围是 。
.为了了解某中学学生的上学方式,从该校全体学生名中,随机抽查了名学生,结果显示有名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学"。
.在中,,点是的重心,如果,那么斜边的长等于 。
.如图,在中,点、分别在边、上,∥,,若,,则 。
.如图,、的半径分别为、,圆心距为.将由图示位置沿直线向右平移,当该圆与内切时,平移的距离是 ..定义为函数的“特征数".如:函数“特征数”是,函数“特征数"是.如果将“特征数”是的函数图像向下平移个单位,得到一个新函数图像,那么这个新函数的解析式是 。
2015年徐汇区初三数学试卷
A BCDEE CDAFB 2014学年第一学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分) 2015.1一.选择题(本大题共6题,每题4分,满分24分)1.将抛物线y=-2x 2向右平移1个单位,再向上平移2个单位后,抛物线的表达式为 ( ▲ )A .y =-2(x -1)2+2;B .y =-2(x -1)2-2;C .y =-2(x +1)2+2 ;D .y =-2(x +1)2-2.2.如图,□ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:2:3BE BC =,那么下列 各式错误..的是( ▲ ) A .2BEEC=; B .13EC AD =; C .23EF AE =; D .23BF DF =. 3.已知Rt △ABC 中,∠C =90°,∠CAB =α, AC =7,那么BC 为( ▲ )A .7sinα;B .7cosα;C .7tanα;D .7cotα.4.如图,在四边形ABCD 中,AD BC ∥,如果添加下列条件,不能使得ABC DCA △∽△成立的是( ▲ )A .BAC ADC ∠∠=;B .B ACD ∠∠=;C .2AC AD BC ⋅=; D .DC ABAC BC=. 5.已知二次函数222y ax x =-+(0a >),那么它的图像一定不经过( ▲ ) A .第一象限; B .第二象限; C .第三象限; D . 第四象限. 6.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S =△△( ▲ )A .1: 24;B . 1: 20;C .1: 18;D . 1: 16. 二.填空题(本大题共12题,每题4分,满分48分)7.如果53a b=,那么b a a b-+的值等于 ▲ . 8.抛物线2)1(2+-=x y 的顶点坐标是 ▲ . 9.二次函数245y x x =--的图像的对称轴是直线 ▲ .A DCBQPDCB A 第15题 10.计算:cot 30sin 60︒-︒=_ ▲ .11.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 ▲ m .12.若点A (-3,y 1)、B (0,y 2)是二次函数22(1)1y x =--图像上的两点,那么y 1与y 2的大小关系是 ▲ (填y 1>y 2 、y 1=y 2或 y 1<y 2).13.如图, 1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC = ▲ .14.如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1∶2,则斜坡AB 的长为 ▲ 米(保留根号).15.如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶点,设b AD a AB ==,,则向量=PQ ▲ (用向量a 、b 来表示).16.如图,△ABC 中,∠BAC =90°,点G 是△ABC 的重心,如果AG =4,那么BC 的长为 ▲ . 17.如图,已知4tan 3O =,点P 在边OA 上,OP =5,点M 、N 在边OB 上,PM =PN ,如果MN =2,那么PM = ▲ .18.如图,在△ABC 中,∠ABC =90°,AB =6,BC =8.点M 、N 分别在边AB 、BC 上,沿 直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且AP =4,那么BN = ▲ .第13题第17题BP O N MAABCPM N 第18题第16题第14题OACDB335130-1-1y x DCBA三.(本大题共7题,19~22每题10分,23、24每题10分,25题14分,满分78分) 19.已知二次函数2y ax bx c =++(,,a b c 为常数,且0a ≠)经过A 、B 、C 、D 四点,其中横坐标x 与纵坐标y 的对应值如下表:(1)求二次函数的解析式; (2)求△ABD 的面积.20.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 交于点O ,:1:2AD BC =.(1)设BA a = ,BC b = ,试用a 、b 表示BO ;(2)先化简,再求作:3(2)-2(+)2a b a b +(直接作在右图中).21.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆.拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长.(已知sin23°513≈,cos23°1213≈,tan23°512≈,结果保留根号)22.如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM =AN ,MC 交AB 于D ,NB 交AC 于E . (1)求证:DE ∥BC ;(2)联结DE ,如果DE =1,BC =3,求MN 的长.FG A B DCE A B D CEFBCADG23.已知菱形ABCD 中,AB =8,点G 是对角线BD 上一点,CG 交BA 的延长线于点F .(1)求证:2AG GE GF =⋅;(2)如果12DG GB =,且AG BF ⊥,求cos F .24.已知:如图,抛物线C 1:24y ax ax c =++的图像开口向上,与x 轴交于点A 、B (A 在B 的左边),与y 轴交于点C ,顶点为P ,AB =2,且OA =OC . (1)求抛物线C 1的对称轴和函数解析式;(2)把抛物线C 1的图像先向右平移3个单位,再向下平移m 个单位得到抛物线C 2,记顶点为M ,并与y 轴的交于点F (0,-1),求抛物线C 2的函数解析式; (3)在(2)的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标.25.如图,梯形ABCD 中,AD ∥BC ,对角线AC ⊥BC , AD =9,AC =12,BC =16,点E 是边BC 上一个动点,∠EAF =∠BA C ,AF 交CD 于点F 、交BC 延长线于点G ,设BE =x .(备用图) (1)试用x 的代数式表示FC ; (2)设y EFFG=,求y关于x 的函数解析式,并写出定义域; (3)当△AEG 是等腰三角形时,直接写出BE 的长.E 徐汇区2014学年第一学期期末测试卷初三年级数学学科评分标准一.选择题(本大题共6题,每题4分,满分24分) 1.A ; 2.C ; 3.C ; 4.D ; 5.C ; 6. B . 二.填空题(本大题共12题,每题4分,满分48分) 7.14; 8.(1,2); 9.直线x =2; 10.32; 11.15; 12.y 1>y 2; 13.6; 14.65; 15.1233a b -+ ; 16.12; 17.17; 18. 132.三.解答题(本大题共7题,满分78分)19. (本题满分10分)(1)解:根据题意设135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,……………………………………………………2分解得133a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为233y x x =-++,………………………3分(2)由题意BD =3,BD 上的高为4,………………………………………………………4分 ∴△ABD 的面积=134 6.2⨯⨯=……………………………………………………1分20.(本题满分10分)(1)解:∵AD ∥BC ,∴::1:2AO OC AD BC ==. …………………………………2分∴11()33BO BA AO BA AC BA BC BA =+=+=+-…………………2分∴2133BO a b =+………………………………………………………………2分(2)化简31(2)-2(+)22a b a b a b +=-……………………………………………………2分如图,DE即为所求的向量. ………………………………………………………2分21.(本题满分10分)解:过点A 作AG ⊥CD 于点G ,∴AG =BD =6米 ,………………………………………2分 在Rt △ACG 中,tan23°=AG CG ,∴CG =AG tan23°=6×52.512=, …………………3分∴CD=CG+DG=2.5+1.5=4, ……………………………………………………………1分在Rt △CDE 中,sin60°=CECD, CE=sin 60CD=483332=…………………………………………………………………3分 答:拉线CE 的长是833米. …………………………………………………………………1分22.(本题满分10分) (1)证明:∵MN ∥BC ,∴AM AD BC DB =、AN AEBC EC=. ………………………………2分 ∵AM =AN ,∴AE ADEC DB=. …………………………………………………1分 ∴DE ∥BC . ……………………………………………………………………2分 (2)∵DE ∥BC ,DE =1,BC =3.∴13DE AD AE BC AB AC ===,……………………………2分 ∴12AD AE DB EC ==, ∴12AN AE BC EC ==.……………………………………………2分 ∴ AN =A N =32,∴MN=3. ………………………………………………………1分 23.(本题满分12分)解(1)∵四边形ABCD 为菱形,∴//AB DC ,AB AD CD ==,CDG ADG ∠=∠………2分 ∵DG DG =,∴CDG ∆≌ADG ∆∴DCG DAG ∠=∠, GC AC =………………………………………………………2分 ∵//AD BC ,∴F DCG ∠=∠,∴F DAG ∠=∠∵AGF AGE ∠=∠,∴AG F ∆∽FGA ∆,……………………………………………1分∴FG AG AG GE=,即2AG GE GF =⋅. …………………………………………………1分(2) ∵//AB DC ,∴DG DC CGGB AB GF==,…………………………………………………1分 ∵12DG GB =,∴12DC CG AF GF ==.…………………………………………………1分∵AB CD =,GC AC =,∴8AF AB ==,12AG GF =…………………………………………………………2分 ∵AG BF ⊥,∴30F ∠= .…………………………………………………………1分∴3cos cos302F ==………………………………………………………………1分24.(本题满分12分)解:(1)抛物线对称轴:直线224-=-=aax , ………………………………………1分 ∵AB=2,且A 、B 两点关于直线2-=x 对称,∴A (-3,0),B (-1,0), ………………………………………………………1分 ∵OA=OC ∴C (0,3), ………………………………………………………1分 把A 、C 两点代入24y ax ax c =++⎩⎨⎧==+-30129c c a a ,解得⎩⎨⎧==31c a ∴抛物线1C 的函数解析式是243y x x =++ ………………………………………1分 (2)2243(2)1y x x x =++=+-,∴P (-2,-1), ……………………………1分 设平移后的函数解析式是2(1)1y x m =--- ∵抛物线与y 轴交于F (0,-1),把F 的坐标代入得1=m∴平移后的抛物线2C 的解析式是:221y x x =-- …………………………1分 ∴M (1,-2)…………………………………………………………………………1分(3)∴F (0,-1),M (1,-2),P (-2,-1), 当点G 在点F 的上方时,有∠APF=∠MFG=135°……………………………………1分 若△APF 与△FMG 相似①AP PFFM FG =,∴222FG=, ∴FG=2,∴G (0,1) …………………………………………………………2分②AP PFFG FM =,∴222FG =, ∴FG=1,∴G (0,0) ……………………………………………………2分 当点G 在点F 的下方时,根据题意不存在,∴G (0,1)、(0,0)时,△APF 与△FMG 相似.25.(本题满分14分)解:(1)在Rt △ABC 中,AC=12,BC=16,∴AB=2222121620AC BC +=+=, 同理,在Rt △ADC 中,AD=9,AC=12,∴CD=222212915AC AD +=+=, 在Rt △ABC 和Rt △ACD 中123tan 164AC B BC ===,93tan ACD 124AD AC ∠=== ∴∠B =∠ACD . ……………………………………………………………………1分∵∠EAF =∠BAC ,∴∠BAE =∠CAF .∴△ABE ∽△ACF ,……………………………………………………………………1分∴AB BEAC CF=即2012x CF =. ∴35CF x =……………………………………………………………………………1分(2)由(1)△ABE ∽△ACF 有AB AEAC AF=, 又∠EAF =∠BAC ,∴△AEF ∽△ABC , ∴∠EF A =∠ACB =90°,∠B =∠AEF ………………………………………………1分 解法一:∵∠AEF +∠FEC =∠B +∠BAE ,∴∠BAE =∠FEG,. tan tan FEG BAE ∠=∠ ……………………………1分 过E 作EH ⊥AB ,垂足为H ,∴tan tan ==∠=∠=FG EHy FEG BAE EF AH ,∵BE =x ∴16EC x =-,4cos 5BH BE B x =⋅∠=,3sin 5EH BE B x =⋅∠=,420205A H B H x=-=-.…………………………………………………………1分 343:20(016)551004x y x x x x⎛⎫∴=-=<≤ ⎪-⎝⎭…………………………………………2分解法二:∵AD ∥BC ,∴AD DF CG CF=即339:15:55CG x x ⎛⎫=-⎪⎝⎭,∴925x CG x =-…1分 ∵∠BAE =∠FEG,.∠BAE =∠CAF , ∴∠CAF =∠FEG ,tan tan FEG CAG ∠=∠. ……………………………1分∴3(016)1004CG xy x AC x ==<≤-, …………………………………………2分(3)(ⅰ)AE =AG 时,EC =CG ,设AF =3k ,AE =5k ,则F G=2k∵AD ∥C G ,∴CGADFG AF =,∴CG k k 923=,∴CG = EC =6,∴B E =10……2分(ⅱ)EA=EG时,F是AG中点∴F是CD中点,即37.55CF x==,∴BE=12.5 ……………………………2分(ⅲ)GE=GA时,∠AEC=∠EAF,∴△AEC≌△AEF∴EC=AF,EF=AC=12,∴AF=3EF94=,∴EC=9,∴BE=7 ………………2分综上,当△AEG是等腰三角形时,BE=10或12.5或7.。