(完整版)苏教版四年级下册数学知识点汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版小学四年级下册数学知识点汇总
第一单元乘法
一、三位数乘两位数笔算
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
二、乘数末尾有0的乘法
1、末尾有0的乘法计算方法:现把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
2.乘积末尾0的个数是由乘数末尾有几个0决定的。
(错误)因为乘法计算过程中末尾也会出现0.
第二单元升和毫升
一.容量的理解
1.容量是一个物体可以容纳的体积。
二、升和毫升之间的进率
1、1升(L)=1000毫升(ml 、mL)
2.计量水、油、饮料等液体时,一般用升或毫升做单位。
2、生活中的升和毫升的运用:生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。
义务献血者每次献血量一般为200毫升。
4、1毫升大约等于23滴水。
第三单元三角形
一、三角形的特征及分类
1、围成三角形的条件:两边之和大于第三边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。
如:人字梁、斜拉桥、自行车车架。
4、三个角都是锐角的三角形是锐角三角形。
(两个内角的和大于第三个内角。
)
5、有一个角是直角的三角形是直角三角形。
(两个内角的和等于第三个内角。
两个锐角的和是90度。
两条直角边互为底和高。
)
6、有一个角是钝角的三角形是钝角三角形。
(两个内角的和小于第三个内角。
)
7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。
8、把一个三角形分成两个直角三角形就是画它的高。
二、三角形内角和、等腰三角形、等边三角形
1、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。
)三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。
)
2、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45°,顶角等于90°。
3、求三角形的一个角=180°-另外两角的和
4、等腰三角形的顶角=180°-底角×2=180°-底角-底角
5、等腰三角形的底角=(180°-顶角)÷2
6、一个三角形最大的角是60度,这个三角形一定是等边三角形。
7、多边形的内角和=180°×(n-2){n为边数}
第四单元混合运算
一、不含括号的混合运算
1.四则运算中不含括号时,先做乘除再做加减。
二、含有小括号的混合运算
1、要先算小括号里面的。
三、含有中括号的混合运算
1.既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
第五单元平行四边形和梯形
一、认识平行四边形
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。
从一个顶点向对边可以作两种不同的高。
底和高一定要对应。
一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行
四边形。
3、平行四边形容易变形(不稳定性)。
生活中许
多物体都利用了这样的特性。
如:(电动伸缩门、铁拉门、
伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。
平行四边形不是轴对称图形。
二、认识梯形
1、只有一组对边平行的四边形叫梯形。
平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
2、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。
直角梯形有且只有两个直角。
3、两个完全一样的梯形可以拼成一个平行四边形。
4、正方形、长方形属于特殊的平行四边形。
第六单元找规律
1、搭配型规律:两种事物的个数相乘。
(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
即n×(n—1)×……×1
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
即(n—1)+(n—2)+……+1
第七单元运算律
1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、衍生:(a-b)×c=a×c-b×c
5、简便运算典型例题:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八单元对称、平移和旋转
一、轴对称图形
1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
二、对称轴的条数
1、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
三、平移和旋转
1、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。
(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。
)
2、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。
(不管是平移还是旋转,基本图形不能改变。
)
第九单元倍数和因数
1、4×3=12,或12÷3=4。
那么12是3和4的倍数,3和4是12的因数。
(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。
只能说谁是谁的倍数,谁是谁的因数。
)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
如18的因数有:1、2、
3、6、9、18。
3、一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
如:18的倍数有:18、36、5
4、72、90……(省略号非常重要)
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。
(个位是0、2、4、
6、8的数)
6、不是2的倍数的数叫做奇数。
(个位是1、3、5、
7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。
(如:10、20、30、40……)
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。
(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。
)
10、一个数只有1和它本身两个因数的数叫素数(或质数)。
如:2、3、5、7、
11、13、17、19……
2是素数中唯一的偶数。
(所以“所有的素数都是奇数”这一说法是错误的。
)
11、一个数除了1和它本身两个因数外,还有其他的因数的数叫合数。
如:4、6、8、9、10……
12、1既不是素数也不是合数,因为1的因数只有1个:1。
素数只有2个因数,合数至少有3个因数(如:9的因数有:1、3、9)。
13、哥德巴赫猜想:任何大于4的偶数都可以表示成两个奇素数之和。
如6=3+3
8=3+5,10=5+5,12=5+7等等。
14、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、71、73、79、83、89、97。
(共25个)
15、三个连续的自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
第十单元用计算器探索规律
1、积的变化规律:
①一个因数不变,另一个因数乘或除以几,得到的积等于原来的积乘或除以几。
如:A×B=10
那么A×(B×5)=10×5 (A÷2)×B=10÷2
②如果两个因数同时扩大几倍,得到的积等于原来的积乘两个因数分别扩大倍数的乘积。
如:A×B=10 那么(A×2) ×(B×3)=10×(2×3)
③如果两个因数同时缩小几倍,得到的积等于原来的积除以两个因数同时缩小倍数的乘积。
如:A×B=10 那么(A÷2) ×(B÷3)=10÷(2×3)
④如果一个因数扩大几倍,另一个因数缩小相同的倍数,那么积不变。
如:A×B=10 那么(A×3)×(B÷3)=10
2、商的变化规律:
①被除数和除数同时乘(或除以)相同的数(0除外),商不变。
商不变规律也可以应用于除法计算。
在计算两个末尾都有0的除法算式中,应用“被除数和除数除以相同的数,商不变”,这样计算比较简便。
注意:被除数的变化会带来余数的变化。
如:900÷40,虽然在计算时被除数和除数同时划去一个零,算到最后一步是10-8=2,但是余数并不是2,而是20。
②被除数乘(或除以)一个数,除数不变,商也乘几(或除以)几。
③被除数不变,除数乘或除以一个数(0除外),商也除以几或乘几。
如:A÷B=10 那么A÷(B÷2)=10×2 A÷(B×2)=10÷2
第十二单元统计
1、折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。
折线统计图的制作步骤:①定点②写数据③连线④写日期
第十三单元用字母表示数
1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。
那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4•a或4a;a×a可以写成a•a,也可以写成a2,读作“a 的平方”。
如果是a与1相乘,就可以直接写成a。
附:常用数量关系
正方形的面积=边长×边长(S=a×a=a2)正方形的周长=边长×4 (C=a×4=4a) 长方形的面积=长×宽(S=a×b=ab)
长方形的周长=(长+宽)×2 C=(a+b)×2
①总价=单价×数量单价=总价÷数量数量=总价÷单价
②路程=速度×时间速度=路程÷时间时间=路程÷速度
③工总=工效×时间工效=工总÷时间时间=工总÷工效
房间面积=每块地面砖面积×块数
块数=房间面积÷每块面积(简称:大面积除以小面积)
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙速度×时间。