线性回归推导及实例
最小二乘法和线性回归的公式推导
最⼩⼆乘法和线性回归的公式推导⼀、⼀维线性回归⼀维线性回归最好的解法是:最⼩⼆乘法问题描述:给定数据集D=x1,y1,x2,y2,⋯,x m,y m,⼀维线性回归希望能找到⼀个函数f x i,使得f x i=wx i+b能够与y i尽可能接近。
损失函数:L(w,b)=m∑i=1f x i−y i2⽬标:w∗,b∗=argminw,bm∑i=1f x i−y i2=argminw,bm∑i=1y i−wx i−b2求解损失函数的⽅法很直观,令损失函数的偏导数为零,即:∂L(w,b)∂w=2m∑i=1y i−wx i−b−x i=2m∑i=1wx2i−y i−b x i=2wm∑i=1x2i−m∑i=1y i−b x i=0∂L(w,b)∂b=2m∑i=1wx i+b−y i=2mb−m∑i=1y i−wx i=0解上⼆式得:b=1mm∑i=1y i−wx iwm∑i=1x2i−m∑i=1y i−b x i=0wm∑i=1x2i−m∑i=1y i x i+1mm∑i=1y i−wx im∑i=1x i=0wm∑i=1x2i−m∑i=1y i x i+m∑i=1y i¯x i−wmm∑i=1x i2=0wm∑i=1x2i−1mm∑i=1x i2=m∑i=1y i x i−¯x i w=∑mi=1y i x i−¯x i∑mi=1x2i−1m∑mi=1x i2其中¯x i=1m∑mi=1x i为x i的均值⼆、多元线性回归假设每个样例x i有d个属性,即x i=x(1)ix(2)i⋮x(d)i{()()()}()()[()]()[()]()()()[()](())()(())()()()()[()]()()[()] []()()Processing math: 95%试图学得回归函数f x i,f x i=w T x i+b损失函数仍采⽤军⽅误差的形式,同样可以采⽤最⼩⼆乘法对x和b进⾏估计。
线性回归方程公式推导
线性回归方程公式推导从现代经济学研究看,线性回归是一种多变量经济分析方法,它能够用来研究变量之间的关系,以便确定哪些变量具有影响性。
线性回归模型是描述一个响应变量和一组predictor变量之间关系的线性关系模型。
线性回归模型有多种形式,其中最常见的是最小二乘法,即OLS,其核心思想是通过最小化以下损失函数来确定回归系数:S=1/n (yi-i)其中,yi是实际值,i是预测值,n是数据样本的个数。
有了线性回归模型,就可以推导出公式,即OLS回归方程。
它表述的意思是,假设回归系数β的值是已知的,即满足公式:β=(XX)^-1XY其中,X指的是一个有m个变量的矩阵,Y指的是一个有n个观测值的矩阵,X指的是X矩阵的转置矩阵,(XX)^-1指的是求XX的逆矩阵,XY指的是X和Y的点乘积。
由此,OLS回归模型就可以用变量yi=b1x1i+b2x2i+…+bpxpi+εi来表示,其中b1, b2,, bp分别是变量x1i, x2i,, xpi的回归系数,εi是误差项,它以期望值为零的正态分布的形式出现,表示随机噪声。
一般来说,OLS即可用来估计参数的可能性,但是,由于它们常常受到多重共线性的影响,因此需要检验其可靠性。
OLS的优点是可以提供一种最优的参数估计法,它能够有效地提高参数估计的准确性。
此外,OLS进行变量检验时,也可以有效地识别出具有影响性的变量。
不过,OLS也有其缺点,尤其是当数据存在某些问题时,可能会导致OLS的估计结果出现偏差。
主要问题包括多重共线性、异方差性和异常值。
对于这些问题,最好的解决方法是对数据进行相关性分析,从而将偏差减少到最小。
综上所述,OLS回归方程公式能够有效地描述变量之间的关系,检验其可靠性,以便确定哪些变量具有影响性。
为了确保其准确性,应当有效地处理多重共线性等问题,从而使得OLS具有更强的适用性。
贝叶斯线性回归的推导与应用
贝叶斯线性回归的推导与应用贝叶斯线性回归是一种基于贝叶斯统计学原理的回归模型。
它通过引入先验分布和后验分布来对线性回归进行建模,从而得到更准确的预测结果。
本文将对贝叶斯线性回归的推导过程和应用进行详细介绍。
一、推导1. 线性回归模型线性回归模型假设自变量x与因变量y之间存在线性关系,可以表示为:y = wx + b + ε其中,w是权重(系数),b是常数项,ε是误差项,服从均值为0、方差为σ^2的正态分布。
2. 先验分布贝叶斯线性回归引入先验分布来描述权重w和常数项b的不确定性。
假设先验分布为正态分布:p(w, b) = N(w|w0, V0) * N(b|b0, V0)其中,w0和b0为先验分布的均值,V0为先验分布的协方差矩阵。
3. 后验分布根据贝叶斯定理,后验分布可以表示为:p(w, b | D) = p(D | w, b) * p(w, b) / p(D)其中,D为已观测到的数据集。
4. 最大后验估计为了估计后验分布中的参数,我们采用最大后验估计(MAP)方法。
MAP估计等价于最小化负对数后验估计:(w*, b*) = argmin(-log(p(w, b | D)))根据先验和似然分布的定义,可以推导出MAP估计的目标函数为:L(w, b) = -log(p(D | w, b)) - log(p(w, b))具体推导过程较为复杂,这里不做详细介绍。
5. 参数更新为了最小化目标函数,我们可以使用梯度下降法进行参数更新。
根据目标函数的梯度,可以得到参数的更新规则为:w_new = w_old - α * (∂L/∂w)b_new = b_old - α * (∂L/∂b)其中,α为学习率。
二、应用贝叶斯线性回归在实际问题中具有广泛的应用。
以下以一个房价预测的案例来说明其应用过程。
假设我们有一组已知的房屋面积x和对应的售价y的数据,我们希望通过贝叶斯线性回归来预测未知房屋的售价。
1. 数据准备将已知的房屋面积x和售价y作为训练数据,构建数据集D。
线 性 回 归 方 程 推 导
线性回归——正规方程推导过程线性回归——正规方程推导过程我们知道线性回归中除了利用梯度下降算法来求最优解之外,还可以通过正规方程的形式来求解。
首先看到我们的线性回归模型:f(xi)=wTxif(x_i)=w^Tx_if(xi?)=wTxi?其中w=(w0w1.wn)w=begin{pmatrix}w_0w_1.w_nend{pmatrix}w=?w0?w1?. wn?,xi=(x0x1.xn)x_i=begin{pmatrix}x_0x_1.x_nend{pmatrix}xi?=?x0 x1.xn,m表示样本数,n是特征数。
然后我们的代价函数(这里使用均方误差):J(w)=∑i=1m(f(xi)?yi)2J(w)=sum_{i=1}^m(f(x_i)-y_i)^2J(w) =i=1∑m?(f(xi?)?yi?)2接着把我的代价函数写成向量的形式:J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 其中X=(1x11x12?x1n1x21x22?x2n?1xm1xm2?xmn)X=begin{pmatrix}1 x_{11} x_{12} cdots x_{1n}1 x_{21} x_{22} cdots x_{2n}vdots vdots vdots ddots vdots1 x_{m1} x_{m2} cdots x_{mn}end{pmatrix}X=?11?1?x11?x21?xm1?x12?x22?xm2?x1n?x2n?xmn?最后我们对w进行求导,等于0,即求出最优解。
在求导之前,先补充一下线性代数中矩阵的知识:1.左分配率:A(B+C)=AB+ACA(B+C) = AB+ACA(B+C)=AB+AC;右分配率:(B+C)A=BA+CA(B+C)A = BA + CA(B+C)A=BA+CA2.转置和逆:(AT)?1=(A?1)T(A^T)^{-1}=(A^{-1})^T(AT)?1=(A?1)T,(AT)T=A(A^T)^T=A(AT)T=A3.矩阵转置的运算规律:(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT;(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT然后介绍一下常用的矩阵求导公式:1.δXTAXδX=(A+AT)Xfrac{delta X^TAX}{delta X}=(A+A^T)XδXδXTAX?=(A+AT)X2.δAXδX=ATfrac{delta AX}{delta X}=A^TδXδAX?=AT3.δXTAδX=Afrac{delta X^TA}{delta X}=AδXδXTA?=A然后我们来看一下求导的过程:1.展开原函数,利用上面的定理J(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yTXw+yT yJ(w)=(Xw-y)^T(Xw-y)=((Xw)^T-y^T)(Xw-y)=w^TX^TXw-w^TX^Ty-y^TXw+y^TyJ(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yT Xw+yTy2.求导,化简得,δJ(w)δw=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XTXw=X Ty?w=(XXT)?1XTyfrac{delta J(w)}{delta w}=(X^TX+(X^TX)^T)w-X^Ty-(y^TX)^T=0implies2X^TXw-2X^Ty=0implies X^TXw=X^Tyimplies w=(XX^T)^{-1}X^TyδwδJ(w)?=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTX w?2XTy=0?XTXw=XTy?w=(XXT)?1XTy最后补充一下关于矩阵求导的一些知识,不懂可以查阅:矩阵求导、几种重要的矩阵及常用的矩阵求导公式这次接着一元线性回归继续介绍多元线性回归,同样还是参靠周志华老师的《机器学习》,把其中我一开始学习时花了较大精力弄通的推导环节详细叙述一下。
各种线性回归模型原理
各种线性回归模型原理线性回归是一种广泛应用于统计学和机器学习领域的方法,用于建立自变量和因变量之间线性关系的模型。
在这里,我将介绍一些常见的线性回归模型及其原理。
1. 简单线性回归模型(Simple Linear Regression)简单线性回归模型是最简单的线性回归模型,用来描述一个自变量和一个因变量之间的线性关系。
模型方程为:Y=α+βX+ε其中,Y是因变量,X是自变量,α是截距,β是斜率,ε是误差。
模型的目标是找到最优的α和β,使得模型的残差平方和最小。
这可以通过最小二乘法来实现,即求解最小化残差平方和的估计值。
2. 多元线性回归模型(Multiple Linear Regression)多元线性回归模型是简单线性回归模型的扩展,用来描述多个自变量和一个因变量之间的线性关系。
模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,α是截距,β1,β2,...,βn是自变量的系数,ε是误差。
多元线性回归模型的参数估计同样可以通过最小二乘法来实现,找到使残差平方和最小的系数估计值。
3. 岭回归(Ridge Regression)岭回归是一种用于处理多重共线性问题的线性回归方法。
在多元线性回归中,如果自变量之间存在高度相关性,会导致参数估计不稳定性。
岭回归加入一个正则化项,通过调节正则化参数λ来调整模型的复杂度,从而降低模型的过拟合风险。
模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε+λ∑βi^2其中,λ是正则化参数,∑βi^2是所有参数的平方和。
岭回归通过最小化残差平方和和正则化项之和来估计参数。
当λ=0时,岭回归变为多元线性回归,当λ→∞时,参数估计值将趋近于0。
4. Lasso回归(Lasso Regression)Lasso回归是另一种用于处理多重共线性问题的线性回归方法,与岭回归不同的是,Lasso回归使用L1正则化,可以使得一些参数估计为0,从而实现特征选择。
线性回归方程推导
线性回归方程推导线性回归——正规方程推导过程线性回归——正规方程推导过程我们知道线性回归中除了利用梯度下降算法来求最优解之外,还可以通过正规方程的形式来求解。
首先看到我们的线性回归模型:f(xi)=wTxif(x_i)=w^Tx_if(xi?)=wTxi?其中w=(w0w1.wn)w=begin{pmatrix}w_0w_1.w_nend{pmatrix}w=?w0 w1. wn?,xi=(x0x1.xn)x_i=begin{pmatrix}x_0x_1.x_nend{pmatrix}xi?=?x0 ?x 1?.xn?,m表示样本数,n是特征数。
然后我们的代价函数(这里使用均方误差):J(w)=∑i=1m(f(xi)?yi)2J(w)=sum_{i=1}^m(f(x_i)-y_i)^2J(w)=i=1∑m?(f(xi?)?yi?)2接着把我的代价函数写成向量的形式:J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 其中X=(1x11x12?x1n1x21x22?x2n?1xm1xm2?xmn)X=begin{pmatrix}1 x_{11} x_{12} cdots x_{1n}1 x_{21} x_{22} cdots x_{2n}vdots vdots vdots ddots vdots1 x_{m1} x_{m2} cdots x_{mn}end{pmatrix}X=?11?1?x11?x21?xm1?x12?x22?xm2?x1n?x2n xmn最后我们对w进行求导,等于0,即求出最优解。
在求导之前,先补充一下线性代数中矩阵的知识:1.左分配率:A(B+C)=AB+ACA(B+C) = AB+ACA(B+C)=AB+AC;右分配率:(B+C)A=BA+CA(B+C)A = BA+ CA(B+C)A=BA+CA2.转置和逆:(AT)?1=(A?1)T(A^T)^{-1}=(A^{-1})^T(AT)?1=(A?1)T,(AT)T=A(A^T)^T=A(AT)T=A3.矩阵转置的运算规律:(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT;(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT然后介绍一下常用的矩阵求导公式:1.δXTAXδX=(A+AT)Xfrac{delta X^TAX}{delta X}=(A+A^T)XδXδXTAX?=(A+AT)X2.δAXδX=ATfrac{delta AX}{delta X}=A^TδXδAX?=AT3.δXTAδX=Afrac{delta X^TA}{delta X}=AδXδXTA?=A然后我们来看一下求导的过程:1.展开原函数,利用上面的定理J(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yTX w+yT yJ(w)=(Xw-y)^T(Xw-y)=((Xw)^T-y^T)(Xw-y)=w^TX^TXw-w^TX^Ty-y^TXw+y^TyJ(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw? wTXTy?yT Xw+yTy2.求导,化简得,δJ(w)δw=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XT Xw=X Ty?w=(XXT)?1XTyfrac{delta J(w)}{delta w}=(X^TX+(X^TX)^T)w-X^Ty-(y^TX)^T=0implies2X^TXw-2X^Ty=0implies X^TXw=X^Tyimplies w=(XX^T)^{-1}X^TyδwδJ(w)?=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XTXw=XTy?w=(XXT)?1XTy最后补充一下关于矩阵求导的一些知识,不懂可以查阅:矩阵求导、几种重要的矩阵及常用的矩阵求导公式这次接着一元线性回归继续介绍多元线性回归,同样还是参靠周志华老师的《机器学习》,把其中我一开始学习时花了较大精力弄通的推导环节详细叙述一下。
线性回归方程公式推导过程
线性回归方程公式推导过程公式是数学题目的解题关键,那么线性回归方程公式推导过程是什么呢?下面是由小编为大家整理的“线性回归方程公式推导过程”,仅供参考,欢迎大家阅读。
线性回归方程公式推导过程假设线性回归方程为: y=ax+b (1),a,b为回归系数,要用观测数据(x1,x2,...,xn和y1,y2,...,yn)确定之。
为此构造Q(a,b)=Σ(i=1->n)[yi-(axi+b)]^2 (2),使Q(a,b)取最小值的a,b为所求。
令:∂Q/∂a= 2Σ(i=1->n)[yi-(axi+b)](-xi)= 0 (3),∂Q/∂b= 2Σ(i=1->n)[yi-(axi+b)] = 0 (4),根据(3)、(4)解出a ,b就确定了回归方程(1):a Σ (Xi)² +b Σ Xi = Σ Xi Yi (5);a Σ Xi +b n = Σ Yi (6);由(5)(6)解出a,b便是。
//这一步就省略了。
拓展阅读:线性回归方程的分析方法分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
线性回归方程的例题求解用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解得。
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值。
利用公式求解:b=把x,y的平均数带入a=y-bx。
求出a=是总的公式y=bx+a线性回归方程y=bx+a过定点。
(x为xi的平均数,y为yi的平均数)。
高中数学:线性回归方程
高中数学:线性回归方程一、推导2个样本点的线性回归方程例1、设有两个点A(x1,y1),B(x2,y2),用最小二乘法推导其线性回归方程并进行分析。
解:由最小二乘法,设,则样本点到该直线的“距离之和”为从而可知:当时,b有最小值。
将代入“距离和”计算式中,视其为关于b的二次函数,再用配方法,可知:此时直线方程为:设AB中点为M,则上述线性回归方程为可以看出,由两个样本点推导的线性回归方程即为过这两点的直线方程。
这和我们的认识是一致的:对两个样本点,最好的拟合直线就是过这两点的直线。
上面我们是用最小二乘法对有两个样本点的线性回归直线方程进行了直接推导,主要是分别对关于a和b的二次函数进行研究,由配方法求其最值及所需条件。
实际上,由线性回归系数计算公式:可得到线性回归方程为设AB中点为M,则上述线性回归方程为。
二、求回归直线方程例2、在硝酸钠的溶解试验中,测得在不同温度下,溶解于100份水中的硝酸钠份数的数据如下0 4 10 15 21 29 36 51 6866.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1描出散点图并求其回归直线方程.解:建立坐标系,绘出散点图如下:由散点图可以看出:两组数据呈线性相关性。
设回归直线方程为:由回归系数计算公式:可求得:b=0.87,a=67.52,从而回归直线方程为:y=0.87x+67.52。
三、综合应用例3、假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下统计资料:(1)求回归直线方程;(2)估计使用10年时,维修费用约是多少?解:(1)设回归直线方程为:(2)将x = 10代入回归直线方程可得y = 12.38,即使用10年时的维修费用大约是12.38万元。
线性回归方程b的公式推导
线性回归方程b的公式推导线性回归方程b是统计学中一种重要的回归分析技术,它是为了预测一个或多个变量之间的关系而拟合的数学模型,它可以帮助我们更好地理解模型中的变量之间的特定关系,并可以用来预测未知的分类问题。
线性回归方程b属于传统的机器学习算法之一,广泛用于各行各业。
线性回归方程b的定义为:Y或者Yi是解释变量,X者 Xi解释变量,b系数,u残差项。
如果某一变量Yi具有另一变量Xi的线性拟合关系,则Yi可以用Xi来描述,这个关系可以用线性回归方程b 来表达:Yi = bX1 + bX2 + + bXn + u。
线性回归模型的参数b又分成两部分,一部分是回归系数,是描述变量的关系的,一部分是残差项,即残差是形成的拟合曲线的垂直距离,表示因为未知的原因而无法拟合的数据。
有了线性回归方程b,此时我们就可以开始推导线性回归方程b 的公式来求解回归系数b了。
首先,将方程Yi = bX1 + bX2 + + bXn + u转换为矩阵形式,Yi = BX + u,其中,B为系数矩阵(由回归系数b组成),X为自变量矩阵(由解释变量Xi组成),u为残差项。
接着,在只有唯一解的前提下,可用最小二乘法(OLS)来求解回归系数b的值:BOLS=(XX)^(-1)XY,其中XX是X的转置矩阵乘以X矩阵为正定阵,XY是X的转置矩阵乘以Y矩阵。
有了上述的公式,我们就可以进行求解回归系数b的值了。
回归系数b的求解可分为以下几步:首先,从样本中抽取多个解释变量和一个被解释变量;然后,计算XX和XY;接下来,计算BOLS,即(XX)^(-1)XY;最后,根据BOLS确定其中的回归系数b。
以上就是线性回归方程b的推导过程。
线性回归方程b不仅可以用于求解拟合程度,而且可以用来预测未知的数据。
此外,它也不仅仅可以用于线性回归,还可以用于其他类型的回归分析,比如多项式回归、局部加权回归、非线性回归等。
以上就是关于线性回归方程b推导公式的相关内容,线性回归方程b是统计学中一种重要的回归分析技术,它可以用来推导回归系数b的计算,并可以用来预测未知的分类问题。
线 性 回 归 方 程 推 导
线性回归之最小二乘法线性回归Linear Regression——线性回归是机器学习中有监督机器学习下的一种简单的回归算法。
分为一元线性回归(简单线性回归)和多元线性回归,其中一元线性回归是多元线性回归的一种特殊情况,我们主要讨论多元线性回归如果因变量和自变量之间的关系满足线性关系(自变量的最高幂为一次),那么我们可以用线性回归模型来拟合因变量与自变量之间的关系.简单线性回归的公式如下:y^=ax+b hat y=ax+by^?=ax+b多元线性回归的公式如下:y^=θTx hat y= theta^T x y^?=θTx上式中的θthetaθ为系数矩阵,x为单个多元样本.由训练集中的样本数据来求得系数矩阵,求解的结果就是线性回归模型,预测样本带入x就能获得预测值y^hat yy^?,求解系数矩阵的具体公式接下来会推导.推导过程推导总似然函数假设线性回归公式为y^=θxhat y= theta xy^?=θx.真实值y与预测值y^hat yy^?之间必然有误差?=y^?yepsilon=haty-y?=y^?y,按照中心极限定理(见知识储备),我们可以假定?epsilon?服从正态分布,正态分布的概率密度公式为:ρ(x)=1σ2πe?(x?μ)22σ2rho (x)=frac {1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2}}ρ(x)=σ2π1e2σ2(x?μ)2?为了模型的准确性,我们希望?epsilon?的值越小越好,所以正态分布的期望μmuμ为0.概率函数需要由概率密度函数求积分,计算太复杂,但是概率函数和概率密度函数呈正相关,当概率密度函数求得最大值时概率函数也在此时能得到最大值,因此之后会用概率密度函数代替概率函数做计算.我们就得到了单个样本的误差似然函数(μ=0,σmu=0,sigmaμ=0,σ为某个定值):ρ(?)=1σ2πe?(?0)22σ2rho (epsilon)=frac {1}{sigmasqrt{2pi}}e^{-frac{(epsilon-0)^2}{2sigma^2}}ρ(?)=σ2π?1?e?2σ2(?0)2?而一组样本的误差总似然函数即为:Lθ(?1,?,?m)=f(?1,?,?m∣μ,σ2)L_theta(epsilon_1,cdots,e psilon_m)=f(epsilon_1,cdots,epsilon_m|mu,sigma^2)Lθ?(?1?,? ,?m?)=f(?1?,?,?m?∣μ,σ2)因为我们假定了?epsilon?服从正态分布,也就是说样本之间互相独立,所以我们可以把上式写成连乘的形式:f(?1,?,?m∣μ,σ2)=f(?1∣μ,σ2)?f(?m∣μ,σ2)f(epsilon_1,cdots,epsilon_m|mu,sigma^2)=f(epsilon_1|mu,sigma^2)*cdots *f(epsilon_m|mu,sigma^2)f(?1?,?,?m?∣μ,σ2)=f(?1?∣μ,σ2)?f(?m?∣μ,σ2) Lθ(?1,?,?m)=∏i=1mf(?i∣μ,σ2)=∏i=1m1σ2πe?(?i?0)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1}f(epsilon _i|mu,sigma^2)=prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}Lθ? (?1?,?,?m?)=i=1∏m?f(?i?∣μ,σ2)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?在线性回归中,误差函数可以写为如下形式:i=∣yiy^i∣=∣yiθTxi∣epsilon_i=|y_i-haty_i|=|y_i-theta^Tx_i|?i?=∣yi?y^?i?∣=∣yi?θTxi?∣最后可以得到在正态分布假设下的总似然估计函数如下:Lθ(?1,?,?m)=∏i=1m1σ2πe?(?i?0)22σ2=∏i=1m1σ2πe?(yi θTxi)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1} frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}=pro d^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}L θ?(?1?,?,?m?)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?=i=1∏m?σ2π?1 e2σ2(yi?θTxi?)2?推导损失函数按照最大总似然的数学思想(见知识储备),我们可以试着去求总似然的最大值.遇到连乘符号的时候,一般思路是对两边做对数运算(见知识储备),获得对数总似然函数:l(θ)=loge(Lθ(?1,?,?m))=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)l(theta)=log_e(L_theta(epsilon_1,cdots,epsilon_m))=log_ e(prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) l(θ)=loge?(Lθ?(?1?,?,?m?))=loge?(i=1∏m?σ2π?1?e?2σ2(yi θTxi?)2?)l(θ)=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)=∑i=1mloge1σ2πexp(?(yi?θTxi)22σ2)=mloge1σ2π?12σ2∑i=1m(yi?θTxi)2l (theta) = log_e(prod^m_{i=1}frac {1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) = sum_{i=1}^mlog_efrac {1}{sigmasqrt{2pi}}exp({-frac{(y_i-theta^Tx_i)^2}{2sigma^2} })=mlog_efrac{1}{sigmasqrt{2pi}}-frac{1}{2sigma^2}sum^m_{i= 1}(y^i-theta^Tx^i)^2l(θ)=loge?(i=1∏m?σ2π?1?e?2σ2(yi?θTxi?)2?)=i=1∑m?loge?σ2π?1?exp(?2σ2(yi?θTxi?)2?)=mloge?σ2π?1?2σ21?i=1∑m?(yi?θTxi)2前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ):J(θ)=12∑i=1m(yi?θTxi)2=12∑i=1m(yi?hθ(xi))2=12∑i=1m (hθ(xi)?yi)2J(theta)=frac{1}{2}sum^m_{i=1}(y^i-theta^Tx^i)^2=frac{1}{2} sum^m_{i=1}(y^i-h_theta(x^i))^2=frac{1}{2}sum^m_{i=1}(h_the ta(x^i)-y^i)^2J(θ)=21?i=1∑m?(yi?θTxi)2=21?i=1∑m?(yi?hθ?(xi))2=21?i=1∑m?(hθ?(xi)?yi)2解析方法求解线性回归要求的总似然最大,需要使得损失函数最小,我们可以对损失函数求导.首先对损失函数做进一步推导:J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)J(theta)=fr ac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1}{2}(Xtheta-y )^T(Xtheta-y)J(θ)=21?i=1∑m?(hθ?(xi)?yi)2=21?(Xθ?y)T(Xθy)注意上式中的X是一组样本形成的样本矩阵,θthetaθ是系数向量,y也是样本真实值形成的矩阵,这一步转换不能理解的话可以试着把12(Xθ?y)T(Xθ?y)frac{1}{2}(Xtheta-y)^T(Xtheta-y)21?(Xθ?y) T(Xθ?y)带入值展开试试.J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)=12((Xθ)T? yT)(Xθ?y)=12(θTXT?yT)(Xθ?y)=12(θTXTXθ?yTXθ?θTXTy+yTy)J(theta)=frac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1} {2}(Xtheta-y)^T(Xtheta-y)=frac{1}{2}((Xtheta)^T-y^T)(Xtheta -y)=frac{1}{2}(theta^TX^T-y^T)(Xtheta-y)=frac{1}{2}(theta^T X^TXtheta-y^TXtheta-theta^TX^Ty+y^Ty)J(θ)=21?i=1∑m?(hθ?( xi)?yi)2=21?(Xθ?y)T(Xθ?y)=21?((Xθ)T?yT)(Xθ?y)=21?(θTXT yT)(Xθ?y)=21?(θTXTXθ?yTXθ?θTXTy+yTy)根据黑塞矩阵可以判断出J(θ)J(theta)J(θ)是凸函数,即J(θ)J(theta)J(θ)的对θthetaθ的导数为零时可以求得J(θ)J(theta)J(θ)的最小值.J(θ)?θ=12(2XTXθ?(yTX)T?XTy)=12(2XTXθ?XTy?XTy)=XTXθXTyfrac{partialJ(theta)}{partialtheta}=frac{1}{2}(2X^TXtheta-(y^TX)^T-X^Ty )=frac{1}{2}(2X^TXtheta-X^Ty-X^Ty)=X^TXtheta-X^Ty?θ?J(θ)? =21?(2XTXθ?(yTX)T?XTy)=21?(2XTXθ?XTy?XTy)=XTXθ?XTy 当上式等于零时可以求得损失函数最小时对应的θthetaθ,即我们最终想要获得的系数矩阵:XTXθ?XTy=0XTXθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1 XTyθ=(XTX)?1XTyX^TXtheta-X^Ty=0X^TXtheta=X^Ty((X^TX)^{-1}X^TX)theta=(X^TX)^{-1}X^TyEtheta=(X^TX)^{-1}X^Tytheta=(X^TX)^{-1}X^TyXTXθ?XTy=0XT Xθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1XTyθ=(XTX)?1XTy (顺便附上一元线性回归的系数解析解公式:θ=∑i=1m(xi?x ̄)(yi?y ̄)∑i=1m(xi?x  ̄)2theta=frac{sum^m_{i=1}(x_i-overline{x})(y_i-overline{y} )}{sum^m_{i=1}(x_i-overline{x})^2}θ=∑i=1m?(xi?x)2∑i=1m?( xi?x)(yi?y?)?)简单实现import numpy as npimport matplotlib.pyplot as plt# 随机创建训练集,X中有一列全为'1'作为截距项X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 按上面获得的解析解来求得系数矩阵thetatheta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)# 打印结果print(theta)# 测试部分X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict = X_test.dot(theta)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()sklearn实现import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 新建线性回归模型model = LinearRegression(fit_intercept=False)# 代入训练集数据做训练model.fit(X,y)# 打印训练结果print(model.intercept_,model.coef_)X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict =model.predict(X_test)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()使用解析解的公式来求得地模型是最准确的.计算量非常大,这会使得求解耗时极多,因此我们一般用的都是梯度下降法求解.知识储备距离公式机器学习中常见的距离公式 - WingPig - 博客园中心极限定理是讨论随机变量序列部分和分布渐近于正态分布的一类定理。
回归计算公式举例说明
回归计算公式举例说明回归分析是统计学中常用的一种分析方法,用于研究变量之间的关系。
回归分析可以帮助我们了解自变量和因变量之间的关系,并用于预测未来的结果。
在回归分析中,有许多不同的公式和方法,其中最常见的是简单线性回归和多元线性回归。
本文将以回归计算公式举例说明为标题,介绍简单线性回归和多元线性回归的计算公式,并通过具体的例子来说明其应用。
简单线性回归。
简单线性回归是回归分析中最基本的形式,用于研究一个自变量和一个因变量之间的关系。
其数学模型可以表示为:Y = β0 + β1X + ε。
其中,Y表示因变量,X表示自变量,β0和β1分别表示回归方程的截距和斜率,ε表示误差项。
简单线性回归的目标是通过最小化误差项来估计回归方程的参数β0和β1。
为了说明简单线性回归的计算公式,我们假设有一组数据,其中自变量X的取值为{1, 2, 3, 4, 5},对应的因变量Y的取值为{2, 4, 5, 4, 5}。
我们可以通过最小二乘法来估计回归方程的参数β0和β1。
首先,我们需要计算自变量X和因变量Y的均值,分别记为X和Ȳ。
然后,我们可以计算回归方程的斜率β1和截距β0:β1 = Σ((Xi X)(Yi Ȳ)) / Σ((Xi X)²)。
β0 = Ȳβ1X。
其中,Σ表示求和符号,Xi和Yi分别表示第i个观测数据的自变量和因变量取值。
在我们的例子中,自变量X的均值为3,因变量Y的均值为4。
根据上面的公式,我们可以计算得到回归方程的斜率β1为0.6,截距β0为2。
因此,简单线性回归的回归方程可以表示为:Y = 2 + 0.6X。
通过这个回归方程,我们可以预测自变量X取不同值时对应的因变量Y的取值。
例如,当X取值为6时,根据回归方程可以预测Y的取值为6.6。
多元线性回归。
多元线性回归是回归分析中更复杂的形式,用于研究多个自变量和一个因变量之间的关系。
其数学模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε。
线性回归方程的推导
线性回归方程的推导
线性回归,也被称作最小二乘法,是一种统计分析方法。
它的主要作用是用一条直线来最佳地拟合一组数据,并研究两个变量之间的统计关系。
很多时候,给定一组观测数据,我们想要建立一条线性函数来拟合它们,以便更好地描述它们之间的相互关系,从而预测未来的数据趋势。
这种拟合可以用线性回归方程来描述。
线性回归方程描述的是一条直线,它可以由横轴和纵轴坐标确定,并有一组特定数学参数。
这个方程可以写成y=mx+b的形式,其中y是根据x预测的值,m是斜率,x是平均变量,b是y轴截距。
通常情况下,我们用最小二乘方法来定义斜率m和截距b的值,也就是通过最小化残差
平方和来寻找对应的参数。
残差平方和是每个观察值与预测值之间的差异,而最小的误差
就是最佳拟合参数的表示。
求解最小二乘最小值的参数值时,可以利用极大似然估计,同时可以使用一般化线性模型(GLM)或其他数学技术来进行计算。
通过给定一组数据,我们可以使用线性回归方程最佳地拟合这些数据,从而研究两个变量
之间的统计关系,并预测未来的数据趋势。
线性回归方程的参数确定也可以使用最小二乘法,而常用的数学技术还可以帮助我们更好地求解最佳参数。
线性回归闭式解推导
线性回归闭式解推导单词:multivariate linear regression 多元线性回归Here I want to show how the normal equation is derived. 此处是如何获得该等式。
Given the hypothesis function. 给出假设函数。
[ha ɪˈp ɒθəs ɪs]多元线性回归应⽤举例:幸福度预测:有⾝体、财富、学历等等⾃变量因素,有幸福度因变量因素,有⼀些样本数据,希望得到⼀个从这些⾃变量到幸福度这个因变量的映射函数。
解析过程:回归函数:h θ(x )=θ0x 0+θ1x 1+⋯+θn x n最⼩化平⽅差损失:J θ0…n=12m m ∑i =1h θx (i )−y (i )2此处的x (i )和y (i )是第i 个样本数据。
我们需要学习的参数θ可以,可以视为⼀个列向量:θ0θ1…θn 这样回归函数就是:h θ(x )=x θ 。
x 是⾏向量形式。
对于求和运算,实际上也可以变换成矩阵相乘的形式。
上⾯的最⼩平⽅差损失,可以变换为:J (θ)=12m (X θ−y )T (X θ−y )这个地⽅的X 是m ⾏,n 列的,m 是样本数⽬,n 是样本中的变量数⽬。
y 是⼀个列向量。
不去考虑前⾯的12m 这个系数。
利⽤线性代数的知识将括号去掉:J (θ)=(X θ)T −y T (X θ−y )J (θ)=(X θ)T X θ−(X θ)T y −y T (X θ)+y T y注意到:X θ实际上⼀个列向量,y 也是⼀个列向量,那么(X θ)T y 和y T (X θ)是相等的。
上式可以简化为:J (θ)=θT X T X θ−2(X θ)T y +y T y此处的θ是未知数,可以对其求取偏微分运算,但是θ是⼀个向量,这就涉及到向量求导了。
∂J∂θ=2X T X θ−2X T y =0X T X θ=X T yθ=X T X−1X T y ()(())()()()Processing math: 100%。
线性回归分析
线性回归分析线性回归是一种广泛应用于统计学和机器学习的分析方法,用于建立和预测两个变量之间的线性关系。
它可以帮助我们理解变量之间的相互作用和影响,并进行未来的预测。
本文将介绍线性回归的基本原理、模型建立过程和一些应用实例。
一、线性回归的基本原理线性回归的目标是通过一条直线(或超平面)来拟合数据点,使得预测值和实际观测值之间的误差最小。
这条直线的方程可以表示为:y=β0+β1*x+ε,其中y是因变量,x是自变量,β0和β1是回归系数,ε是误差项。
线性回归的核心假设是,自变量x和因变量y之间存在线性关系,并且误差项ε服从正态分布。
在此基础上,线性回归通过最小二乘法来估计回归系数β0和β1的值,使得预测值和实际值的误差平方和最小。
二、线性回归的模型建立过程1.数据准备:收集包含自变量和因变量的样本数据,确保数据的质量和准确性。
2.模型选择:根据自变量和因变量之间的性质和关系,选择合适的线性回归模型。
3.模型拟合:使用最小二乘法来估计回归系数β0和β1的值,计算出拟合直线的方程。
4.模型评估:通过误差分析、残差分析等方法来评估模型的拟合效果和预测能力。
5.模型应用:利用已建立的模型进行预测和推断,帮助决策和预测未来的结果。
三、线性回归的应用实例线性回归可以应用于各个领域和实际问题中,下面以几个典型的实例来说明其应用:1.经济学:通过分析自变量(如GDP、通货膨胀率)对因变量(如消费水平、投资额)的影响,可以建立GDP与消费的线性回归模型,预测未来消费水平。
2.市场营销:通过分析广告投入与销售额之间的关系,可以建立销售额与广告投入的线性回归模型,帮助制定广告投放策略。
3.医学研究:通过收集患者的生理指标(如血压、血糖水平)和疾病状况,可以建立生理指标与疾病发展程度的线性回归模型,帮助疾病诊断和治疗。
4.金融风险管理:通过分析利率、汇率等宏观经济变量与企业盈利、股价波动之间的关系,可以建立风险预警模型,帮助企业进行风险控制和决策。
高考线性回归知识点
高考线性回归知识点线性回归是高考数学中的一个重要知识点,它是一种统计学上常用的方法,用于分析两个变量之间的线性关系。
在高考中,线性回归经常被应用于解决实际问题和预测未知数据。
本文将介绍线性回归的基本概念、公式以及应用示例,帮助大家更好地理解和应用这一知识点。
一、线性回归的基本概念线性回归是建立一个自变量X和一个因变量Y之间的线性关系模型,通过最小化实际观测值与模型预测值之间的误差,来拟合和预测因变量Y的值。
线性回归的模型可以表示为:Y = β0 + β1*X + ε其中,Y是因变量,X是自变量,β0是截距,β1是斜率,ε是误差项,代表模型无法准确拟合数据的部分。
二、线性回归的公式1. 简单线性回归如果模型中只有一个自变量X,称为简单线性回归。
简单线性回归的公式为:Y = α + βX + ε其中,α表示截距,β表示斜率,ε为误差项。
我们利用给定的数据集,通过最小二乘法来估计α和β的值,从而得到一条最佳拟合直线。
2. 多元线性回归如果模型中有多个自变量X1、X2、X3...,称为多元线性回归。
多元线性回归的公式为:Y = α + β1*X1 + β2*X2 + β3*X3 + ... + ε同样,我们利用最小二乘法来估计α和每个β的值,从而得到一个最佳拟合的平面或超平面。
三、线性回归的应用示例线性回归在实际问题中有广泛的应用。
下面通过一个简单的例子来说明线性回归的具体应用过程。
例:某城市的房价与面积的关系假设我们要研究某个城市的房价与房屋面积之间的关系。
我们收集了一些房屋的信息,包括房屋的面积和对应的价格。
我们可以使用线性回归来建立一个房价和面积之间的模型,从而预测未知房屋的价格。
1. 数据收集首先,我们收集了一些房屋的面积和价格数据,得到一个数据集。
2. 模型建立根据数据集,我们可以建立一个线性回归模型:价格= α + β*面积+ ε通过最小二乘法,估计出α和β的值。
3. 模型评估为了评估模型的好坏,我们需要计算误差项ε。
线 性 回 归 方 程 推 导 ( 2 0 2 0 )
多元线性回归推导过程常用算法一多元线性回归详解1此次我们来学习人工智能的第一个算法:多元线性回归.文章会包含必要的数学知识回顾,大部分比较简单,数学功底好的朋友只需要浏览标题,简单了解需要哪些数学知识即可.本章主要包括以下内容数学基础知识回顾什么是多元线性回归多元线性回归的推导过程详解如何求得最优解详解数学基础知识回顾我们知道,y=ax+b这个一元一次函数的图像是一条直线.当x=0时,y=b,所以直线经过点(0,b),我们把当x=0时直线与y轴交点到x轴的距离称为直线y=ax+b图像在x轴上的截距,其实截距就是这个常数b.(有点拗口,多读两遍)截距在数学中的定义是:直线的截距分为横截距和纵截距,横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。
根据上边的例子可以看出,我们一般讨论的截距默认指纵截距.既然已知y=ax+b中b是截距,为了不考虑常数b的影响,我们让b=0,则函数变为y=ax.注意变换后表达式的图像.当a=1时,y=ax的图像是经过原点,与x轴呈45°夹角的直线(第一,三象限的角平分线),当a的值发生变化时,y=ax 的图像与x轴和y轴的夹角也都会相应变化,我们称为这条直线y=ax的倾斜程度在发生变化,又因为a是决定直线倾斜程度的唯一的量(即便b不等于0也不影响倾斜程度),那么我们就称a为直线y=ax+b的斜率.斜率在数学中的解释是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量.还是y=ax+b,我们知道这个函数的图像是一条直线,每个不同的x对应着直线上一点y.那么当自变量x的值变化的时候,y值也会随之变化.数学中我们把x的变化量成为Δx,把对应的y的变化量成为Δy,自变量的变化量Δx与因变量的变化量Δy的比值称为导数.记作y'.y'=Δy-Δx常用的求导公式在这部分不涉及,我们用到一个记住一个即可.4-矩阵和向量什么是向量:向量就是一个数组.比如[1,2,3]是一个有三个元素的向量.有行向量和列向量之分,行向量就是数字横向排列:X=[1,2,3],列向量是数字竖向排列,如下图什么是矩阵:矩阵就是元素是数组的数组,也就是多维数组,比如[[1,2,3],[4,5,6]]是一个两行三列的矩阵,也叫2*3的矩阵. 行代表内层数组的个数,列代表内层数组的元素数.一个矩阵中的所有数组元素相同.5-向量的运算:一个数乘以一个向量等于这个数同向量中的每个元素相乘,结果还是一个向量.2 * [1,2,3] = [2,4,6]一个行向量乘以一个列向量,是两个向量对位相乘再相加,结果是一个实数.= 11 + 22 + 3*3 = 14附加:转置转置用数学符号T来表示,比如W向量的转置表示为.转置就是将向量或者矩阵旋转九十度.一个行向量的转置是列向量,列向量的转置是行向量.一个m*n的矩阵转置是n*m的矩阵.注:以上概念完全是为了读者能容易理解,并不严谨,若想知道上述名词的严谨解释,请自行百度.什么是多元线性回归我们知道y=ax+b是一元一次方程,y=ax1+bx2+c(1和2是角标,原谅我的懒)是二元一次方程.其中,"次"指的是未知数的最大幂数,"元"指的是表达式中未知数的个数(这里就是x的个数).那么"多元"的意思可想而知,就是表达式中x(或者叫自变量,也叫属性)有很多个.当b=0时,我们说y=ax,y和x的大小始终符合y-x=a,图像上任意一点的坐标,y值都是x值的a倍.我们把这种横纵坐标始终呈固定倍数的关系叫做"线性".线性函数的图像是一条直线.所以我们知道了多元线性回归函数的图像一定也是一条直线.现在我们知道了多元线性回归的多元和线性,而回归的概念我们在人工智能开篇(很简短,请点搜索"回归"查看概念)中有讲述,所以多元线性回归就是:用多个x(变量或属性)与结果y的关系式来描述一些散列点之间的共同特性.这些x和一个y关系的图像并不完全满足任意两点之间的关系(两点一线),但这条直线是综合所有的点,最适合描述他们共同特性的,因为他到所有点的距离之和最小也就是总体误差最小.所以多元线性回归的表达式可以写成:y= w0x0 + w1x1 + w2x2 + . + wnxn (0到n都是下标哦)我们知道y=ax+b这个线性函数中,b表示截距.我们又不能确定多元线性回归函数中预测出的回归函数图像经过原点,所以在多元线性回归函数中,需要保留一项常数为截距.所以我们规定 y= w0x0 + w1x1 + w2x2 + . + wnxn中,x0=1,这样多元线性回归函数就变成了: y= w0 + w1x1 + w2x2 + . + wnxn,w0项为截距.如果没有w0项,我们 y= w0x0 + w1x1 + w2x2 + . + wnxn就是一个由n+1个自变量所构成的图像经过原点的直线函数.那么就会导致我们一直在用一条经过原点的直线来概括描述一些散列点的分布规律.这样显然增大了局限性,造成的结果就是预测出的结果函数准确率大幅度下降.有的朋友还会纠结为什么是x0=1而不是x2,其实不管是哪个自变量等于1,我们的目的是让函数 y= w0x0 + w1x1 + w2x2 + . + wnxn编程一个包含常数项的线性函数.选取任何一个x都可以.选x0是因为他位置刚好且容易理解.多元线性回归的推导过程详解1-向量表达形式我们前边回顾了向量的概念,向量就是一个数组,就是一堆数.那么表达式y= w0x0 + w1x1 + w2x2 + . + wnxn是否可以写成两个向量相乘的形式呢?让我们来尝试一下.假设向量W= [w1,w2.wn]是行向量,向量X= [x1,x2.xn],行向量和列向量相乘的法则是对位相乘再相加, 结果是一个实数.符合我们的逾期结果等于y,所以可以将表达式写成y=W * X.但是设定两个向量一个是行向量一个是列向量又容易混淆,所以我们不如规定W和X都为列向量.所以表达式可以写成 (还是行向量)与向量X 相乘.所以最终的表达式为:y= * X,其中也经常用θ(theta的转置,t是上标)表示.此处,如果将两个表达式都设为行向量,y=W * 也是一样的,只是大家为了统一表达形式,选择第一种形式而已.2-最大似然估计最大似然估计的意思就是最大可能性估计,其内容为:如果两件事A,B 相互独立,那么A和B同时发生的概率满足公式P(A , B) = P(A) * P(B)P(x)表示事件x发生的概率.如何来理解独立呢?两件事独立是说这两件事不想关,比如我们随机抽取两个人A和B,这两个人有一个共同特性就是在同一个公司,那么抽取这两个人A和B的件事就不独立,如果A和B没有任何关系,那么这两件事就是独立的.我们使用多元线性回归的目的是总结一些不想关元素的规律,比如以前提到的散列点的表达式,这些点是随机的,所以我们认为这些点没有相关性,也就是独立的.总结不相关事件发生的规律也可以认为是总结所有事件同时发生的概率,所有事情发生的概率越大,那么我们预测到的规律就越准确.这里重复下以前我们提到的观点.回归的意思是用一条直线来概括所有点的分布规律,并不是来描述所有点的函数,因为不可能存在一条直线连接所有的散列点.所以我们计算出的值是有误差的,或者说我们回归出的这条直线是有误差的.我们回归出的这条线的目的是用来预测下一个点的位置.考虑一下,一件事情我们规律总结的不准,原因是什么?是不是因为我们观察的不够细或者说观察的维度不够多呢?当我们掷一个骰子,我们清楚的知道他掷出的高度,落地的角度,反弹的力度等等信息,那上帝视角的我们是一定可以知道他每次得到的点数的.我们观测不到所有的信息,所以我们认为每次投骰子得到的点数是不确定的,是符合一定概率的,未观测到的信息我们称为误差.一个事件已经观察到的维度发生的概率越大,那么对应的未观测到的维度发生的概率就会越小.可以说我们总结的规律就越准确.根据最大似然估计P(y) = P(x1,x2 . xn)= P(x1) * P(x2) . P(xn)当所有事情发生的概率为最大时,我们认为总结出的函数最符合这些事件的实际规律.所以我们把总结这些点的分布规律问题转变为了求得P(x1,x2 . xn)= P(x1) * P(x2) . P(xn)的发生概率最大.3-概率密度函数数学中并没有一种方法来直接求得什么情况下几个事件同时发生的概率最大.所以引用概率密度函数.首先引入一点概念:一个随机变量发生的概率符合高斯分布(也叫正太分布).此处为单纯的数学概念,记住即可.高斯分布的概率密度函数还是高斯分布.公式如下:公式中x为实际值,u为预测值.在多元线性回归中,x就是实际的y,u 就是θ * X.既然说我们要总结的事件是相互独立的,那么这里的每个事件肯定都是一个随机事件,也叫随机变量.所以我们要归纳的每个事件的发生概率都符合高斯分布.什么是概率密度函数呢?它指的就是一个事件发生的概率有多大,当事件x带入上面公式得到的值越大,证明其发生的概率也越大.需要注意,得到的并不是事件x发生的概率,而只是知道公式的值同发生的概率呈正比而已.如果将y= θT* X中的每个x带入这个公式,得到如下函数求得所有的时间发生概率最大就是求得所有的事件概率密度函数结果的乘积最大,则得到:求得最大时W的值,则总结出了所有事件符合的规律.求解过程如下(这里记住,我们求得的是什么情况下函数的值最大,并不是求得函数的解):公式中,m为样本的个数,π和σ为常数,不影响表达式的大小.所以去掉所有的常数项得到公式:因为得到的公式是一个常数减去这个公式,所以求得概率密度函数的最大值就是求得这个公式的最小值.这个公式是一个数的平方,在我国数学资料中把他叫做最小二乘公式.所以多元线性回归的本质就是最小二乘.J(w)′=2(Y?Xw)TXJ(w)^{#x27;}=2(Y-Xtextbf{w})^TXJ(w)′=2(Y?Xw )TXSystem.out.print("("+xy[0]+",");X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列。
回归方程的推导过程123
回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b =∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-nx -y -∑i =1nx 2i-n x 2a =y -b x其中:b 是回归方程的斜率,a 是截距.用公式求回归方程的一般步骤是: (1)列表x i ,y i ,x i y i . (2)计算x ,y,∑i =1nx 2i ,∑i =1n x i y i . (3)代入公式计算b ^、a ^的值. (4)写出回归方程.在钢铁碳含量对于电阻的效应的研究中,得到如下表所示的一组数据:(1)画出散点图;(2)求回归方程(参考数据∑i =17x 2i =2.595,∑i =17x i y i =85.61).解:(1)作出散点图如图所示.(2)由散点图可以看出,这些点大致分布在一条直线的附近,可求回归方程.由表中的数据可求得x -=17∑i =17x i =3.807≈0.543,y -=17∑i =17y i =145.47≈20.771,又∑i =17x 2i =2.595,∑i =17x i y i =85.61. 则b ^=∑i =17x i y i -7x -y-∑i =17x 2i -7x -2=85.61-7×0.543×20.7712.595-7×0.5432≈12.54,a ^=y --b ^x -=20.77-12.54×0.543≈13.96. 所以回归方程为y ^=12.54x +13.96.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:(1)画出散点图; (2)求回归方程;(3)试预测广告费支出为10百万元时,销售额多大? 解:(1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算.因此,x -=255=5,y -=2505=50,∑i =15x 2i =145,∑i =15y 2i =13 500,∑i =15x i y i =1 380. 于是可得b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x-2=1 380-5×5×50145-5×52=6.5; a ^=y --b ^x -=50-6.5×5=17.5, 因此,所求回归直线方程是y ^=6.5x +17.5.(3)据上面求得的回归直线方程,当广告费支出为10百万元时,y ^=6.5×10+17.5=82.5(百万元).即这种产品的销售收入大约为82.5百万元.。
线性回归例子
考虑一座山在点(x,y)的高度是H(x,y)。 回归系数 是未知参数,通常用最大似然估计的方法获得。
P logistic回归—实例(1)
ln O () d ln d(s ) x x x 方向导数:如果函数z f (x,y)在点P (x,y)是可微分的,那么函0 数在该点1 沿1 任一方向l2 的方2 向导数都存在n ,且n 有
饮酒(x=1),患病概率和未患病概率分别为
患病(y=1) 55 74 此函数具有狭窄弯曲的山谷,最小值就在这些山谷之中,并且谷底很平。
一套200平方米的房子价格
129
未患病(y=0) 靠近极小值时速度减慢。
饮酒的患病率和Odds分别为
104663
212555
317218
合计 104718 212629 317347 多分类Logistic回归模型
以x1的回归系数 1 为例
一个暴露因素:暴露为1,非暴露为0。
ln O ()d ld n 1 P s(P ) 0 1x 1 2x2
除x1,固定其它自变量
1
2
1
1
2
其最小l值o在g(1,1i)处s,t数i值c为回0。 归—实例(1)
可能会'之字型'地下降。
优化过程是之字形的向极小值点靠近,速度非常缓慢。
在这一点的梯度是在该点坡度(或者说斜度)最陡的方向。
P越大,则Odds越大;
Odds=
(Odds为优势)
患病(Y=1)的概率为
梯度下降回归-----缺陷
回归系数 是未知参数,通常用最大似然估计的方法获得。
logistic回归—实例(1)
饮酒的患病率和Odds分别为
P 115 05 4718Od1d1 P s1P 115 05 4663
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据点基本落在一条直线附近。
这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。
但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。
其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。
如果我们要研究X与Y的关系,可以作线性拟合(2-1-1)我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。
从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。
二、最小二乘法原理如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。
这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。
残差平方和定义为:(2-1-2)所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所有直线中与测量值残差平方和Q最小的一条。
由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。
下面讨论的a和b的求法。
三、正规方程组根据微分中求极值的方法可知,Q(a,b)取得最小值应满足(2-1-3)由(2-1-2)式,并考虑上述条件,则(2-1-4)(2-1-4)式称为正规方程组。
解这一方程组可得(2-1-5) 其中(2-1-6)(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。
如果改写(2-1-1)式,可得(2-1-8) 或(2-1-9)由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。
从力学观点看,即是N个散点的重心位置。
现在我们来建立关于例1的回归关系式。
将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出a=1231.65b=-2236.63因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为y=1231.65-2236.63x四、一元线性回归的统计学原理如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。
当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。
如果回归方程是线性的,则E(Y|X=x)=α+βx (2-1-11) 或Y=α+βx+ε(2-1-12) 其中ε―随机误差从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。
因此只能用f(x)的估计式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。
那么,这两个估计量是否能够满足要求呢?1. 无偏性把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。
可以证明,当满足下列条件:(1)(x i,y i)是n个相互独立的观测值(2)εi是服从分布的随机变量则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即E(a)= αE(b)=β由此可推知E()=E(y)即y是回归值在某点的数学期望值。
2. a和b的方差可以证明,当n组观测值(x i,y i)相互独立,并且D(y i)=σ2,时,a和b的方差为(2-1-13)(2-1-14)以上两式表明,a和b的方差均与x i的变动有关,x i分布越宽,则a和b的方差越小。
另外a的方差还与观测点的数量有关,数据越多,a的方差越小。
因此,为提高估计量的准确性,x i的分布应尽量宽,观测点数量应尽量多。
建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。
与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。
由于残差平方和(2-2-5)是的非负二次式,所以它的最小值一定存在。
根据极值原理,当Q取得极值时,应满足由(2-2-5)式,即满足(2-2-6) (2-2-6)式称为正规方程组。
它可以化为以下形式(2-2-7)如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。
则有(2-2-8)式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X的转置矩阵。
(2-2-7)式右端常数项也可用矩阵D来表示即因此(2-2-7)式可写成Ab=D (2-2-10)或(2-2-11)如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为(2-2-12)也就是多元线性回归方程的回归系数。
为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。
(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为(2-2-13)式中(2-2-14)将(2-2-13)式代入(2-2-7)式中的其余各方程,得(2-2-15)其中(2-2-16)将方程组(2-2-15)式用矩阵表示,则有Lb=F (2-2-17)其中于是b=L-1F (2-2-18)因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。
求b时,可用克莱姆法则求解,也可通过高斯变换求解。
如果把b直接代入(2-2-18)式,由于要先求出L的逆矩阵,因而相对复杂一些。
例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。
求y对x1,x2,x3的线性回归方程。
表2-2-1 土壤含磷情况观察数据计算如下:由(2-2-16)式代入(2-2-15)式得(2-2-19)若用克莱姆法则解上述方程组,则其解为(2-2-20)其中计算得b1=1.7848,b2=-0.0834,b3=0.1611回归方程为应用克莱姆法则求解线性方程组计算量偏大,下面介绍更实用的方法——高斯消去法和消去变换。
在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出判断。
虽然在一些特定的情况下我们可以比较容易地做到这一点,但是在许多实际问题上常常会令我们不知所措。
根据高等数学知识我们知道,任何曲线可以近似地用多项式表示,所以在这种情况下我们可以用多项式进行逼近,即多项式回归分析。
一、多项式回归方法假设变量y与x的关系为p次多项式,且在x i处对y的随机误差(i=1,2,…,n)服从正态分布N(0,),则令x i1=x i, x i2=x i2,…,x ip=x i p则上述非线性的多项式模型就转化为多元线性模型,即这样我们就可以用前面介绍的多元线性回归分析的方法来解决上述问题了。
其系数矩阵、结构矩阵、常数项矩阵分别为(2-4-11)(2-4-12)(2-4-13) 回归方程系数的最小二乘估计为(2-4-14)需要说明的是,在多项式回归分析中,检验b j是否显著,实质上就是判断x的j次项x j对y是否有显著影响。
对于多元多项式回归问题,也可以化为多元线性回归问题来解决。
例如,对于(2-4-15) 令x i1=Z i1, x i2=Z i2, x i3=Z i12, x i4=Z i1Z i2, x i5=Z i22则(2-4-15)式转化为转化后就可以按照多元线性回归分析的方法解决了。
下面我们通过一个实例来进一步说明多项式回归分析方法。
一、应用举例例2-4-2 某种合金中的主要成分为元素A和B,试验发现这两种元素之和与合金膨胀系数之间有一定的数量关系,试根据表2-4-3给出的试验数据找出y与x之间的回归关系。
表2-4-3 例2-4-2试验数据首先画出散点图(图2-4-3)。
从散点图可以看出,y与x的关系可以用一个二次多项式来描述:i=1,2,3…,13图2-4-3 例2-4-2的散点图令x i1=x i,x i2=x i2,则现在我们就可以用本篇第二章介绍的方法求出的最小二乘估计。
由表2-4-3给出的数据,求出由(2-2-16)式由此可列出二元线性方程组将这个方程组写成矩阵形式,并通过初等变换求b1,b2和系数矩阵L的逆矩阵L-1:于是b1=-13.3854b2=0.16598b0=2.3323+13.385440-0.165981603.5=271.599因此下面对回归方程作显著性检验:由(2-2-43)式S回=由(2-2-42)式S总=S残=L yy- S回=0.2572将上述结果代入表2-2-2中制成方差分析表如下:表2-4-4 方差分析表实用文档查F检验表,F0。
01(2,10)=7.56, F>F0.01(2 ,10),说明回归方程是高度显著的。
下面对回归系数作显著性检验由前面的计算结果可知:b1=-13.3854 b2=0.16598c11=51.125 c22=7.991610-3由(2-2-54)式由(2-2-53)式检验结果说明的x一次及二次项对y都有显著影响。