2013年中考数学模拟试题及答案.doc

合集下载

2013年中考数学模拟试题(优质)及答案

2013年中考数学模拟试题(优质)及答案

2 013年中考数学模拟试题(二)时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.一个数的相反数是3,则这个数是( )A .-13 B.13C .-3D .32.下列命题中真命题是( ) A .任意两个等边三角形必相似; B .对角线相等的四边形是矩形; C .以40°角为内角的两个等腰三角形必相似;D .一组对边平行,另一组对边相等的四边形是平行四边形3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.15B.13C.58D.385.抛物线y =-(a -8)2+2的顶点坐标是( ) A .(2,8) B .(8,2)C .(-8,2)D .(-8,-2)6.若不等式组841,x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( )A .m >3B .m ≥3C .m ≤3D .m <37.在平面内有线段AB 和直线l ,点A ,B 到直线l 的距离分别是4 cm,6 cm.则线段AB 的中点C 到直线l 的距离是( )A .1或5B .3或5C .4D .58.正八边形的每个内角为( ) A .12° B .135° C .140° D .144°9.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有( )A .1条B .2条C .3条D .4条 10.如图M2-1,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( )图M2-1A .1 B.54 C.127 D.94二、填空题(本大题共6个小题,每小题4分,共24分) 11.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是____________.12.实数范围内分解因式:x 3-2x =______________.13.已知抛物线y =ax 2+bx +c (a ≠0)经过点(1,2)与(-1,4),则a +c 的值是________. 14.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2 3,那么AP 的长为________.15.已知BD ,CE 是△ABC 的高,直线BD ,CE 相交所成的角中有一个角为50°,则∠BAC 等于________度.16.函数y =12x -4中,自变量x 的取值范围是________.三、解答题(一)(本大题共3小题,每小题5分,共15分) 17.计算:(-2 011)0+-122⎛⎫ ⎪ ⎪⎝⎭+22--2cos60°.18.先化简,再求值:2212442a a a a a a -+⎛⎫- ⎪-+-⎝⎭÷41a ⎛⎫- ⎪⎝⎭,其中a =2- 3.19.已知某开发区有一块四边形的空地ABCD ,如图M2-2所示,现计划在空地上种植草皮,经测量∠A =90°,AB =3 m ,BC =12 m ,CD =13 m ,DA =4 m .若每平方米草皮需要200元,问需要多少投入?图M2-2四、解答题(二)(本大题共3小题,每小题8分,共24分)20.列方程解应用题:A,B两地的距离是80千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.21.在图M2-3的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C =90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2,B2,C2三点的坐标.22.如图M2-4,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案.图M2-5中折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:档次第一档第二档第三档每月用电量x度0<x≤140(2)小明家某月用电120度,需交电费________元;(3)求第二档每月电费y(单位:元)与用电量x(单位:度)之间的函数关系;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,缴纳电费153元,求m的值.图M2-524.已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A,B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.(1)求实数k的取值范围;(2)设OA,OB的长分别为a,b,且a∶b=1∶5,求抛物线的解析式;(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.25.已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB,CD,AD,BC于点M,N,E,F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图M2-6,请判断a与b的大小关系,并说明理由.(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图M2-7,(1)中的结论是否成立?并说明理由.(3)在(2)的条件下,设BPPD=k,是否存在这样的实数k,使得S平行四边形PEAMS△ABD=49?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.图M2-6图M2-72013年中考数学模拟试题(二)1.C 2.A 3.B 4.C 5.B 6.C 7.A 8.B 9.D 10.A 11.11 12.x (x +2)(x -2) 13.3 14.2 3或4 3 15.50°或130° 16.x ≠2 17.解:原式=1+2+2-2-1=218.解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2)÷4-a a=a (a -1)-(a -2)(a +2)a (a -2)2·a 4-a =1(a -2)2. 当a =2-3时,原式=13.19.解:如图D100,连接BD .图D100∵∠A =90°,AB =3 m ,DA =4 m ,∴BD =5 m. ∵BC =12 m ,CD =13 m ,∴∠DBC =90°.∴S ABCD =12×3×4+12×5×12=36(m 2).∴36×200=7 200(元).20.解:设公共汽车的速度为x 千米/小时,则小汽车的速度是3x 千米/小时.依题意,得80x =803x +3-13. 解得x =20千米/小时,经检验x =20是原方程的解,故符合题意. ∴小汽车的速度=3x =60(千米/小时). 21.(1)作图如图D101:图D101(2)坐标轴如图所示,A (-1,-1),C (-4,-1). (3)A 2(1,1),B 2(4,-5),C 2(4,1). 22.证明:DE ⊥AG ,DE ∥BF , ∴BF ⊥AG .又∵ABCD 是正方形,∴AD =AB ,∠ABF =∠EAD .在△ABF 和△AED 中,∵AD =AB ,∠ABF =∠EAD ,∠AED =∠AFB , ∴△AED ≌△ABF (AAS). ∴BF =AE .∴AF =BF +EF 得证. 23.解:(1)如下表:档次 第一档 第二档 第三档每月用电量x 度 140<x ≤230x >230 (2)54元(3)设y 与x 的关系式为y =kx +b .∵点(140,63)和(230,108)在y =kx +b 上, ∴⎩⎪⎨⎪⎧63=140k +b ,108=230k +b . 解得⎩⎪⎨⎪⎧k =0.5,b =-7.∴y 与x 的关系式为y =0.5x -7.(4)第三档中1度电交电费=(153-108)÷(290-230)=0.75(元), 第二档中1度电交电费=(108-63)÷(230-140)=0.5(元), ∴m =0.75-0.5=0.25.24.解:(1)设点A (x 1,0),B (x 2,0)且满足x 1<0<x 2. 由题意可知x 1·x 2=-(k +2)<0,即k >-2.(2)∵a ∶b =1∶5,设OA =a ,即-x 1=a ,则OB =5a ,即x 2=5a ,a >0. ∴⎩⎪⎨⎪⎧ x 1+x 2=-a +5a =4a ,x 1·x 2=-a ·5a =-5a 2.即⎩⎪⎨⎪⎧2(k -1)=4a ,-(k +2)=-5a 2. ∴k =2a +1,即5a 2-2a -3=0,解得a 1=1,a 2=-35(舍去).∴k =3.∴抛物线的解析式为y =-x 2+4x +5.(3)由(2)可知,当-x 2+4x +5=0时,可得x 1=-1,x 2=5. 即A (-1,0),B (5,0).∴AB =6,则点D 的坐标为(2,0). 当PE 是⊙D 的切线时,PE ⊥PD .由Rt △DPO ∽Rt △DEP 可得PD 2=OD ·DE ,即32=2×DE .∴DE =92,故点E 的坐标为⎝⎛⎭⎫-92,0. 25.解:(1)如图D102,∵ABCD 是矩形,MN ∥AD ,EF ∥CD , ∴四边形PEAM .PNCF 也均为矩形. ∴a =PM ·PE =S 矩形PEAM ,b =PN ·PF =S 矩形PNCF . 又∵BD 是对角线,∴△PMB ≌△BFP ,△PDE ≌△DPN ,△DBA ≌△DBC .∵S 矩形PEAM =S △BDA -S △PMB -S △PDE ,S 矩形PNCF =S △DBC -S △BFP -S △DPN , ∴S 矩形PEAM =S 矩形PNCF .∴a =b . (2)成立.理由如下:∵ABCD 是平行四边形,MN ∥AD ,EF ∥CD , ∴四边形PEAM ,PNCF 也均为平行四边形. 模仿(1)可证S 平行四边形PEAM =S 平行四边形PNCF .图D102(3)由(2)可知,S 平行四边形PEAM =AE ·AM sin A , S 平行四边形ABCD =AD ·AB sin A∴S 平行四边形PEAM S △ABD =2S 平行四边形PEAM 2S △ABD =2S 平行四边形PEAM S 平行四边形ABCD=2AE ·AM sin A AD ·AB sin A =2·AE AD ·AM AB . 又∵BP PD =k ,即BP BD =k k +1,PD BD =1k +1,而AE AD =BP BD =k k +1,AM AB =PD BD =1k +1, ∴2×k k +1×1k +1=49,即2k 2-5k +2=0.∴解得k 1=2,k 2=12.故存在实数k =2或12,使得S 平行四边形PEAM S △ABD=49.。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(时间:120分 满分:120分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列实际问题中的数据是近似数的有【 】①我国人口总数为:122389万人,②.某本书共有304页,③.九年级某班学生共有53人,④.圆周率 3.14π≈ ⑤.若干千克苹果平均分给若干个人,每人大约得3.33千克 A .①④⑤ B.②⑤ C.③④ D.① ② 2.下列各式运算正确的是【 】A. 235a a a +=B. 235a a a = C.235()a a = D .1025a a a ÷= 3. 把点1(23)P -,向右平移3个单位长度再向下平移2个单位长度到达点2P 处,则2P 的坐标是 【 】A.(51)-, B.(15)--, C.(55)-, D.(11)--, 4. 已知线段a 、b 、c 并有a>b>c,则组成三角形满足的条件是 【 】A .a+b>c B.a+c>b C.a-b<c D .b-c<a5.如图,为测楼房BC 的高,在距离楼房30米的A 处,测得楼顶的仰角为α,则楼高BC 的高为 【 】 A.30tan α米; B.30tan α米; C.30sin α米; D.30sin α米.6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是 【 】 A .13 B .12 C .34 D .237.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是【 】8. 如图,一张矩形纸片,沿折痕CE 分别作两次不同情况的折叠,①顶点B 落在AD 边上(如图1);②顶点B 落在矩形ABCD 的内部(如图2).那么∠1+∠2与∠3+∠4的大小 关系是【 】A .∠1+∠2=∠3+∠4 B.∠1+∠2<∠3+∠4 C .∠1+∠2>∠3+∠4 D.不能确定二、填空题 (本大题共8小题,每小题3分,共24分)9. ( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ).2sin60°·tan30°=(Ⅱ).利用计算器计算:2sin42°≈ (保留4个有效数字) 10.不等式x -3<0的最大整数解是11.如图,在△ABC 中,E 、F 分别是AB 、AC 上点,当∠1+∠2+∠B+∠C=300°时,∠A= 度.12.如图.AB 是⊙O 的切线,∠B=30°,则 OA ︰OB= 13. 写一个不等式(组),使它的整数解有且仅有:-1、-2,则这个不等式(组)可以是__________________.14. 观察下列各直角坐标系中的正方形ABCD ,点P(x,y)是四条边上的点,且x ,y 都是整数,由图中所包含的规律,可得第n 个图中满足条件的点P 个数是_____________(用含n 的代数式表示).15.如图:已知直线AB ∥y 轴,且直线AB 分别与函数2y x = (x>0)、ky x= (x>0)的图象交于A 、B 两点,并知△AOB 的面积2.5,则k=16.如图中,∠ABC=60,∠B DE=∠C=45,DF=1, AB=1+3,DE ⊥AB,分别交AB 于F,BC 于E,则下列结论: ①AF =EF ;②△ADF ≌△EBF ;③21=AE BD ; ④△DBE ∽△CEA 中,正确结论的序号.......是 (多填或错填得0分,少填酌情给分) . 三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 求代数式的值:)2422(4222+---÷--x x x x x x ,其中22+=x18.如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE AB 于E ,DF ⊥AC 于F.(1)请你写出图中与A 点有关的三个不同类型的正确结论; (2)DE 与DF 在数量上有何关系?并证明之.19.某班同学上学期全部参加了捐款献爱心活动,个人捐款额见 如下统计图,资助对象金额分配情况见如下统计表(1)补填统计表中的空白;(2)求该班学生个人捐款额的中位数和众数;(3)求捐款额多于15元的学生数占全班人数的百分数; (4)根据统计表中的数据画出扇形统计图.四、(本大题共2小题,每小题8分,共16分)20. 在平行四边形ABCD 中,对角线AC ,BD 交于O 点(BD>AC ),E 、F 是BD 上的两点. (1) 当点E 、F 满足条件: 时,四边形AECF 是平行四边形(不必证明); (2)当点E 、F 满足条件: 时,四边形AECF 是矩形,并加以证明.资助对象灾区 民众 重病 学生 孤老 病者 捐助金额 (元)13518921.现有三个数:1、3、5,要添加一数,使得它们的平均数增大,平均数增大多少,只能通过如图所示的自由转盘来决定,你认为添加一个什么数可能性较大?五、(本大题共2小题,第22题8分,第23题9分,共17分)22.在⊙O中,AB是非直径弦,弦CD⊥AB,(1)当CD经过圆心时(如图1)∠AOC+∠DOB= 度;(2)当CD不经过圆心时(如图2), ∠AOC+∠DOB的度数与(1)的情况相同吗?试说明你的理由.23. 在购买课桌椅时,设购买套数为x(套),总费用为y(元).现有两种购买方案:方案一:若学校赞助出售单位10000元,则该校所购课桌椅的价格为每套40元;(总费用=赞助费+课桌椅费)方案二:购买课桌椅方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤200时,y与x的函数关系式为;当x>200时,y与x的函数关系式为;(2)如果购买课桌椅超过200套,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两校分别采用方案一、方案二购买课桌椅共500套,花去总费用计40000元,求甲、乙两校各购买课桌椅多少套.六、(本大题共2小题,第24题9分,第25题10分,共19分)24.有一张梯形纸片ABCD,DC∥AB,∠DAB=90°,将△ADC沿AC折叠,点D恰好落在BC的中点E上(如图1)(1)求证:∠DAC=∠EAB;(2)当上底DC=10cm时,求梯形两腰AD、BC的长;(3)若过E作EF⊥AB于F,现将这张梯形纸片沿AE、EF剪成三块,然后按如图2所示拼成四边形HDAE(对应部分有相同的编号),那么四边形HDAE是什么特殊四边形(不证明)?并请你在图3中画出两条分割线(虚线),同样将梯形纸分成三块,然后拼成一个正六边形,要求仿图2方法画出拼图.25.在直角坐标系中,△ABC 的顶点坐标为A (4,6),B (2,3),C (5,3).将△ABC 绕点C 顺时针旋转180°后得到△11CB A .(1)求A 1,B 1的坐标;(2)已知坐标系中有抛物线y=ax 2-10ax+24a (a ≠0) ①求该抛物线与x 轴的交点坐标,并说明这两交点分别与A 点有何位置关系(从对称角度来说明)?②当抛物线经过点B 时,能否确定一定经过点B 1,说说你的理由;③若点P 是该抛物线的顶点,是否存在一个实数a,使△BPB 1与△BAC 相似,若存在,求出P 点坐标,若不存在,说明其理由.2013年中考数学模拟卷(一)参考答案一、选择题(本大题共8小题,每小题3分,共24分)1. A,2. B,3. C4. C,5. A ,6. C7. D ,8. A 二、填空题 (本大题共8小题,每小题3分,共24分)9. (Ⅰ). 1,(Ⅱ) 1.338 10. 2 11. 30 12. 1︰2 13.如:10250x x +≤⎧⎨+>⎩14. 4n , 15. -3 16.①②④三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 解: 原式=2242222+-÷--x xx x x x =错误!不能通过编辑域代码创建对象。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年初三数学模拟试题(带答案)

2013年初三数学模拟试题(带答案)

2013年初三数学模拟试题(带答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面四个数中,最小的数是( * )(A)0 (B)1(C)-3 (D)-22. 如图,是#61597;O的直径,点C在圆上,且50deg;.则 ( * )(A)50deg; (B) 40deg;(C)30deg; (D)20deg;3.一个几何体的三视图如右图所示,这个几何体是( * ).(A)圆柱 (B)圆锥(C)棱柱 (D)其它4.若分式有意义,则x的取值范围是( * ).(A) (B)(C) (D)5.一元二次方程根的情况是( * )(A)有两个不相等的实数根 (B)有两个相等的实数根(C)只有一个实数根 (D)没有实数根6.函数的图像经过( * ).(A)第一、二、三象限 (B)第一、二、四象限(C)第二、三、四象限 (D)第一、三、四象限7.如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的周长为( * )(A)8 (B)10(C)12 (D)148.如图,,于交于,已知,则 ( )(A)30deg; (B)45deg;(C)60deg; (D)75deg;9.已知⊙O1和⊙O2相切,两圆的圆心距为10cm,⊙O1的半径为4cm,则⊙O2的半径为( * ).(A)3cm (B)6cm (C)2cm (D)4cm10.将一个斜边长为的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到另一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到又一个等腰直角三角形(如图3),若连续将图1的等腰直角三角形折叠次后所得到的等腰直角三角形(如图n+1)的斜边长为( * ).第二部分非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,共18分)11.将28000用科学记数法表示为 * ;12.化简: * ;13.不等式的解集是 * ;14.某校九年级(2)班50名同学为玉树灾区献爱心捐款情况如下表:捐款(元) 10 15 30 40 50 60人数 3 6 11 11 13 6则该班捐款金额的平均数是 * ;15.已知是实数,下列四条命题:①如果,那么 ;②如果,那么 ;③如果,那么 ;④如果,那么 .其中真命题的是 * ;(填写所有真命题的序号)16.如图,直线和x轴、y轴分别交于点A、B.,若以线段AB为边作等边三角形ABC,则点C的坐标是 * .三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤.)17. (本题满分9分)解方程组:18.(本题满分9分)如图,AC是平行四边形ABCD的对角线,ang;ACB=ang;ACD.求证:AB=AD19. (本题满分10分)先化简,再求值:,其中20. (本题满分10分)某专卖店开业首季度只试销A、B、C、D四种型号的电动自行车,试销结束后,经销人员绘制了如下两幅统计图,如图①和图②(均不完整).(1)该专卖店试销的四种型号中,型号的电动自行车的销售量最好;(2)试销期间,该专卖店电动自行车总销量是多少?B 型电动自行车、C型电动自行车的销售量分别是多少?(3)如果要从首季度销售了的B、C型号的电动自行车中,随机抽取一台进行质量跟综,抽到型号B的概率是多少?21. (本题满分12分)已知反比例函数的图象经过(1,-2).(1)求该反比例函数的解析式;(2)选取适当的数据填入下表,并在如图所示的直角坐标系内描点画出该反比例函数的图象:(3)根据图象求出,当时,x的取值范围;当时,yy的取值范围.22.(本题满分12分)某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是※ 元;若用水2800吨,水费是※ 元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水多少吨?23.(本题满分12分)如图,在一个边长为1的正方形网格上,把△ABC向右平移4个方格,再向上平移2个方格,得到△Aprime;Bprime;Cprime;(Aprime; Bprime;分别对应A、B).(1)请画出平移后的图形,并标明对应字母;(2)求四边形AAprime;Bprime;B的周长和面积.(结果保留根式)24. (本题满分14分)已知抛物线L:(1)证明:不论k取何值,抛物线L的顶点C总在抛物线上;(2)已知时,抛物线L和x轴有两个不同的交点A、B,求A、B间距取得最大值时k的值;(3)在(2)A、B间距取得最大值条件下(点A在点B的右侧),直线y=ax+b是经过点A,且与抛物线L相交于点D 的直线. 问是否存在点D,使△ABD为等边三角形,如果存在,请写出此时直线AD的解析式;如果不存在,请说明理由.25.(本题满分14分)如图⊙P的圆心P在⊙O上,⊙O的弦AB所在的直线与⊙P切于C,若⊙P的半径为r,⊙O的半径为R. ⊙O和⊙P 的面积比为9∶4,且PA=10,PB=4.8,DE=5,C、P、D三点共线.(1)求证: ;(2),求AE的长;(3)连结PD,求sinang;PDA的值.。

2013年中考数学模拟试卷(十二)(含答案)

2013年中考数学模拟试卷(十二)(含答案)

2013年中考数学模拟试卷(十二)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分) 1.2013(1)-的结果是【 】A .2013B .1C .-2013D .-1 2.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是【 】A . 3.下列运算正确的是【 】A .236a a a ⋅= B5.如图,是由6个棱长为1个单位的正方体摆放而成的几何体,将正方体A 向右平移2个单位,再向后平移1个单位后,所得几何体的视图跟原几何体的视图相比【 】A .主视图改变,俯视图改变B .主视图不变,俯视图不变C .主视图不变,俯视图改变D .主视图改变,俯视图不变图1 第5题图 第6题图6.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,若y 关于x 的函数图象如图2所示,则当x =9时,点R 应运动到【 】A .N 处B .P 处C .Q 处D .M 处7.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数ky x=(x >0)的图象经过点A ,则k 的值为【 】图②图①A月份1—5月份电量统计图 1~5月份电量统计图A .-6B .-3C .3D .6第7题图 第8题图8.已知正方形ABCD 的边长为5,E 在BC 边上运动,G 是DE 的中点,EG 绕E顺时针旋转90°得EF ,当CE 为多少时,A ,C ,F 在一条直线上【 】 A .35B .43C .53D .34二、填空题(每小题3分,共21分)9.计算:=________.10.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是___题.11___________. 12.某同学中午醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是___________.13.如图,O 为矩形ABCD 的中心,M 为BC 边上任一点,ON ⊥OM 且与CD 边交于点N .若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 之间的函数关系式为__________.NM ODC BAMG FE DC BAPQCBA第13题图第14题图 第15题图14.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =45°,且DM 交AC 于点F ,ME 交BC 于点G ,连接FG .若AB =,AF =3,则FG =________.15.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,P 是BC 边上的动点,设BP =x ,若能在AC 边上找到一点Q ,使∠BQP =90°,则x 的取值范围是____. 三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:22122121x x x x x x x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足210x x --=.17.(9分)张老师就本班学生对心理健康知识的了解程度进行了一次调查统计.如图是他采集数据后绘制的两幅不完整的统计图(A :熟悉,B :了解较多,C :一般了解),请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数; (4)如果全年级共1 000名同学,请你估算全年级对心理健康知识“了解较多”的学生人数.图2图1A 50%C 20%B了解程度18.(9分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,F 为BC 中点,BE 与DF ,DC 分别交于点G ,H ,∠ABE =∠CBE . (1)线段BH 与AC 相等吗?若相等,给予证明;若不相等,请说明理由. (2)求证:BG 2 GE 2=EA 2.GHFEDBC A 19.(9分)一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y (千米)与轮船出发时间x (小时)之间的函数图象,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度-水流速度)(1)甲、乙两港口的距离是____千米,快艇在静水中的速度是___千米/时; (2)直接写出轮船返回时的解析式,并写出自变量的取值范围; (3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?20.(9分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°, ∠BFQ =60°,EF =1km .(1)判断AB ,AE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49, sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)PABF E21.(10分)我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1 520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元.经过市场调查发现:该产品的销售单价定在200元到300元之间较为合理,销售单价x (元)与年销售量y (万件)之间的变化可近似的看作是如下表所反映的一次函数:1075250230200年销售量y (万件)销售单价x (元)(1)请求出y 与x 之间的函数关系式,并直接写出自变量x 的取值范围. (2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损多少?(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1 790万元?若能,求出第二年的产品售价;若不能,请说明理由.22.(10分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =6cm ,AB =8cm ,BC =14cm .动点P ,Q 都从点C 出发,点P 沿C →B 方向做匀速运动,点Q 沿C →D →A 方向做匀速运动,当其中一点到达终点时,另一点也随之停止运动.23.(11分)如图,在平面直角坐标系中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数ky x=(k >0)的图象过点E 且与直线1l 相交于点F . (1)若点E 与点P 重合,求k 的值.(2)连接OE ,OF ,EF .若k >2,且△OEF 的面积为△PEF 面积的2倍,求点E 的坐标.(3)是否存在点E 及y 轴上的点M ,使得以点M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求出点E 的坐标;若不存在,请说明理由.备用图2013年中考数学模拟试卷(十二)参考答案910.9 11.50π12.1 413.23y x14.5315.34≤≤x三、解答题16.原式21x x+=,由210x x --=得,原式=1. 17.(1)40名;(2)略;(3)108°;(4)300人. 18.(1)相等,证明略;(2)证明略. 19.(1)72,38;(2)20152y x =-+,4≤≤x 7.6;(3)快艇出发3或3.4小时,轮船和快艇在返回途中相距12千米. 20.(1)AB =AE ,理由略;(2)3.6km .21.(1)13010y x =-+,200300≤≤x ;(2)亏损,最少亏损400万元; (3)不能,理由略. 22.(1);(2)214044564≤ t t t S t t ⎧-+<⎪=⎨-+<⎪⎩;(3)33a +≥. 23.(1)k =2; (2)E (3,2);(3)存在,1823 E ⎛⎫ ⎪⎝⎭,,2328 E ⎛⎫ ⎪⎝⎭,.。

2013届中考数学模拟试题(含答案)

2013届中考数学模拟试题(含答案)

2013届中考数学模拟试题(含答案)一、选择题本大题共8小题,每小题3分,共24分.1.一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和22.下列各式中,正确的是()A.(-3)2=-3B.-32=-3C.(±3)2=±3D.32=±33.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为() A.2B.23C.4D.434.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.56.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定7.已知二次函数的图象(-0.7≤x≤2)如右图所示.关于该函数在所给自变量x的取值范围内,下列说法正确的是()A.有最小值1,有最大值2B.有最小值-1,有最大值1C.有最小值-1,有最大值2D.有最小值-1,无最大值8.如右图,正五边形ABCDE中,对角线AC、AD与BE分别相交于点N、M.下列结论错误的是()A.四边形NCDE是菱形B.四边形MNCD是等腰梯形C.△AEM与△CBN相似D.△AEN与△EDM全等二、填空题本大题共10小题,每小题3分,共30分.9.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是. 10.如图,□ABCD中,∠A=120°,则∠1=°.11.如图,河堤横断面迎水坡AB的坡比是1:3,则坡角∠A=°.12.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=°.13.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为.14.如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE=.15.如图,梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=30°,则sin∠BAD=.16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面积之和为cm2(结果保留π).17.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你所确定的b的值是(写出一个值即可).18.边长为2的两种正方形卡片如上图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为(结果保留π).三、解答题19.(本题满分8分)(1)计算:(3+6)(2-1)-3tan30°-2cos45°. (2)已知关于x的方程kx2=2(1-k)x-k有两个实数根,求k的取值范围. 20.(本题满分8分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.21.(本题满分8分)某校初三所有学生参加2011年初中毕业英语口语、听力自动化考试,现从中随机抽取了部分学生的考试成绩,进行统计后分为A、B、C、D四个等级,并将统计结果绘制成如下的统计图.请你结合图中所提供的信息,解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D 级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校初三共有850名学生,试估计该年级A级和B级的学生共约为多少人.22.(本题满分8分)在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字12,2,4,-13.小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.(1)用列表法或画树状图,表示所有这些点的坐标;(2)小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y=x图象上方时小明获胜,否则小华获胜.你认为这个游戏公平吗?请说明理由.23.(本题满分10分)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm)24.(本题满分10分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-92).(1)求抛物线对应的函数关系式;(2)求四边形ACDB的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.25.(本题满分10分)如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.(1)判断直线BP和⊙O的位置关系,并说明你的理由;(2)当⊙O的半径为5,AC=2,BE=1时,求BP的长.26.(本题满分10分)某专买店购进一批新型计算器,每只进价12元,售价20元.多买优惠:凡一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元.例如:某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.设一次性购买计算器为x只,所获利润为y元.(1)若该专卖店在确保不亏本的前提下进行优惠销售,试求y与x(x >10)之间的函数关系式,并写出自变量x的取值范围;(2)若该专买店想获得200元的销售利润,又想让消费者多获得实惠,应将每只售价定为多少元?(3)某天,顾客甲买了42只新型计算器,顾客乙买了52只新型计算器,店主却发现卖42只赚的钱反而比卖52只赚的钱多,你能用数学知识解释这一现象吗?27.(本题满分12分)如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=32,求AG、MN的长.28.(本题满分12分)如图a,在平面直角坐标系中,A(0,6),B(4,0).(1)按要求画图:在图a中,以原点O为位似中心,按比例尺1:2,将△AOB缩小,得到△DOC,使△AOB与△DOC在原点O的两侧;并写出点A的对应点D的坐标为,点B的对应点C的坐标为;(2)已知某抛物线经过B、C、D三点,求该抛物线的函数关系式,并画出大致图象;(3)连接DB,若点P在CB上,从点C向点B以每秒1个单位运动,点Q在BD上,从点B向点D以每秒1个单位运动,若P、Q两点同时分别从点C、点B点出发,经过t秒,当t为何值时,△BPQ是等腰三角形?九年级数学参考答案及评分说明一、选择题1~4DBCD5~8DBCC三、解答题19.(1)原式=3-3×33-2×22……3分=3-3-1=-1.……4分(2)原方程可化为kx2-2(1-k)x+k=0,b2-4ac=4-8k,……2分∵方程有两个实数根,∴b2-4ac≥0,即4-8k≥0,∴k≤1/2.……3分∵k≠0,∴k的取值范围是k≤1/2,且k≠0.……4分20.证:(1)由□ABCD,得AD=BC,AD∥BC.……2分由BE=DF,得AF=CE,∴AF=CE,AF∥CE.……3分∴四边形AECF是平行四边形;……4分(2)由菱形AECF,得AE=EC,∴∠EAC=∠ACE.……5分由∠BAC=90°,得∠BAE=∠B,∴AE=EB.……7分∴BE=AE=EC,BE=5.……8分21.(1)右图所示;……2分(2)10%;……4分(3)72°;……6分(4)561.……8分22.(1)用表格列出这些点所有可能出现的结果如下:……4分1/224-1/31/2(1/2,2)(1/2,4)(1/2,-1/3)2(2,1/2)(2,4)(2,-1/3)4(4,1/2)(4,2)(4,-1/3)-1/3(-1/3,1/2)(-1/3,2)(-1/3,4)(2)在正比例函数y=x图象上方的点有:(1/2,2)、(1/2,4)、(2,4)、(-1/3,1/2)、(-1/3,2)、(-1/3,4).……6分∴P(小明获胜)=1/2,P(小华获胜)=1/2.∴这个游戏是公平的.……8分23.解:作BE⊥l于点E,DF⊥l于点F.……2分∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠α=36°.根据题意,得BE=24mm,DF=48mm.……4分在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分∴矩形ABCD的周长=2(40+60)=200(mm).……10分24.(1)设二次函数为y=a(x-1)2-9/2,……1分求得,a=1/2,……3分∴y=1/2(x-1)2-9/2.……4分(2)令y=0,得x1=-2,x2=4,∴B(4,0),……6分令x=0,得y=-4,∴C(0,-4),……7分S四边形ACDB=15.∴四边形ACDB的面积为15.……8分(3)如:向上平移9/2个单位,y=1/2(x-1)2;向上平移4个单位,y=1/2(x-1)2-1/2;向右平移2个单位,y=1/2(x-3)2-9/2;向左平移4个单位y=1/2(x+3)2-9/2.(写出一种情况即可).……10分25.(1)直线BP和⊙O相切.……1分理由:连接BC,∵AB是⊙O直径,∴∠ACB=90°.……2分∵PF∥AC,∴BC⊥PF,则∠PBH+∠BPF=90°.……3分∵∠BPF=∠ADC,∠ADC=∠ABC,得AB⊥BP,……4分所以直线BP和⊙O相切.……5分(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4.……6分∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB∽△EBP,……8分∴ACBE=BCBP,解得BP=2.即BP的长为2.……10分当x=50时,20-(50—10)×0.1=16(元),当x=40时,20-(40—10)×0.1=17(元).……6分∵16<17,∴应将每只售价定为16元.……7分(3)y=-0.1x2+9x=-0.1(x-45)2+202.5.①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤90时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=42时,y1=201.6元,当x=52时,y2=197.6元.……9分∴y1>y2.即出现了卖46只赚的钱比卖50只嫌的钱多的现象. (10)分27.(1)由∠BAD=∠ABC=∠ADC=90°,得矩形ABCD,……2分由AB=AD,得四边形ABCD是正方形.……3分(2)MN2=ND2+DH2.……4分理由:连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,∴∠NDH=90°,……6分再证△AMN≌△AHN,得MN=NH,……7分∴MN2=ND2+DH2.……8分(3)设AG=x,则EC=x-4,CF=x-6,由Rt△ECF,得(x-4)2+(x-6)2=100,x1=12,x2=-2(舍去)∴AG=12.……10分由AG=AB=AD=12,得BD=122,∴MD=92,设NH=y,由Rt△NHD,得y2=(92-y)2+(32)2,y=52,即MN=52.……12分28.(1)画图1分;C(-2,0),D(0,-3).……3分(2)∵C(-2,0),B(4,0).设抛物线y=a(x+2)(x-4),将D(0,-3)代入,得a=3/8.……5分∴y=3/8(x+2)(x-4),即y=3/8x2-3/4x-3.……6分大致图象如图所示.……7分(3)设经过ts,△BPQ为等腰三角形,此时CP=t,BQ=t,∴BP=6-t.∵OD=3,OB=4,∴BD=5.①若PQ=PB,过P作PH⊥BD于H,则BH=1/2BQ=1/2t,由△BHP∽△BOD,得BH:BO=BP:BD,∴t=48/13s.……9分②若QP=QB,过Q作QG⊥BC于G,BG=1/2(6-t).由△BGQ∽△BOD,得BG:BO=BQ:BD,∴t=30/13s.……10分③若BP=BQ,则6-t=t,t=3s.……11分∴当t=48/13s或30/13s或3s时,△BPQ为等腰三角形.……12分。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年中考数学模拟试题和答案

2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。

2013年历年初三数学中考模拟题及答案

2013年历年初三数学中考模拟题及答案

2013届中考模拟试题数 学一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0C.210x += D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为() A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )_1_ A _1_ A(第13题图)A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ( )二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12、方程2(34)34x x -=-的根是 .A .B. C.D .(第8题图)13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=o,D 为BC 上一点,30DAC ∠=o ,2BD =,AB =AC 的长是.三、(第15题每小题6分,第16题6分,共18分) 15、解答下列各题:(1)计算:323+—2)(-+2cos30°—23—(2)解方程:2430x x +-=.17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年数学科中考模拟试题及答案

2013年数学科中考模拟试题及答案

…… 2013年数学科中考模拟试题(考试时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分).1、下列四个数中,其相反数是正整数的是( ) A .3B .13C .2-D .12-2、湛江是个美丽的海滨城市,海岸线长达1556000米,数据1556000用科学记数法表示为( ) A .71.55610⨯ B .80.155610⨯ C .515.5610⨯ D .61.55610⨯3、若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.24、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <5、对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 6、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为( ) A 、20% B 、40% C 、50% D 、60%7、如图,AB//CD ,∠2是∠1的2倍,则∠1等于( )A 、 60°B 、90°C 、120°D 、30°8、如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是( )A 、 两个相交的圆B 、两个内切的圆C 、两个外切的圆D 、两个外离的圆9、若弧长为6π的弧所对的圆心角为60 0,则该弧所在的圆的半径为( ) A . 6 B .63 C .123 D .1810、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 ( ).班级: 学号: 姓名: .......................................................答…….案……..不……..准……….超………出……..密……..封………线…………………………..21DC B A第7题图 第8题图A B C DE FA 、n 21 B 、n 21 C 、n 221 D 、2n 221- 二、填空题(本大题6小题,每小题4分,共24分).11、分解因式:3269x x x -+= .12、一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则这件衬衣的进价是 元. 13、关于的一元二次方程有两个实数根,则的取值范围是 .14、抛物线3)1(22+-=x y 的开口向 , 对称轴是 的顶点坐标为 .15、如图,在□ABCD 中,E 为AD 的中点,△DEF 的面积为6,则△BCF 的面积为 。

2013年数学中考模拟试题试题及答案

2013年数学中考模拟试题试题及答案

α2013年数学中考模拟试题一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1.-6的相反数是().A、-6 B、6 C、61- D、612.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小。

”如果每人每天浪费0.01千克粮食,,我国13亿人每天就浪费粮食()A . 1.3³105 千克B . 1.3³106千克C . 1.3³107千克D . 1.3³108千克3.函数y=1-x中自变量x的取值范围是()A.x>1 B. x≥1 C. x<1 D. x≤14.将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的()(A)(B)(C)(D)5. 在反比例函数xky=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且1x>2x>0,则12y y-的值为()A、正数B、负数C、非正数D、非负数7.把不等式组1010xx+>⎧⎨-⎩,≤的解集表示在数轴上,正确的是()6.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()A、平均数 B、加权平均数 C、中位数D、众数8. 一副三角板,如图所示叠放在一起,则图中∠α的度数是()A、 75° B、60°C、65°D、55°9. 图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为a,b,c, (不记接头部分),则a, b, c,的大小关系为()。

A、a=b >c B. a=b=c C. a<b<c D. a>b>c(第8题)(第9题)10.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A、B、C、D、二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11.若2x+5y-3=0,则4x²32y的值为 .12.如图,直线yxy与434+-=轴交于点A,与直线5454+=xy交于点B,且直线54=yx轴交于点C,则ABC∆的面积为13. 如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=24,则⊙O的直径等于。

2013年中考数学模拟试题(第一组)

2013年中考数学模拟试题(第一组)

2013年中考数学模拟试题(第一组)数 学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卡上,在试卷上作答无效.........考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑. 1.-5的绝对值是:(A )-5(B )51 (C )-51 (D )52.某同学把如图1所示的几何体的三种视图画出如下(不考虑尺寸):这三种视图正确的是:(A )主视图和左视图 (B )主视图和俯视图 (C )左视图和俯视图 (D )全部正确 3.在学习党的十八大精神的知识竞赛中,全国有10.5万人参加,10.5万人用科学记数法表示为:(A )10.5×310 (B )1.05×410 (C )1.05×510(D )1.05×6104. 下列计算中,正确的是:(A )25 =±5 (B )=(C )325a a a ⋅= (D )22x x x -= 5.在函数y =x 的取值范围是: (A )x ≥ 3(B )x ≤ 3 (C )x ≥ - 3(D )x ≤ - 36.把多项式22123x y -分解因式所得结果是:(A )3(4 x 2-y 2) (B )3(2x+y )(2x -y ) (C )3(4x+y )(4x -y ) (D )(12x+3y)(12x -3y) 7.函数x1y -=的图象上有两点A )y ,x (11,B )y ,x (22,若21x x 0<<,则: (A ) 21y y < (B ) 21y y > (C ) 21y y = (D ) 1y 、2y 的大小不确定8.如图2,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为:(A )3 (B )5 (C )23 (D )25A主视图左视图俯视图图19.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。

2013年中考数学模拟题

2013年中考数学模拟题

2013年中考数学模拟题(仿真卷)一、选择题(每小题3分,共15分)1.∣-3∣的相反数是 ( )A. -3B. 3C. -31D.312.一次课堂练习,小华做了如下4道因式分解题,你认为小华做得不够完整的一题是 ( )A. x 3-x =x(x 2-1)B. x 2-2xy+y 2=(x-y)2C. x 2y-xy 2=xy(x-y)D. x 2-y 2=(x+y)(x-y)3.如图所示的两个圆盘中,指针落在同一个圆盘的每一个区域的机会均等,则两个指针同时落在偶数区域的概率是 ( )A. 121B. 61C. 21D.654.如图,MB=ND ,∠MBA=∠NDC ,下列条件中, 不能判定ΔABM ≌ΔCDN 的是 ( )A. ∠M=∠NB.AB=CDC. AM=CND. AM ∥CN5.如图,⊙O 的半径是5,弦AB 的长是8,M 为弦AB 上的动点,则线段OM 长的最小值是 ( )A. 2B. 3C. 4D. 5二、填空题(每小题4分,共20分)6.函数y=x 24 的自变量x 的取值范围是 ___________.7.0.00624用科学记数法表示为___________.8. 已知不等式组无解,则9.如图,两直线a、b 被第三条直线c所截,若a ∥b∠1=70°,则∠2 =_____度。

10.如图,圆锥的主视图是边长为6的正三角形ABC ,则这个圆锥侧面展开图的圆心角是_____度。

三、解答题(每小题6分,共30分)11. 先化简,再求值:a a 2-1 ÷(1+ 1a-1),其中 a = 3-1 .12.已知ΔABC (如图)。

求作:(1)线段AB 的中点O ;(2)以O 为旋转中心,将ΔABC 旋转180°后的ΔA ′B ′C ′。

(要求用直尺圆规作图,用不用写画法,但要保留作图痕迹)。

13. 已知一次函数y=kx+k P (4,n )。

(1)求n 的值;(214. 如图,在ΔABC 中,∠ACB=90°,CD ⊥AB 于D 。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南安实验中学2013年中考数学模拟试题(一)(满分:150分;考试时间:120分钟)班级: 姓名: 座号: 成绩: 一、选择题:(每小题3分,共21分) 1. -3的绝对值是( )A .13B . - 13 C .3 D .-32. 下列运算正确的是( )A .632)(x x = B .22)(xy xy = C .22x x x =⋅ D .422x x x =+3.下列图形中,一定是中心对称图形的是( ).A .等腰三角形B .直角三角形C .梯形D .平行四边形 4.不等式组⎩⎨⎧<>-4201x x 的解集是( ).A .x >1B .x <2C .1<x <2D .无解 5.下列正多边形中,能够铺满地面的是( ).A .正五边形B .正六边形C .正七边形D .正八边形6.已知⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=7,则⊙O 1和⊙O 2的位置关系是( ). A .外离 ; B .外切 ; C. 相交 ; D .内含 .7. 已知A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是( ).A .2613-πB .3216-πC .2814-πD .2412-πP 二、填空题:(每小题4分,共40分) 8.-2的相反数是 .9.宝岛台湾的面积约为36 000平方公里,用科学记数法表示约为________平方公里. 10.分解因式:x x 22- = .11.“明天会下雨”是 事件.(填“必然”或“不可能”或“可能” ). 12.二元一次方程组2,x y x y +=⎧⎨-=⎩的解是 .13.如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =________度. 14.已知正比例函数)0(≠=k kx y 的图像过点A (2,1),则k =________. 15.如图,正方形ABCD 是⊙O 的内接正方形,点P 是⌒CD 上不同于点C 的任意一点,则∠BPC 的度数是_____________度.16.圆锥的母线长为5cm ,底面半径为3cm ,那么它的侧面展开图的圆心角等于 .17.如图5,已知∠ABC =90°,AB =πr ,BC =πr2,半径为r 的⊙O 从点A 出发,沿A →B →C 方向滚动到点C 时停止.请你根据 题意,在图5上画出圆心..O 运动路径的示意图; 圆心O 运动的路程是 . 三、解答题:(共89分)18.(9分)计算:218212013420⨯-⎪⎭⎫ ⎝⎛-+--AFBECD19.(9分)先化简,再求值:()()()2212-+--a a a ,其中252+-=a .20.(9分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A 、B 、C 、D 四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图 提供的信息,解答下列问题: (1)该课题研究小组共抽查了 _________名同学的体育测试成绩,扇形统计图中B 级所占的百分比 B=___________;(2)补全条形统计图;(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C 级)约有___________名.21.(9分)已知:如图点C E B F ,,,在同一直线上,AC DF ∥,AC DF =,BF CE =. 求证:DEF ABC ∆≅∆。

22.(9分)将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中。

(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于..4的概率(用树状图或列表法求解)。

23.(9分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABO △的三个顶点A B O ,,都在格点上. (1)画出ABO △绕点O 逆时针旋转90后得到的三角形;(2)求点B 在上述旋转过程中所经过的路线的长。

24.(9分)在Rt ABC △中,90ACB ∠=°,BD 是O ⊙的直径,弦DE 与AC 交于点E , 且BD BF =。

(1)求证:AC 是O ⊙的切线;(2)若64BC AD ==,,求O ⊙的面积。

25.(13分)如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,0c,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO.求此时t的值及点H的坐标.26.(13分)已知直线y =k x +6(k<0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒2个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.(1)当k =-1时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1). ①直接写出t =1秒时C 、Q 两点的坐标;②若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值. (2)当43-=k 时,设以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D (如图2),①求CD 的长; ②设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?图1图1备用图【答案】25、解:(1)如图,过点C 作CK ⊥x 轴于K , ∵y=2x+4交x 轴和y 轴于A ,B , ∴A (-2,0)B (0,4)。

∴OA=2,OB=4。

∵四边形ABCO 是平行四边形,∴BC=OA=2 。

又∵四边形BOKC 是矩形,∴OK=BC=2,CK=OB=4。

∴C (2,4)。

将C (2,4)代入y=-x+m 得,4=-2+m ,解得m=6。

(2)如图,延长DC 交y 轴于N ,分别过点E ,G 作x 轴的垂线 垂足分别是R ,Q ,则四边形ERQG 、四边形POQG 、四边形EROP 是矩形。

∴ER=PO=CQ=1。

∵ER OB tan BAO AR OA ∠==,即t 4AR 2=,∴AR=12t 。

∵y=-x+6交x 轴和y 轴于D ,N ,∴OD=ON=6。

∴∠ODN=45°。

∵GQtan ODN QD ∠=,∴DQ=t 。

又∵AD=AO+OD=2+6=8,∴EG=RQ=8-12t -t=8-32t 。

∴d=-32t+8(0<t <4)。

(3)如图,∵四边形ABCO 是平行四边形, ∴AB ∥OC 。

∴∠ABO=∠BOC 。

∵BP=4-t , ∴EP 1tan ABO tan BOC BP 2∠==∠=。

∴EP=t 42-。

由(2)d=-32t+8,∴PG=d -EP=6-t 。

∵以OG 为直径的圆经过点M ,∴∠OMG=90°,∠MFG=∠PFO 。

∴∠BGP=∠BOC 。

∴BP 1tan BGP tan BOC PG 2∠==∠=。

∴4t 16t 2-=-,解得t=2。

∵∠BFH=∠ABO=∠BOC ,∠OBF=∠FBH ,∴△BHF ∽△BFO 。

∴BH BFBF BO=,即BF 2=BH•BO 。

∵OP=2,∴PF=1,BP=2。

∴BF =∴2=BH×4。

∴BH=54。

∴HO=4-511=44。

∴H (0,114)。

26、解:(1)①C (2,4),Q (4,0)…………3分②由题意得:P (2t ,0),C (2t ,-2t +6),Q (6-2t ,0) 分两种情况讨论:情形一:当△AQC ∽△AOB 时,∠AQC =∠AOB =90°, ∴CQ ⊥OA .∵CP ⊥OA ,∴点P 与点Q 重合,OQ =OP , 即6-2t =2t ,∴t =1.5情形二:当△ACQ ∽△AOB 时, ∠ACQ =∠AOB =90°,∵OA =OB =6, ∴△AOB 是等腰直角三角形, ∴△ACQ 也是等腰直角三角形,∵CP ⊥OA ,∴AQ =2CP ,即2t =2(-2t +6),∴t =2,∴满足条件的t 的值是1.5秒或2秒.……………7分 (2)①由题意得:),623,2(+-t t C ∴以C 为顶点的抛物线解析式是623)2(2+--=t t x y , 由 643623)2(2+-=+--x t t x 解得.432,221-==t x t x过点D 作DE ⊥CP 于点E ,则∠DEC =∠AOB =90°.∵DE ∥OA ,∴∠EDC =∠OAB ,∴△DEC ∽△AOB ,∴BACDAO DE =,∵AO =8,AB =10, DE =43)432(2=--t t ,∴CD =161581043=⨯=⨯AO BA DE ………10分②∵1615=CD ,CD 边上的高=5241086=⨯,∴S △COD 为定值.要使OC 边上的高h 的值最大,只要OC 最短,当OC ⊥AB 时OC 最短,此时OC 的长为524,∠BCO =90°, ∵∠AOB =90°∴∠COP =90°﹣∠BOC =∠OBA , 又∵CP ⊥OA ,∴Rt △PCO ∽Rt △OAB .∴,2572106524,=⨯=⨯==BA BO OC OP BA OC BO OP 即25722=t ,∴2536=t ∴当t 为2536秒时,h 的值最大.………………13分。

相关文档
最新文档