2013年中考数学试题(含答案)

合集下载

2013年安徽省中考数学试题及参考答案(word解析版)

2013年安徽省中考数学试题及参考答案(word解析版)

2013年安徽省中考数学试题及参考答案一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( ) A .12-B .12C .2D .﹣22.用科学记数法表示537万正确的是( ) A .5.37×104 B .5.37×105 C .5.37×106 D .5.37×107 3.如图所示的几何体为圆台,其主(正)视图正确的是( )A .B .C .D . 4.下列运算正确的是( )A .2x+3y=5xyB .5m 2•m 3=5m 5C .(a ﹣b )2=a 2﹣b 2D .m 2•m 3=m 6 5.已知不等式组3010x x -⎧⎨+⎩>≥,其解集在数轴上表示正确的是( )A .B .C .D .6.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( )A .60°B .65°C .75°D .80°7.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )2=438D .438(1+2x )2=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( )A.16B.13C.12D.239.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变10.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形二、填空题(本大题共4小题,每小题5分,满分20分)11x的取值范围是.12.分解因式:x2y﹣y=.13.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=.14.已知矩形纸片ABCD中,AB=1,BC=2.将该纸片折叠成一个平面图形,折痕EF不经过A点(E,F是该矩形边界上的点),折叠后点A落在点A′处,给出以下判断:①当四边形A′CDF为正方形时,;②当EF=时,四边形A′CDF为正方形;③当EF=BA′CD为等腰梯形;④当四边形BA′CD为等腰梯形时,其中正确的是(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2sin30°+(﹣1)2﹣|2|.16.(8分)已知二次函数图象的顶点坐标为(1,﹣1),且经过原点(0,0),求该函数的解析式.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.18.(8分)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1猜想:在图(n)中,特征点的个数为(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)20.(10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本题满分12分)21.(12分)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.七、(本题满分12分)22.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x(!)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少? 八(本题满分14分) 23.(14分)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B=∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可); (2)如图2,在“准等腰梯形”ABCD 中∠B=∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC , 求证:A B B E D CE C=;(3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB=EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)参考答案与解析一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( ) A .12-B .12C .2D .﹣2【知识考点】倒数.【思路分析】根据乘积是1的两个数叫做互为倒数解答. 【解答过程】解:∵(﹣2)×(12-)=1,∴﹣2的倒数是12-.故选A .【总结归纳】本题考查了倒数的定义,是基础题,熟记概念是解题的关键. 2.用科学记数法表示537万正确的是( ) A .5.37×104 B .5.37×105 C .5.37×106 D .5.37×107 【知识考点】科学记数法—表示较大的数.。

2013云南省德宏州中考数学试题及答案(Word解析版)

2013云南省德宏州中考数学试题及答案(Word解析版)

云南省德宏州2013年中考数学试卷一、选择题(每小题3分,满分24分)1.(3分)(2013•德宏州)﹣2的绝对值是()B.﹣2 C.D.2A.﹣考点:绝对值分析:根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则﹣2的绝对值就是表示﹣2的点与原点的距离解答:解:|﹣2|=2,故选:D.点评:此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•德宏州)如图,下列图形中,是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念,即可求解.解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,只有A符合;B,C,D不是中心对称图形.故选;A.点评:本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2013•德宏州)﹣4a2b的次数是()A.3B.2C.4D.﹣4考点:单项式分析:根据单项式次数的定义进行解答即可.解答:解:∵单项式﹣4a2b中所有字母指数的和=2+1=3,∴此单项式的次数为3.故选A.点评:本题考查的是单项式次数的定义,即一个单项式中所有字母的指数的和叫做单项式的次数.4.(3分)(2013•德宏州)如果a<0,则下列式子错误的是()A.5+a>3+a B.5﹣a>3﹣a C.5a>3a D.考点:不等式的性质分析:根据不等式的基本性质对各选项进行逐一分析即可.解答:解:A、∵5>3,∴5+a>3+a,故本选项正确;B、∵5>3,∴5﹣a>3﹣a,故本选项正确;C、∵5>3,a<0,∴5a<3a,故本选项错误;D、∵5>3,∴<,∵a<0,∴>,故本选项正确.故选C.点评:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.5.(3分)(2013•德宏州)如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°考点:垂线分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解答:解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.点评:本题考查了垂线的定义,对顶角相等的性质,是基础题.6.(3分)(2013•德宏州)某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.5 23 23.5 24 24.5销售量/双35 40 30 17 8通过分析上述数据,对鞋店业主的进货最有意义的是()A.平均数B.众数C.中位数D.方差考点:统计量的选择;众数分析:众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.解答:解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.点评:考查了众数、平均数、中位数和标准差意义,比较简单.7.(3分)(2013•德宏州)在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()A.5B.C.D.6考点:等边三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:计算题.分析:连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠C=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.解答:解:连结CD,如图,∵∠C=90°,D为AB的中点,∴CD=DA=DB,而CD=CB,∴CD=CB=DB,∴△CDB为等边三角形,∴∠B=60°,∴∠C=30°,∴BC=AB=×10=5,∴AC=BC=5.故选C.点评:本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.8.(3分)(2013•德宏州)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2C.2.5 D.3考点:勾股定理;直角三角形斜边上的中线分析:由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.解答:解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由①②可得ab=3,故选D.点评:本题考查了勾股定理和三角形的周长以及完全平方公式的运用.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•德宏州)4的算术平方根是2.考点:算术平方根分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.(3分)(2013•德宏州)分解因式:2﹣2a2=2(1+a)(1﹣a).考点:提公因式法与公式法的综合运用分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2﹣2a2=2(1﹣a2)=2(1+a)(1﹣a).故答案为:2(1+a)(1﹣a).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(3分)(2013•德宏州)函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).12.(3分)(2013•德宏州)请将2、、这三个数用“>”连结起来>>2.考点:实数大小比较专题:存在型.分析:先估算出的值,再比较出其大小即可.解答:解:∵≈2.236,=2.5,∴>>2.故答案为:>>2.点评:本题考查的是实数的大小比较,熟记≈2.236是解答此题的关键.13.(3分)(2013•德宏州)以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是(1)(3).考点:展开图折叠成几何体分析:由平面图形的折叠及三棱锥的展开图解题.解答:解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).点评:本题考查了展开图折叠成几何体的知识,属于基础题型.14.(3分)(2013•德宏州)已知正方体的棱长为3,以它的下底面的外接圆为底、上底面对角线的交点为顶点构造一个圆锥体,那么这个圆锥体的体积是9.42(π=3.14).考点:圆锥的计算分析:边长为3的正方形的对角线长为2,则其外接圆的半径为,然后根据圆锥的体积公式计算.解答:解:圆锥的体积=π•()2×3=9.42.故答案为9.42.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.三、解答题(本大题共9个小题,满分58分)15.(5分)(2013•德宏州)(1)计算:(2)计算:.考点:分式的加减法;实数的运算;零指数幂专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,合并即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:(1)原式=1+﹣1=;(2)原式=﹣==1.点评:此题考查了分式的加减法,以及实数的运算,分式的加减运算关键是通分,通分的关键是找最简公分母.16.(5分)(2013•德宏州)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.考点:平行四边形的性质;平行线的判定;全等三角形的判定与性质.专题:证明题.分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.解答:证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∴在△ADE与△CBF中,,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.点评:本题综合考查了平行四边形的性质、平行线的判定以及全等三角形的判定与性质.此题是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.17.(6分)(2013•德宏州)某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?考点:二元一次方程组的应用分析:设每头大牛1天需要饲料xkg,每头小牛1天需要饲料ykg,根据条件可以得出方程15x+5y=325,25x+10y=550,由这两个方程构成方程组求出其解即可.解答:解:设每头大牛1天需要饲料xkg,每头小牛1天需要饲料ykg,由题意,得,解得:,答:每头大牛1天需要饲料20kg,每头小牛1天需要饲料5kg.点评:本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法的运用,解答时找到等量关系建立方程是关键.18.(7分)(2013•德宏州)某地州一个县市2012年考生中考数学成绩统计情况见如图表.考试成绩等第表:等第A:优秀B:良好C:及格D:不及格成绩划分≥135 ≥105且<135 ≥90且<105 <90根据以上图表所提供的信息,回答下列问题:(1)求出该县市考生优秀等第的百分比;(2)求出该县市达到良好及以上等第的考生人数;(3)如果这个地州2012年考生人数约为14000人,用该县市考生的数学成绩做样本,估算出这个地州不及格等第的考生人数.考点:条形统计图;用样本估计总体;统计表;扇形统计图专题:图表型.分析:(1)根据各等第所占的百分比之和为1列式进行计算即可得解;(2)先根据C等第的人数与所占的百分比求出该县市的考生人数,再乘以A、B两个等第的百分比的和,计算即可得解;(3)用总人数乘以不及格等第所占的百分比,计算即可得解.解答:解:(1)1﹣10%﹣11%﹣76%=1﹣97%=3%,所以,该县市考生优秀等第的百分比为3%;(2)该县市的考生人数为:209÷11%=1900,达到良好及以上等第的考生人数为:1900×(3%+10%)=247;(3)这个地州不及格等第的考生人数约为:14000×76%=10640.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2013•德宏州)小明从家到学校上学,沿途需经过三个路口,每个路口都设有红、绿两种颜色的信号灯,在信号灯正常情况下:(1)请用树状图列举小明遇到交通信号灯的所有情况;(2)小明遇到两次绿色信号的概率有多大?(3)小明红绿色两种信号都遇到的概率有多大?考点:列表法与树状图法专题:图表型.分析:(1)分红灯、绿灯两种等可能情况画出树状图即可;(2)根据树状图得到总情况数和两次绿灯的情况数,然后利用概率公式列式计算即可得解;(3)根据红、绿色两种信号都遇到的情况数,利用概率公式列式计算即可得解.解答:解:(1)根据题意画出树状图如下:一共有8种情况;(2)两次绿色信号的情况数是3种,所以,P(两次绿色信号)=;(3)红绿色两种信号的情况有6种,所以,P(红绿色两种信号)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2013•德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?考点:相似三角形的应用分析:(1)利用相似三角形对应边上的高等于相似比即可列出比例式求解;(2)和上题一样,利用物体的高和拍摄点距离物体的距离及像高表示求相机的焦距即可.解答:解:根据物体成像原理知:△LMN∽△LBA,∴.(1)∵像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,∴,解得:LD=7,∴拍摄点距离景物7米;(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,∴,解得:LC=70,∴相机的焦距应调整为70mm.点评:本题考查了相似三角形的应用,解题的关键是根据题意得到相似三角形,并熟知相似三角形对应边上的高的比等于相似比.21.(6分)(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?考点:反比例函数的图象;反比例函数图象上点的坐标特征.分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.解答:解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.所以在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2,x2<x1.点评:本题考查了反比例函数的图象,反比例函数图象上点的坐标特征.注意:解答(2)题时,一定要分类讨论,以防错解.22.(7分)(2013•德宏州)如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.考点:一元二次方程的应用;勾股定理的应用分析:(1)作BE⊥AD于E,就可以得出BE=CD,在Rt△ABE中由勾股定理就可以求出AE,由BC=DE 就可以表示出AD而得出结论;(2)由(1)的结论根据梯形的面积公式求出x的值,建立不等式求出x的取值范围就可以得出结论.解答:解:(1)作BE⊥AD于E,∴∠AEB=∠DEB=90°.∵CD⊥AD,∴∠ADC=90°.∵BC∥AD,∴∠EBC=90°,∴四边形BCDE是矩形,∴BE=CD,BC=DE.∵AB:CD=5:4,AB的长为5x米,∴CD=4x米,∴BE=4x,在Rt△ABE中,由勾股定理,得AE=3x.∵BC=20﹣5x﹣4x=20﹣9x,∴DE=20﹣9x,∴AD=20﹣9x+3x=20﹣6x(2)由题意,得,由①,得x1=,x2=1,由②,得x≥,∴x=,AB=5×=.点评:本题考查了勾股定理的运用,梯形的面积公式的运用,梯形的周长公式的运用,一元二次方程的解法的运用,一元一次不等式的运用,解答时根据条件建立方程及不等式是关键.23.(9分)(2013•德宏州)如图,已知直线y=x与抛物线交于A、B两点.(1)求交点A、B的坐标;(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.考点:二次函数综合题分析:(1)根据题意可以列出关于x、y的方程组,通过解方程组可以求得点A、B的坐标;(2)根据函数图象可以直接回答问题;(3)需要分类讨论:以AB为腰和以AB为底的等腰三角形.解答:解:(1)如图,∵直线y=x与抛物线交于A、B两点,∴,解得,或,∴A(0,0),B(2,2);(2)由(1)知,A(0,0),B(2,2).∵一次函数y=x的函数值为y1,二次函数的函数值为y2.∴当y1>y2时,根据图象可知x的取值范围是:0<x<2;(3)该抛物线上存在4个点,使得每个点与AB构成的三角形为等腰三角形.理由如下:∵A(0,0),B(2,2),∴B=2.根据题意,可设P(x,x2).①当PA=PB时,点P是线段AB的中垂线与抛物线的交点.易求线段AB的中垂线的解析式为y=﹣x+2,则,解得,,,∴P1(﹣﹣1,3+),P2(﹣1,3﹣);②当PA=AB时,根据抛物线的对称性知,点P与点B关于y轴对称,即P3(﹣2,2);③当AB=PB时,点P4的位置如图所示.综上所述,符号条件的点P有4个,其中P1(﹣﹣1,3+),P2(﹣1,3﹣),P3(﹣2,2).点评:本题考查了二次函数综合题.其中涉及到的知识点有待定系数法求一次函数解析式,二次函数图象上点的坐标特征,坐标与图形的性质以及等腰三角形的性质.解题时,利用了“分类讨论”和“数形结合”的数学思想.。

2013年杭州市中考数学试题及答案(解析版)

2013年杭州市中考数学试题及答案(解析版)

2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。

2013年湖南省益阳市中考数学试题(含答案)

2013年湖南省益阳市中考数学试题(含答案)

益阳市2013年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP )突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是A .111002.1⨯B .10102.10⨯C .101002.1⨯D .11102.1⨯2.下列运算正确的是A .623=÷a aB .422)(ab ab =C .22))((b a b a b a -=-+D .222)(b a b a +=+3.分式方程xx 325=-的解是 A .x =3B .x =3-C .x =34D .x =34-4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 5.一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为 A . 2个 B . 3个 C . 5个D . 10个6.如图2,在平行四边形ABCD 中,下列结论中错误..的是 A .∠1=∠2 B .∠BAD =∠BCD C .AB =CD D . AC ⊥BD1 2ABC图2主视图左视图俯视图图1 姓名 准考证号x (时)y (℃) 18 2O 图5A BC7.抛物线1)3(22+-=x y 的顶点坐标是A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1) 8.已知一次函数2-=x y ,当函数值0>y 时,自变量x 的取值范围在数轴上表示正确 的是ABCD二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上) 9.因式分解:24xy x -= . 10.化简:111x x x ---= . 11.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是 .12. 如图3,若AB 是⊙O 的直径,10=AB cm ,︒=∠30CAB ,则BC = cm .13.下表中的数字是按一定规律填写的,表中a 的值应是 .三、解答题(本大题共2小题,每小题6分,共12分)14.已知:3=a ,2-=b ,21=c . 求代数式:24a b c +-的值.15. 如图4,在ABC Δ中,AC AB =,CD BD =,AB CE ⊥于E .求证:CBE ABD ΔΔ∽.四、解答题(本大题共3小题,每小题8分,共24分)16.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图5是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线xky =的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?图3 AB DC E图4 0 217.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图6).(1)表中a = ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?18.如图7,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:0.80=AB 米,︒=∠5.38PAB ,︒=∠5.26PBA .请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:62.05.38sin ≈︒,78.05.38cos ≈︒,80.05.38tan ≈︒,45.05.26sin ≈︒,89.05.26cos ≈︒,50.05.26tan ≈︒)五、解答题(本大题共2小题,每小题10分,共20分)19.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石. (1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.图7图620.如图8,在ABC Δ中,︒=∠36A ,AC AB =,ABC ∠的平分线BE 交AC 于E .(1)求证:BC AE =; (2)如图8(2),过点E 作EF ∥BC 交AB 于F ,将AEF Δ绕点A 逆时针旋转角α)1440(︒<<︒α得到F E A ''Δ,连结E C ',F B ',求证:CE BF ''=;(3)在(2)的旋转过程中是否存在E C '∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由.六、解答题(本题满分12分)21.阅读材料:如图9,在平面直角坐标系中,A 、B 两点的坐标分别为11()A x y ,,22()B x y , ,AB 中点P 的坐标为()p p x y ,.由12p p x x x x -=-,得122p x x x +=,同理122p y y y +=,所以AB 的中点坐标为1212()22x x y y ++,. 由勾股定理得2222121AB x x y y =-+-,所以A 、B 两点间的距离公式为AB . 注:上述公式对A 、B 在平面直角坐标系中其它位置也成立.解答下列问题:如图10,直线l :22+=x y 与抛物线22x y =交于A 、B 两点,P 为AB 的中点,过P 作x 轴的垂线交抛物线于点C . (1)求A 、B 两点的坐标及C 点的坐标;(2)连结AC BC 、,求证ABC ∆为直角三角形; (3)将直线l 平移到C 点时得到直线l ',求两直线l 与l '的距离.1y 图10图8BC 图8(1) A E 36°EB CF图8(备用图)A 36°图8(2)EBCF E 'F '36° A次数第17题解图益阳市2013年普通初中毕业学业考试数学参考答案及评分标准一、选择题(本大题共8小题,每小题4分,共32分).二、填空题(本大题共5小题,每小题4分,共20分).9.)2)(2(-+y y x ;10.1;11.32;12.5;13.21.三、解答题(本大题共2小题,每小题6分,共12分).14.解:当3=a ,2-=b ,21=c 时, c b a 42-+=2142)3(2⨯--+=223-+ ······················································································· 5分 =3 ··································································································· 6分15.证明:在ABC Δ中,AC AB =,CD BD =,∴BC AD ⊥, ································································································ 2分 ∵AB CE ⊥,∴︒=∠=∠90CEB ADB , ··············································································· 4分 又B B ∠=∠,∴CBE ABD ΔΔ∽. ······················································································ 6分四、解答题(本大题共3小题,每小题8分,共24分)16. 解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时. ·························· 2分(2)∵点B (12,18)在双曲线xky =上, ∴1218k =, ∴216=k . ································································································ 5分 (3)当x =16时,5.1316216==y , 所以当x =16时,大棚内的温度约为13.5℃. 8分17. 解:(1)a =4. 2分(2)如图. 5分 (3)∵小组成员共10人,参加了10次活动的成员有3人,∴103=P ,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是103. ··· 8分18.解:设x PD =米,∵AB PD ⊥,∴︒=∠=∠90BDP ADP . 在Rt △P AD 中,ADx PAD =∠tan , ∴5tan38.50.804x x AD x =≈=︒. ········································································· 3分 在Rt △PBD 中,DBx PBD =∠tan , ∴2tan 26.50.50x xDB x =≈=︒. ······································································ 5分 又AB =80.0, ∴0.80245=+x x . ∴6.24≈x ,即6.24≈PD . ∴2.492≈=x DB .答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米. ···················· 8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:⎩⎨⎧=+=+11010812y x y x , ······························································· 2分解之得⎩⎨⎧==75y x .∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆; ···· 5分(2)设载重量为8吨的卡车增加了z 辆,依题意得:165)67(10)5(8>-+++z z , ·············································· 7分解之得:25<z ∵0≥z 且为整数, ∴=z 0,1,2 ; ∴=-z 66,5,4. ······················································································ 8分 ∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆; ②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆; ③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆. ··················· 10分20.解:(1)证明:∵AC AB =,︒=∠36A ,∴︒=∠=∠72C ABC , ···································································· 1分 又BE 平分ABC ∠,∴︒=∠=∠36CBE ABE ,∴︒=∠-∠-︒=∠72180CBE C BEC ∴A ABE ∠=∠,C BEC ∠=∠, ∴BE AE =,BC BE =, ∴BC AE =. ··················································································· 3分(2)∵AB AC =且EF ∥BC ,∴AF AE =;由旋转的性质可知:AB F AC E '∠='∠,F A E A '=', ∴E CA 'Δ≌F BA 'Δ, ∴F B E C '='. ··························································································· 6分 (3)存在E C '∥AB ,由(1)可知BC AE =,所以,在ΔE 点经过的路径(圆弧)与过点C 且与AB ①当点E 的像E '与点M ∴︒=∠=∠72ABC BAM ,又∠BAC ∴︒=∠=36CAM α.······· 8分 ②当点E 的像E '与点N 重合时,由l AB ∥得,︒=∠=∠72BAM AMN ∵AN AM =, ∴︒=∠=∠72AMN ANM ,∴︒=︒⨯-︒=∠36722180MAN ,∴︒=∠+∠=∠=72MAN CAM CAN α. 所以,当旋转角为︒36或︒72时,E C '∥AB . ······································ 10分六、解答题(本题满分12分)21.解:(1)由⎩⎨⎧=+=2222x y x y ,解得⎪⎩⎪⎨⎧-=-=5325111y x ,⎪⎩⎪⎨⎧+=+=5325122y x . 则A ,B 两点的坐标分别为:)53,251(--A ,)53,251(++B , ·········· 2分 ∵P 是A ,B 的中点,由中点坐标公式得P 点坐标为)3,21(,又x PC ⊥轴交抛物线于C 点,将21=x 代入22x y =中得21=y ,∴C 点坐标为11(,)22. ····················································································· 4分(2)由两点间距离公式得:第20题解图)')E '5)]53()53[()251251(22=+--++--=AB ,25213=-=PC ,∴PB PA PC ==,·································································································· 6分∴PCA PAC ∠=∠,PCB PBC ∠=∠, ∴︒=∠+∠90PCB PCA ,即︒=∠90ACB ∴ ABC Δ为直角三角形. ······················································································ 8分(3)过点C 作AB CG ⊥于G ,过点A 作PC AH ⊥于H则H 点的坐标为)5321(-,, ···································· ∴ AH PC CG AP S PAC⨯=⨯=2121Δ, ∴2521251=--==AH CG . 又直线l 与l '之间的距离等于点C 到l 的距离CG , ∴直线l 与l '之间的距离为25. ········································································· 12分图10。

2013年青岛中考数学试题及答案解析(word版)

2013年青岛中考数学试题及答案解析(word版)

2013年山东青岛市初级中学学业水平考试数学试题一、选择题1、-6的相反数是( )A 、—6B 、6C 、61-D 、61答案:B解析:-6的相反数为6,简单题。

2、下列四个图形中,是中心对称图形的是( )A B C D 答案:D解析:A 、B 、C 都是轴对称图形,只有D 为中心对称图形。

3、如图所示的几何体的俯视图是( )A B C D 答案:B解析:该几何体上面是圆锥,下面为圆柱,圆锥的俯视图是一个圆和圆心,圆锥顶点投影为一个点(圆心)。

4、“十二五”以来,我国积极推进国家创新体系建设,国家统计局《2012年国民经济和社会发展统计公报》指出,截止2012年底,国内有效专利达8750000件,将8750000件用科学计数法表示为( )件A 、410875⨯B 、5105.87⨯C 、61075.8⨯D 、710875.0⨯答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 8750000=61075.8⨯5、一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有( )个第3题A 、45B 、48C 、50D 、55 答案:A解析:摸到白球的概率为P =10110010=,设口袋里共有n 个球,则 5110n =,得n =50,所以,红球数为:50-5=45,选A 。

6、已知矩形的面积为36cm 2,相邻的两条边长为xcm 和ycm ,则y 与x 之间的函数图像大致是( )A B C D 答案:A解析:因为xy =36,即36(0)y x x=>,是一个反比例函数,故选A 。

2013成都中考数学试题word版(含参考答案解析及评分标准)

2013成都中考数学试题word版(含参考答案解析及评分标准)

成都市二O 一三年中考阶段教育学校统一招生考试(含成都市初三毕业会考)(解析版)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1. 2的相反数是A. 2B. 2-C. 12D. 12-2. 如图所示的几何体的俯视图可能是3. 要使分式51x -有意义,则x 的取值范围是A. 1x ≠B. 1x >C. 1x <D. 1x ≠-4. 如图,在ABC ∆中,B C ∠=∠,5AB =,则AC 的长为A. 2B. 3C. 4 D . 55. 下列运算正确的是A. 1(3)13⨯-= B . 583-=- C. 326-= D. 0(2013)0-=6. 参加成都今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为A . 51.310⨯ B. 41310⨯ C. 50.1310⨯D. 60.1310⨯7. 如图,将矩形ABCD 沿对角线BD 折叠,使点C 与'C 重合.若2AB =,则'C D 的长度为A. 1 B . 2 C. 3 D. 48. 在平面直角坐标系中,下列函数的图像经过原点的是A.3y x =-+B. 5y x = C . 2y x = D. 227y x x =-+-9. 一元二次方程220x x +-=的根的情况是A . 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根10. 如图,点,,A B C 在⊙O 上,50A ∠= ,则BOC ∠的度数为A. 40B. 50C. 80 D . 100第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 不等式213x ->的解集为 2x > .12. 今年4月20日雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是 10 元.13. 如图,30B ∠= ,若//AB CD ,CB 平分ACD ∠,则ACD ∠= 60 度. 14. 如图,某山坡的坡面200AB =米,坡角30BAC ∠= ,则该山坡的高BC 的长为 100 米.三、解答题(本大题共6个小题,共54分。

2013年黑龙江省哈尔滨市中考数学试题及答案(解析版)

2013年黑龙江省哈尔滨市中考数学试题及答案(解析版)

哈尔滨市2013年初中升学考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2013·哈尔滨)13-的倒数是( ).(A)3 (B)一3 (C)13-(D)13考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.解答:13-的倒数是331-=-.故选B.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013·哈尔滨)下列计算正确的是( )..(A)a3+a2=a5(B)a3·a2=a6(C)(a2)3=a6(D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(2013·哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( ).考点:轴对称图形与中心对称图形.分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答:A.是轴对称图形,不是中心对称图形;B. 是中心对称图形,不是轴对称图形.;C.是轴对称图形,不是中心对称图形;D. 是轴对称图形,又是中心对称图形;故选D.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(2013·哈尔滨)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(2013·哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2考点:二次函数图象与几何变换.分析:先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.解答:解:抛物线y=(x+1)2的顶点坐标为(-1,0),∵向下平移2个单位,∴纵坐标变为-2,∵向右平移1个单位,∴横坐标变为-1+1=0,∴平移后的抛物线顶点坐标为(0,-2),∴所得到的抛物线是y=x2-2.故选D.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.6.(2013·哈尔滨)反比例函数12k y x-=的图象经过点(-2,3),则k 的值为( ). (A)6 (B)-6 (C) 72 (D) 72- 考点:反比例函数的图象上的点的坐标特征.分析:点在曲线上,则点的坐标满足曲线解析式,反之亦然解答:反比例函数12k y x -=的图象经过点(-2,3),表明在解析式12k y x-=,当x =-2时,y =3,所以1-2k =xy =3×(-2)=-6.,解得k=72故选C点评:本题主要考查反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.7.(2013·哈尔滨)如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E , 且AE=3,则AB 的长为( ).(A)4 (B)3 (C) 52(D)2 考点:平行四边形的性质及等腰三角形判定与性质.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:∵四边形ABCD 是平行四边形,∴AB=DC ,AD ∥BC ,∴∠DEC=∠BCE ,∵CE 平分∠DCB ,∴∠DCE=∠BCE ,∴∠DEC=∠DCE ,∴DE=DC=AB ,∵AD=2AB=2CD ,CD=DE ,∴AD=2DE ,∴AE=DE=3,∴DC=AB=DE=3,故选B .点评:本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC .8.(2013·哈尔滨)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ). (A) 116 (B) 18 (C) 14 (D) 12考点:求概率,列表法与树状图法。

2013杭州中考数学试题(含答案)

2013杭州中考数学试题(含答案)
∵AB=16,且A(6,0),
∴B(-10,0),而A,B关于对称轴对称
∴对称轴直线
答案:
【4】.A解析:a+b=3,a-b=7,解得a=5,b=-2, .
5.根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是
A. 2010~2012年杭州市每年GDP增长率相同
B. 2012年杭州市的GDP比2008年翻一番
C. 2010年杭州市的GDP未达到5500亿元
答案:
【16】. 2,[3,7],8
解析:分别找出射线QN上距离每一条均为 cm得点,
对于AB,距离其为 cm射线上的点为 ,N
对于AC, 到 之间的点距其均为 ,且切点为AC上,
对于BC,距其为 cm射线上的点为 ,M.
三、全面答一答(本题有7个小题,共66分)
解答应写出文字说部分也可以。
答案:
由 得 ,
得 ,
,①
方程: 的根为:
, ,
满足式①, 不满足舍去,
方程的根为 .
19.(本小题满分8分)
如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF。
求证:△GAB是等腰三角形。
答案:
证明:ABCD为梯形,AB∥CD
∴有AD=BC,
又DE=CF

∴ ,由AB∥CD
答案:
【9】.B
解析: 由勾股定理知 ,
斜边上的高的等于 .
10.给出下列命题及函数 , 和 的图象
①如果 ,那么 ;
②如果 ,那么 ;
③如果 ,那么 ;
④如果 时,那么 。

A.正确的命题是①④B.错误的命题是②③④

2013年山西省中考数学试题及答案(Word版)

2013年山西省中考数学试题及答案(Word版)

山西2013年中考数学试题第Ⅰ卷 选择题(共24分)一.选择题 (本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算2×(-3)的结果是( ) A. 6 B. -6 C. -1 D. 52.不等式组错误!未找到引用源。

的解集在数轴上表示为( )3.如图是一个长方体包装盒,则它的平面展开图是( )4.某班实行每周量化考核制学期末对考核成绩进行统计,结果显示甲、乙的平均成绩相同,方差是甲362=甲s ,302=乙s ,则两组成绩的稳定性:( )A.甲组比乙组的成绩稳定;B. 乙组比甲组的成绩稳定;C. 甲、乙组成绩一样稳定;D.无法确定。

5.下列计算错误的是( )A .3332x x x =+ B.236a a a =÷ C.3212= D.3311=⎪⎭⎫ ⎝⎛-6.解分式方程31212=-++-xx x 时,去分母后变形为( ) A.2+(x+2)=3(x-1); B.2-x+2=3(x-1); C.2-(x+2)=3(1-x); D.2-(x+2)=3(x-1).该日最高气温的众数和中位数分别是( )A.27ºC ,28ºC ;B.28ºC ,28ºC ;C. 27ºC ,27ºC ,D. 29ºC ,29ºC 。

8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )条。

A. 1B. 2C.4D. 8.9.王先生先到银行存了一笔三年的定期存款,年利率是4.25%,如果到期后取出的本息和(本金+利息)为33825元,设王先生存入的本金为x 元,则下面所列方程正确的是( )A.x+3×4.25%=33825;B.x+4.25%x=33825;C. 3×4.25%x=33825;D.3(x+4.25%x )=33825.10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上),为了测量B 、C 两地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30º,则BC 两地间的距离为( )m 。

黑龙江省龙东地区2013年中考数学试题(word版-含答案)

黑龙江省龙东地区2013年中考数学试题(word版-含答案)

黑龙江省龙东地区2013年初中毕业学业统一考试数 学 试 题考生注意:1、考试时间120分钟2、全卷共三道大题,总分120分一、填空题(每题3分,满分30分)1.(2013黑龙江龙东地区,1,3分)“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量达到l152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓。

1152亿斤用科学记数表示为 .2.(2013黑龙江龙东地区,2,3分)函数y =xx 1 中,自变量x 取值范围是 . 3.(2013黑龙江龙东地区,3,3分)如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O , 试添加一个条件: ,使得平行四边形ABCD 为菱形.4.(2013黑龙江龙东地区,4,3分)风华中学七年(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,则组长是男生的概率为 .5.(2013黑龙江龙东地区,5,3分)若x =1是关于x 的一元二次方程x 2+3mx +n =0的解,则6m +2n = .6.(2013黑龙江龙东地区,6,3分)二次函数y=-2(x -5)2+3的顶点坐标是 .7.(2013黑龙江龙东地区,7,3分)将半径为4cm 的半圆围成一个圆锥,这个圆锥的高为 cm .8.(2013黑龙江龙东地区,8,3分)李明组织大学同学一起去观看电影《致青春》,票价每张60元,20张以上(不舍20张)打八折,他们一共花了1200元,他们共买了 张电影票.9.(2013黑龙江龙东地区,9,3分)梯形ABCD 中,AB=3,CD=8,点E 是对角线AC 上一点.连结DE 并延长交直线AB 于点F ,若BF AF ,则ECAE . 10.(2013黑龙江龙东地区,10,3分)已知等边△ABC 的边长是2,以BC 边上的高AB 为边作等边三角形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△AB 2C 2的B22C 2边上的高AB 3为边作等边三角形,得到第三个等边△B 3C 3,……,如此下去,这样得到的第n 个等边△AB 3C 3的面积为 .二、选择题(每题3分,满分30分)11.(2013黑龙江龙东地区,11,3分)下列各运算中,计算正确的是( )A .(x 3)2=x 5B .x 2+x 2=2x 4C .21)2(1-=--D .(a -b )2=a 2-b 212.(2013黑龙江龙东地区,12,3分)下列汽车标志中,既是轴对称图形又是中心对称图形的是( )13.(2013黑龙江龙东地区,13,3分)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这千几何体的小正方体的个数强多有( )A .4B .5C .6D .714.(2013黑龙江龙东地区,14,3分)下表是我市莱中学九年(1)班同学右服视力的检查结果: 视力4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.95.0 人数 1 2 5 4 3 6 1 1 5 96 根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是( )A .4.9,4 .6B .4.9,4.7C .4.9,4.65D .5.0,4.6515.(2013黑龙江龙东地区,15,3分)如图,爸爸从家(点O)出发,沿着扇形AOB 上OA →⌒AB →BO 的路径去匀速散步.设爸爸距家(点O)的距离为s ,散步的时间为t ,则下列图形中能大致刻画s 与t 之间函数关系的圈象是( )16.(2013黑龙江龙东地区,16,3分)己知关于x 的分式方程12++x a =1的解是非正数,刚a 的取值范围是( )A .a ≤-lB .a ≤-1且a ≠-2C .a ≤1且a ≠2D .a ≤117.(2013黑龙江龙东地区,17,3分)如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么AB 的值为( )A .3B .23C .33D . 218.(2013黑龙江龙东地区,18,3分)如图,Rt △ABC 的顶点A 在双曲线y=xk 的图象上,直角边BC 在x 轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA ,∠AOB=60°,则k 的值是( )A .43B .-43C .23D .-2319.(2013黑龙江龙东地区,19,3分)今年校团委举办了“中国梦,我的梦”敢咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每车7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( )A .3种B .4种C .5种D .6种20.(2013黑龙江龙东地区,20,3分)如图,在直角梯形ACD 中,AD ∥BC ,∠ACB=90°,∠ABC=45°,AD=CD ,CE 平分∠ACB 交AB 于点E ,在BC 上截取BF=AE ,连接AF 交CE 于点G ,连接DG 空AC 于点H ,过点A 作AN ⊥BC ,垂足为N ,AN 交CE 于点M ,则下列结论:①CM=AF ;②CE ⊥AF ;③△ABF ∽△DAH ;④GD 平分∠AGC ,其中正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分)21.(2013黑龙江龙东地区,21,5分)先化简,再求值:121)11(22++-++-x x x x x , 其中x =2sin45°+122.(2013黑龙江龙东地区,22,6分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向上平移3个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点A 1的坐标.(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的A 2B 2C 2,并求点B 所经过的路径长.(结果保留π)23.(2013黑龙江龙东地区,23,6分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接OE,求△DEF的面积.24.(2013黑龙江龙东地区,24,7分)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动开展的情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制成如下的两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x<155所在扇形的圆心角度数.(3)若本欢抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动情况谈谈自己的看法或建议.25.(2013黑龙江龙东地区,25,8分)2012年秋季,某省部分地区遭受较严重的雨雪自然灾害,兴华农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收.工作了4天.由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的32,第a 天时,雨雪停止,附近的胜利农场前来支援,合作了6天,完成了兴华农场所有的收割任务.图l 是机械收割的亩效y 1(亩)和人工收割的亩数y 2(亩)与时间x (天)之间的函数图象,圈2是剩余的农作物的亩数w (亩)与时间x (天)之间的函数圈象,请结合图象回答下列问题:(1)请直接写出t :A 点的纵坐标m= ,a = .(2)求直线BC 的解析式.(3)第几天时,机械收割的总量是人工收割总量的10倍?26.(2013黑龙江龙东地区,26,8分)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BP⊥MN于点F.(1)如图1,当O、B两点均位于直线MN上方时,易证:AF+BF=2OE(不需证明) .(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.27.(2013黑龙江龙东地区,27,10分)为了落实党中央国务院提出的“惠民”政策,我市今年计划开发建设A、B两种户型的“廉租房”共40套,投入资金不超过200万元,又不低于198万元.开发建设办公室经预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A型“廉租房”的造价降低0.7万元,每套B 型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”.如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.28.(2013黑龙江龙东地区,28,10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x 轴上,点C在y轴上,∠ACD=90°,OA、OB的长分别是一元二次方程x2-25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,重足为E.(1)求点C的坐标.(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.(3)若点N在直线DE上,在坐标平面内,是否存在这样的点M,使得以C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.黑龙江省龙东地区2013年中考数学试卷一、填空题(每题3分,共30分)1.(3分)(2013•黑龙江)“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为 1.152×1011斤.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1152亿用科学记数法表示为1.152×1011.故答案为:1.152×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(3分)(2013•黑龙江)在函数中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x的取值范围.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.(3分)(2013•黑龙江)如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:AD=DC,使得平行四边形ABCD为菱形.考点:平行四边形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.4.(3分)(2013•黑龙江)风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.考点:概率公式.分析:由风华中学七年级(2)班的“精英小组”有男生4人,女生3人,直接利用概率公式求解即可求得答案.解答:解:∵风华中学七年级(2)班的“精英小组”有男生4人,女生3人,∴选出一人担任班长,则组长是男生的为:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.(3分)(2013•黑龙江)若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=﹣2.考点:一元二次方程的解.分析:先把x=1代入x2+3mx+n=0,得到3m+n=﹣1,再把要求的式子进行整理,然后代入即可.解答:解:把x=1代入x2+3mx+n=0得:1+3m+n=0,3m+n=﹣1,则6m+2n=2(3m+n)=2×(﹣1)=﹣2;故答案为:﹣2.点评:此题考查了一元二次方程的解,解题的关键是把x的值代入,得到一个关于m,n的方程,不要求m.n的值,要以整体的形式出现.6.(3分)(2013•黑龙江)二次函数y=﹣2(x﹣5)2+3的顶点坐标是(5,3).考点:二次函数的性质分析:因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x﹣5)2+3的顶点坐标.解答:解:∵二次函数y=﹣2(x﹣5)2+3是顶点式,∴顶点坐标为(5,3).故答案为:(5,3).点评:此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.7.(3分)(2013•黑龙江)将半径为4cm的半圆围成一个圆锥,这个圆锥的高为2cm.考点:圆锥的计算.分析:根据扇形的弧长等于圆锥的底面周长,即可求得圆锥的底面半径,底面半径、母线长以及圆锥高满足勾股定理,据此即可求得圆锥的高.解答:解:设圆锥底面的半径是r,则2πr=4π,则r=2.则圆锥的高是:=2cm.故答案是:2.点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3分)(2013•黑龙江)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25张电影票.考点:一元一次方程的应用.专题:分类讨论.分析:本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.解答:解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.点评:考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..9.(3分)(2013•黑龙江)梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则=或.考点:相似三角形的判定与性质;梯形.专题:分类讨论.分析:根据已知分别根据F在线段AB上后在AB的延长线上,进而利用平行线的分线段成比例定理得出的值.解答:解:如图1:∵AB=3,=2,∴AF=2,BF=1,∵AB∥CD,∴△AEF∽△CED,∴=,∴==;如图2:∵AB=3,=2,∴AF=6,BF=3,∵AB∥CD,∴△AEF∽△CED,∴=,∴==.故答案为:或.点评:此题主要考查了相似三角形的判定与性质,根据已知进行分类讨论得出两种不同图形是解题关键.10.(3分)(2013•黑龙江)已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形AB n C n的面积为()n.考点:等边三角形的性质专题:规律型.分析:由AB1为边长为2等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.解答:解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n 的面积为()n.故答案为:()n点评:此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)(2013•黑龙江)下列运算中,计算正确的是()D.(a﹣b)2=a2﹣b2 A.(x3)2=x5B.x2+x2=2x4C.(﹣2)﹣1=﹣考点:完全平方公式;合并同类项;幂的乘方与积的乘方;负整数指数幂.分析:A、利用幂的乘方运算法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用负指数幂法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.解答:解:A、(x3)2=x6,本选项错误;B、x2+x2=2x2,本选项错误;C、(﹣2)﹣1=﹣,本选项正确;D、(a﹣b)2=a2﹣2ab+b2,本选项错误,故选C点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.12.(3分)(2013•黑龙江)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.点评:本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.13.(3分)(2013•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4B.5C.6D.7考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.解答:解:由俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,那么搭成这个几何体的小正方体最多为4+2=6个.故选C.点评:考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.14.(3分)(2013•黑龙江)下表是我市某中学九年级(1)班右眼视力的检查结果:视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数 1 2 5 4 3 6 1 1 5 9 6根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是()A.4.9,4.6 B.4.9,4.7 C.4.9,4.65 D.5.0,4.65考点:众数;中位数.分析:根据众数及中位数的定义,结合所给数据即可得出答案.解答:解:视力为4.9的学生人数最多,故众数为4.9;共43为学生,中位数落在第22为学生处,故中位数为4.6.故选A.点评:本题考查了众数及中位数的知识,属于基础题,解答本题的关键是掌握众数及中位数的定义.15.(3分)(2013•黑龙江)如图,爸爸从家(点O)出发,沿着扇形AOB上OA→→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.考点:函数的图象.分析:根据当爸爸在半径AO上运动时,离出发点距离越来越远;在弧BA上运动时,距离不变;在BO上运动时,越来越近,即可得出答案.解答:解:利用图象可得出:当爸爸在半径AO上运动时,离出发点距离越来越远;在弧AB上运动时,距离不变;在OB上运动时,越来越近.故选:C.点评:此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.16.(3分)(2013•黑龙江)已知关于x 的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤1考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a的取值范围.解答:解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.故选B.点评:本题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.17.(3分)(2013•黑龙江)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3B.2C.3D.2考点:圆周角定理;含30度角的直角三角形;圆心角、弧、弦的关系.分析:首先根据AB=BC,∠ABC=120°,求出∠C的度数,然后根据圆周角定理可知:∠D=∠C,又直径AD=6,易求得AB的长度.解答:解:∵AB=BC,∴∠BAC=∠C,∵∠ABC=120°,∴∠BAC=∠C=30°,∵AD为直径,AD=6,∴∠ABD=90°,∵∠D=30°,∴AB=AD=3.故选A.点评:本题考查了圆周角定理,难度一般,关键是掌握圆周角定理:同弧所对的圆周角相等.18.(3分)(2013•黑龙江)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠ACO=60°,则k的值是()A.4B.﹣4C.2D.﹣2考点:反比例函数综合题.分析:根据三角形外角性质得∠OAC=∠AOB﹣∠ACB=30°,易得OA=OC=4,然后再Rt△AOB中利用含30度的直角三角形三边的关系得到OB=OC=2,AB=OB=2,则可确定C点坐标为(﹣2,2),最后把C点坐标代入反比例函数解析式y=中即可得到k的值.解答:解:∵∠ACB=30°,∠ACO=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OC=2,∴AB=OB=2,∴C点坐标为(﹣2,2),把C(﹣2,2)代入y=得k=﹣2×2=﹣4.故选B.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用含30度的直角三角形三边的关系进行几何计算.19.(3分)(2013•黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种考点:二元一次方程的应用.分析:设甲种笔记本购买了x本,乙种笔记本y本,就可以得出7x+5y≤50,x≥3,y≥3,根据解不定方程的方法求出其解即可.解答:解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤50,∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<50,当x=3,y=4时,7×3+5×4=41<50,当x=3,y=5时,7×3+5×5=46<50,当x=3,y=6时,7×3+5×6=51>50舍去,当x=4,y=3时,7×4+5×3=43<50,当x=4,y=4时,7×4+5×4=4<50,当x=4,y=5时,7×4+5×5=53>50舍去,当x=5,y=3时,7×5+5×3=50=50,综上所述,共有6种购买方案.故选D.点评:本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.20.(3分)(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.三、简答题(满分60分)21.(5分)(2013•黑龙江)先化简,再求值(1﹣)÷,其中x=2sin45°+1.考点:分式的化简求值;特殊角的三角函数值.分析:先通分,再把除法转化成乘法,然后约分,最后求出x的值,再把它代入原式,进行计算即可.解答:解:(1﹣)÷=•=,当x=2sin45°+1=2×+1=+1时,原式==.点评:此题考查了分式的化简求值,用到的知识点是分式的化简步骤和特殊角的三角函数值,关键是把分式化到最简,然后代值计算.22.(6分)(2013•黑龙江)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)考点:作图-旋转变换;作图-平移变换.分析:(1)根据△ABC向上平移3个单位,得出对应点位置,即可得出A1的坐标;(2)得出旋转后的△A2B2C2,再利用弧长公式求出点B所经过的路径长.解答:解:(1)如图所示:A1的坐标为:(﹣3,6);(2)如图所示:∵BO==,∴==π.点评:此题主要考查了弧长公式的应用以及图形的旋转与平移变换,根据已知得出对应点位置是解题关键.23.(6分)(2013•黑龙江)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.考点:待定系数法求二次函数解析式;二次函数的性质分析:(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF的面积.解答:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.∴S△DEF=EF•DM=8.点评:此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.24.(7分)(2013•黑龙江)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

江西省2013年中考数学试题及答案(Word解析版)

江西省2013年中考数学试题及答案(Word解析版)

江西省2013年中等学校招生考试数学试卷解析(江西于都三中 蔡家禄)说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。

2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是( ).A .1B .-1C .±1D .0【答案】 B .【考点解剖】 本题考查了实数的运算性质,要知道什么是倒数.【解题思路】 根据倒数的定义,求一个数的倒数,就是用1除以这个数,所以-1的倒数为1(1)1÷-=-,选B.【解答过程】 ∵1(1)1÷-=-,∴选B .【方法规律】 根据定义直接计算.【关键词】 实数 倒数2.下列计算正确的是( ).A .a 3+a 2=a 5B .(3a -b )2=9a 2-b 2C .a 6b ÷a 2=a 3bD .(-ab 3)2=a 2b 6【答案】 D .【考点解剖】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】 根据法则直接计算.【解答过程】 A.3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为222(3)96a b a ab b -=-+;C.两个单项式相除,系数与系数相除,相同的字母相除(同底数幂相除,底数不变,指数相减),正确的结果为624a b a a b ÷=;D.考查幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选D.【方法规律】 熟记法则,依法操作.【关键词】 单项式 多项式 幂的运算3则这组数据的中位数和众数分别是( ).A .164和163B .105和163C .105和164D .163和164【答案】 A .【考点解剖】 本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】 根据中位数、众数的定义直接计算.【解答过程】 根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以342、163、165、45、227、163的中位数是163和165的平均数164,众数为163,选A.【方法规律】 熟知基本概念,直接计算.【关键词】 统计初步 中位数 众数4.如图,直线y =x +a -2与双曲线y=x 4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ).A .0B .1C .2D .5【答案】 C .【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小5.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是( ).【答案】 C .【考点解剖】 本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.【解题思路】 可用排除法,B 、D 两选项有迷惑性,B 是主视图,D 不是什么视图,A 少了上面的一部分,正确答案为C.【解答过程】 略.【方法规律】 先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.【关键词】 三视图 坐凳6.若二次涵数y =ax +bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是( ).A .a >0B .b 2-4ac ≥0C .x 1<x 0<x 2D .a (x 0-x 1)( x 0-x 2)<0【答案】 D .【考点解剖】 本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.【解题思路】 抛物线与x 轴有不同的两个交点,则240b ac ->,与B 矛盾,可排除B 选项;剩下A 、C 、D 不能直接作出正误判断,我们分a >0,a <0两种情况画出两个草图来分析(见下图).由图可知a 的符号不能确定(可正可负,即抛物线的开口可向上,也右向下),所以012,,x x x 的大小就无法确定;在图1中,a >0且有102x x x <<,则0102()()ax x x x --的值为负;在图2中,a <0且有102x x x <<,则0102()()a x x x x --的值也为负.所以正确选项为D.【解答过程】 略.【方法规律】 先排除错误的,剩下的再画图分析(数形结合)【关键词】 二次函数 结论正误判断二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x 2-4= .【答案】 (x +2)(x -2).【考点解剖】 本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.【解题思路】 直接套用公式即.【解答过程】 24(2)(2)x x x -=+-.【方法规律】 先观察式子的特点,正确选用恰当的分解方法.【关键词】 平方差公式 因式分解8.如图△ABC 中,∠A =90°点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .【答案】65°.【考点解剖】 本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较为简单,但有些考生很简单的计算都会出错,如犯18015535︒-︒=︒之类的错误.【解题思路】 由1155∠=︒,可求得25BCD CDE ∠=∠=︒,最后求65B ∠=︒.【解答过程】 ∵∠ADE =155°, ∴∠EDC =25°.又∵DE ∥BC ,∴∠C =∠EDC =25°,在△ABC 中,∠A =90°,∴∠B+∠C=90°,∴∠B=65°.【方法规律】 一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形内角和定理、两直线平行,内错角相等,等量代换等知识和方法.【关键词】 邻补角 内错角 互余 互补9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .【答案】⎩⎨⎧+==+12,34y x y x . 【考点解剖】 本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.【解题思路】 这里有两个等量关系:井冈山人数+瑞金人数=34,井冈山人数=瑞金人数×2+1.所以所列方程组为34,2 1.x y x y +=⎧⎨=+⎩. 【解答过程】 略.【方法规律】 抓住关键词,找出等量关系【关键词】 列二元一次方程组10.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .【答案】 26.【考点解剖】 本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.【解题思路】 △BCN 与△ADM 全等,面积也相等,口DFMN 与口BEMN 的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.【解答过程】 12⨯=. 【方法规律】 仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】 矩形的面积 二次根式的运算 整体思想11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).【答案】 (n +1)2 .【考点解剖】 本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】 找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示.【解答过程】 略.【方法规律】 由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】 找规律 连续奇数的和12.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【答案】 x 2-5x +6=0.【考点解剖】 本题是道结论开放的题(答案不唯一),已知直角三角形的面积为3(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3为根的一元二次方程为2560x x -+=;也可以以1、6为直角边长,得方程为2760x x -+=.(求作一元二次方程,属“一元二次方程根与系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)【解题思路】 先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】 略.【方法规律】 求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.【关键词】 直角三角形 根 求作方程13.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【答案】 25°.【考点解剖】 本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】 已知两个平行四边形的周长相等,且有公共边CD ,则有AD =DE ,即△ADE 为等腰三角形,顶角∠ADE =∠BCF =60°+70°=130°,∴∠DAE =25°.【解答过程】 ∵□ABCD 与□DCFE 的周长相等,且有公共边CD ,∴AD =DE , ∠ADE =∠BCF =60°+70°=130°.∴∠DAE =11(180)502522ADE ︒-∠=⨯︒=︒. 【方法规律】 先要明确∠DAE 的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD =130°转化为∠BCD =130°,∠F =110°转化为∠DCF =70°,从而求得∠ADE =∠BCF =130°.【关键词】 平行四边形 等腰三角形 周长 求角度14.平面内有四个点A 、O 、B 、C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足题意的OC 长度为整数的值可以是 .【答案】2,3,4.【考点解剖】 本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.【解题思路】 由∠AOB =120°,AO =BO =2画出一个顶角为120°、腰长为2的等腰三角形,由60︒与120︒互补,60︒是120︒的一半,点C 是动点想到构造圆来解决此题.【解答过程】【方法规律】 构造恰当的图形是解决此类问题的关键.【关键词】 圆 整数值三、(本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来. 【答案】解:由x +2≥1得x ≥-1,由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3.解集在数轴上表示如下:【考点解剖】 本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】 分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.【解答过程】【方法规律】 要保证运算的准确度与速度,注意细节(不要搞错符号). 【关键词】 不等式组 数轴16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无.刻度..的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点;(2)在图2中,画出△ABC 中AB 边上的高.【答案】 (1)如图1,点P 就是所求作的点;(2)如图2,CD 为AB 边上的高.【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】 图1点C 在圆外,要画三角形的高,就是要过点B 作AC 的垂线,过点A 作BC 的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC 与圆的交点为E , 连接BE ,就得到AC 边上的高BE ;同理设BC 与圆的交点为D , 连接AD ,就得到BC 边上的高AD ,则BE 与AD 的交点就是△ABC 的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC 的三条高的交点P ,再作射线PC 与AB 交于点D ,则CD 就是所求作的AB 边上的高.【解答过程】 略.【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考.【关键词】 创新作图 圆 三角形的高四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-x x x x x x ,在0,1,2,三个数中选一个合适的,代入求值.【答案】解:原式=xx 2)2(2-·)2(2-x x x +1 =212x -+ =2x . 当x =1时,原式=21. 【考点解剖】 本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.【解题思路】 先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到212x -+,可通分得22212222x x x --+=+=,也可将22x -化为12x -求解. 【解答过程】 略.【方法规律】 根据式子的特点选用恰当的解题顺序和解题方法.【关键词】 分式 化简求值18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( ).A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.【答案】(1)A .(2)依题意画树状图如下:从上图可知,所有等可能结果共有6种,其中第4、5种结果符合,∴P (A)=62=31 . 【考点解剖】 本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.【解题思路】 (1)是选择题,根据必然事件的定义可知选A ;(2)三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为6种,其中只有第4、5种结果符合,∴P (A)=62=31 ;也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴P (A) =31 . 【解答过程】 略.【方法规律】 要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.【关键词】 必然事件 概率 抽取礼物五、(本大题共2小题,每小题8分,共16分)19.如图,在平面直角坐标系中,反比例函数xk y (x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB =2,AD =4,点A 的坐标为(2,6) .(1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】(1)B (2,4),C (6,4),D (6,6).(2)如图,矩形ABCD 向下平移后得到矩形''''A B C D ,设平移距离为a ,则A ′(2,6-a ),C ′(6,4-a )∵点A ′,点C ′在y =x k 的图象上, ∴2(6-a )=6(4-a ),解得a =3,∴点A ′(2,3),∴反比例函数的解析式为y =6x. 【考点解剖】 本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】 先根据矩形的对边平行且相等的性质得到B 、C 、D 三点的坐标,再从矩形的平移过程发现只有A 、C 两点能同时在双曲线上(这是种合情推理,不必证明),把A 、C 两点坐标代入y =xk 中,得到关于a 、k 的方程组从而求得k 的值. 【解答过程】 略.【方法规律】 把线段的长转化为点的坐标,在求k 的值的时候,由于k 的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a )=6(4-a ),求出a 后再由坐标求k ,实际上也可把A 、C 两点坐标代入y =xk 中,得到关于a 、k 的方程组从而直接求得k 的值. 【关键词】 矩形 反比例函数 待定系数法20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约31;C .喝剩约一半;D .开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫.升.? (3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器) 【答案】(1)根据所给扇形统计图可知,喝剩约31的人数是总人数的50%, ∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=36°, ∴D 所在扇形圆心角的度数为36°,补全条形统计图如下;(2)根据条形统计图可得平均每人浪费矿泉水量约为:(25×31×500+10×500×21+5×500)÷50 =327500÷50≈183毫升; (3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.【考点解剖】 本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.【解题思路】 (1)由扇形统计图可看出B 类占了整个圆的一半即50%(遗憾的是扇形中没有用具体的数字(百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图又知B 类共25人,这样已知部分数的百分比就可以求出总人数,而D 类有5人,已知部分数和总数可以求出D 类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知总人数和A 、B 、D 类的人数可求出C 类的人数为10人,将条形统计图中补完整;(2)用总的浪费量除以总人数50就得到平均每人的浪费量;(3)每年开60次会,每次会议将有40至60人参加,这样折中取平均数算一年将有3000人参加会议,用3000乘以(2)中的结果(平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可. 【解答过程】 略.【方法规律】 能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求什么(不要被其它无关信息干扰).【关键词】 矿泉水 统计初步六、(本大题共2小题,每小题9分,共18分)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm ,∠OAB =120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.(1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=23,cos60°=21,tan60°=3,721≈26.851,可使用科学计算器)【答案】解:(1)雨刮杆AB 旋转的最大角度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH ,∵∠OAB =120°,∴∠OAE =60°在Rt △OAE 中,∵∠OAE =60°,OA =10,∴sin ∠OAE =OA OE =10OE , ∴OE =53,∴AE =5.∴EB =AE +AB =53,在Rt △OEB 中,∵OE =53,EB =53,∴OB =22BE OE =2884=2721≈53.70;(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO ≌△OCD ,∴S △BAO =S △OCD ,∴雨刮杆AB 扫过的最大面积S =21π(OB 2-OA 2) =1392π.【考点解剖】 本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).【解题思路】 将实际问题转化为数学问题,(1)AB 旋转的最大角度为180°;在△OAB 中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB =120°想到作AB 边上的高,得到一个含60°角的Rt △OAE 和一个非特殊角的Rt △OEB .在Rt △OAE 中,已知∠OAE =60°,斜边OA =10,可求出OE 、AE 的长,进而求得Rt △OEB 中EB 的长,再由勾股定理求出斜边OB 的长;(2)雨刮杆AB 扫过的最大面积就是一个半圆环的面积(以OB 、OA 为半径的半圆面积之差).【解答过程】 略.【方法规律】 将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】 刮雨器 三角函数 解直角三角形 中心对称 扇形的面积22.如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点P (4,2)是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C .(1)证明P A 是⊙O 的切线;(2)求点B 的坐标;(3)求直线AB 的解析式.【答案】(1)证明:依题意可知,A (0,2)∵A (0,2),P (4,2),∴AP ∥x 轴 .∴∠OAP =90°,且点A 在⊙O 上,∴P A 是⊙O 的切线;(2)解法一:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥x 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP =90°,即∠OBP =∠PEC ,又∵OB =PE =2,∠OCB =∠PEC .∴△OBC ≌△PEC .∴OC=PC .(或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC =x ,则有OE =AP =4,CE=OE -OC =4-x ,在Rt △PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x )2+22,解得x =25,…………………… 4分 ∴BC=CE =4-25=23, ∵21OB ·BC =21OC ·BD ,即21×2×23=21×25×BD ,∴BD =56.∴OD =22BD OB -=25364-=58, 由点B 在第四象限可知B (58,56-);解法二:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥y 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP =90°即∠OBP =∠PEC .又∵OB=PE =2,∠OCB =∠PEC ,∴△OBC ≌△PEC .∴OC=PC (或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC =x ,则有OE=AP =4,CE=OE -OC =4-x ,在Rt △PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x )2+22,解得x =25,……………………………… 4分 ∴BC =CE =4-25=23, ∵BD ∥x 轴,∴∠COB =∠OBD ,又∵∠OBC =∠BDO=90°,∴△OBC ∽△BDO , ∴BD OB =OD CB =BOOC , 即BD 2=BD 23=225. ∴BD =58,OD =56. 由点B 在第四象限可知B (58,56-); (3)设直线AB 的解析式为y =kx +b ,由A (0,2),B (58,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ; 解得⎩⎨⎧-==,2,2k b ∴直线AB 的解析式为y =-2x +2. 【考点解剖】 本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】(1) 点A 在圆上,要证PA 是圆的切线,只要证PA ⊥OA (∠OAP =90°)即可,由A 、P 两点纵坐标相等可得AP ∥x 轴,所以有∠OAP +∠AOC =180°得∠OAP =90°;(2) 要求点B 的坐标,根据坐标的意义,就是要求出点B 到x 轴、y 轴的距离,自然想到构造Rt △OBD ,由PB 又是⊙O 的切线,得R t △OAP ≌△OBP ,从而得△OPC 为等腰三角形,在Rt △PCE 中, PE=OA =2, PC+CE=OE =4,列出关于CE 的方程可求出CE 、OC 的长,△OBC 的三边的长知道了,就可求出高BD ,再求OD 即可求得点B 的坐标;(3)已知点A 、点B 的坐标用待定系数法可求出直线AB 的解析式.【解答过程】 略.【方法规律】 从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.【关键词】 切线 点的坐标 待定系数法求解析式七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是 (填序号即可)①AF =AG =21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB =∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状.答: .【答案】 解: ●操作发现:①②③④●数学思考:答:MD=ME ,MD ⊥ME ,1、MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG ,∵M 是BC 的中点,∴MF ∥AC ,MF =21AC . 又∵EG 是等腰Rt △AEC 斜边上的中线, ∴EG ⊥AC 且EG =21AC , ∴MF=EG .同理可证DF=MG .∵MF ∥AC ,∴∠MF A +∠BAC =180°.同理可得∠MGA +∠BAC =180°,∴∠MF A =∠MGA .又∵EG ⊥AC ,∴∠EGA =90°.同理可得∠DF A =90°,∴∠MF A +∠DF A =∠MGA =∠EGA ,即∠DFM=∠MEG ,又MF=EG ,DF=MG ,∴△DFM ≌△MGE (SAS ),∴MD=ME .2、MD ⊥ME ;证法一:∵MG ∥AB ,∴∠MF A +∠FMG =180°,又∵△DFM ≌△MGE ,∴∠MEG =∠MDF .∴∠MF A +∠FMD +∠DME +∠MDF =180°,其中∠MF A +∠FMD +∠MDF =90°,∴∠DME =90°.即MD ⊥ME ;证法二:如图2,MD 与AB 交于点H ,∵AB ∥MG ,∴∠DHA =∠DMG ,又∵∠DHA =∠FDM +∠DFH ,即∠DHA=∠FDM+90°,∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】(1)由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG 可看成三个角的和,通过变形计算可得∠DME=90°.(3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)【关键词】课题学习全等开放探究24.已知抛物线抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.【答案】解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1.由已知可知a1>0,∴a1=1.即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去).∴b1=2.又∵抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去).。

2013年山东省泰安市中考数学试题及参考答案(word解析版)

2013年山东省泰安市中考数学试题及参考答案(word解析版)

2013年山东省泰安市中考数学试题及参考答案与解析一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对的3分,选错,不选或选出的答案超过一个,均记零分)1.(﹣2)﹣2等于( )A .﹣4B .4C .14-D .142.下列运算正确的是( ) A .3x 3﹣5x 3=﹣2x B .6x 3÷2x ﹣2=3x C .2361139x x ⎛⎫= ⎪⎝⎭ D .﹣3(2x ﹣4)=﹣6x ﹣12 3.2012年我国国民生产总值约52万亿元人民币,用科学记数法表示2012年我国国民生产总值为( )A .5.2×1012元B .52×1012元C .0.52×1014元D .5.2×1013元4.下列图形:其中所有轴对称图形的对称轴条数之和为( )A .13B .11C .10D .85.下列几何体中,主视图是矩形,俯视图是圆的几何体是( )A .B .C .D . 6.不等式组()317243x x x x--⎧⎪⎨+⎪⎩≤>的解集为( ) A .﹣2<x <4 B .x <4或x≥﹣2 C .﹣2≤x <4 D .﹣2<x≤47.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,58.如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于( )A .90°B .180°C .210°D .270°9.如图,点A ,B ,C ,在⊙O 上,∠ABO=32°,∠ACO=38°,则∠BOC 等于( )A .60°B .70°C .120°D .140°10.对于抛物线()21132y x =-++,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x >1时,y 随x 的增大而减小。

2013年重庆市中考数学试题(A卷)及参考答案(word解析版)

2013年重庆市中考数学试题(A卷)及参考答案(word解析版)

2013年重庆市中考数学试题(A卷)及参考答案一、选择题:(本大题共12个小题,每小题4分,共48分)1.在3,0,6,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.32.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y23.已知∠A=65°,则∠A的补角等于()A.125°B.105°C.115°D.95°4.分式方程212x x-=-的根是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣25.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°6.计算6tan45°﹣2cos60°的结果是()A.B.4 C.D.57.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定8.如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm9.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm10.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,则第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm211.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y与x之间函数关系的大致图象是()A.B.C.D.12.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数kyx(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题:(本大题共6个小题,每小题4分,共24分)13.实数6的相反数是.14.不等式2x﹣3≥x的解集是.15.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是小时.16.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为.(结果保留π)17.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m 2)x 和关于x 的方程(m+1)x 2+mx+1=0中m 的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为 .18.如图,菱形OABC 的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,顶点B 、C 均在第一象限,OA=2,∠AOC=60°.点D 在边AB 上,将四边形OABC 沿直线0D 翻折,使点B 和点C 分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为 .三、解答题:(本大题共2个小题,每小题7分,共14分)19.(7分)计算:)()202013131|2|3-⎛⎫---+- ⎪⎝⎭. 20.(7分)作图题:(不要求写作法)如图,△ABC 在平面直角坐标系中,其中,点A 、B 、C 的坐标分别为A (﹣2,1),B (﹣4,5),C (﹣5,2).(1)作△ABC 关于直线l :x=﹣1对称的△A 1B 1C 1,其中,点A 、B 、C 的对应点分别为A 1、B 1、C 1;(2)写出点A 1、B 1、C 1的坐标.四、解答题:(本大题共4个小题,每小题10分,共40分)21.(10分)先化简,再求值:22226951222a ab b b a b a aba b a ⎛⎫-+÷--- ⎪--⎝⎭,其中a ,b 满足82a b a b +=⎧⎨-=⎩.22.(10分)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.23.(10分)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)24.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF 与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=AB的长.五、解答题:(本大题共2个小题,每小题12分共24分)25.(12分)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.(12分)已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.参考答案与解析一、选择题:(本大题共12个小题,每小题4分,共48分)1.在3,0,6,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.3【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可得出答案.【解答过程】解:3,0,6,﹣2这四个数中,最大的数是6.故选B.【总结归纳】本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.2.计算(2x3y)2的结果是()。

2013年黑龙江省绥化市中考数学试题及答案(Word版)

2013年黑龙江省绥化市中考数学试题及答案(Word版)

2013年黑龙江省绥化市中考数学试卷一、填空题(共11小题,每小题3分,满分33分)1.按如图所示的程序计算.若输入x 的值为3,则输出的值为_______2.函数y =中自变量x 的取值范围是_____________ 3.如图,A 、B 、C 三点在同一条直线上,∠A=∠C=90°,AB=CD ,请添加一个..适当的条件 ______________使得△EAB ≌△BCD .4.在九张质地都相同的卡片上分别写有数字-4、-3、-2、-1,0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是 ___________. 5.计算:21111x x -=--____________. 6.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 ______________7.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为 _____________.8.如图所示,以O 为端点画六条射线后OA 、OB 、OC 、OD 、OE\OF 后,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1、2、3、4、5、6、7、8…后,那么所描的第2013个点在射线 ___________________上.9.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有 ___________种租车方案. 10.若关于x 的方程4122ax x x =+--无解,则a 的值是 ____________11.直角三角形两直角边长是3cm 和4cm ,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是______________ cm 2.(结果保留π) 二、选择题(共9小题,每小题3分,满分27分) 12.下列计算正确的是( )A.3332a a a =B. 2242a a a +=C. 842a a a ÷=D. 236(2)8a a -=-13.下列几何图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .矩形 C .平行四边形 D .等腰梯形14.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 的中点,EF 交AC 于点H ,则AHHC的值为( )A.1B. 12C. 13D.1415.对于反比例函数3y x=,下列说法正确的是( ) A. 图象经过点(1,-3) B. 图象在第二、四象限C. x >0时,y 随x 的增大而增大D. x <0时,y 随x 增大而减小16.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:在这次活动中,该班同学捐款金额的众数和中位数分别是()A. 30,35B. 50,35C. 50,50D. 15,5017.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A. B. C. D.18.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.719.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1B.2C.3D.420.如图,在Rt△ABC中,∠C=90°,AC= BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1B.C.D.三、解答题(共8小题,满分60分)21.(本小题满分5分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.22.(本小题满分6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为____________(2)在表中:m= ___________;n=__________(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优名.如图,已知抛物线1(2)()y x x aa=-+(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.2013年4月20日8时02分四川省雅安市芦山县发生7.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了________________小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定?26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF、BC、CD三条线段之间的关系;②若正方形ADEF的边长为AE,DF相交于点O,连接OC.求OC的长度.27.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?28.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程214480-+=的x x两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.。

2013年河北省数学中考试题及答案(WORD解析版)

2013年河北省数学中考试题及答案(WORD解析版)

2013年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。

2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423³107 B.4.23³106 C.42.3³105 D.423³104答案:B解析:科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23³106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。

4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1) 答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。

5.若x=1,则||x-4=A.3 B.-3 C.5 D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2014 年中考数学试题 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2的值等于 ( )

A、2 B、-2 C、2 D、2 2、函数31xy中,自变量x的取值范围是 ( )

A、1x B、1x C、1x D、1x 3、方程0312xx的解为 ( )

A、2x B、2x C、3x D、3x 4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A、4,15 B、3,15 C、4,16 D、3,16 5、下列说法中正确的是 ( )

A、两直线被第三条直线所截得的同位角相等 B、两直线被第三条直线所截得的同旁内角互补 C、两平行线被第三条直线所截得的同位角的平分线互相垂直 D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直 20. 已知圆柱的底面半径为 3cm,母线长为 5cm,则圆柱的侧面积是 ( )

A、30cm2 B、30πcm2 C、15cm2 D、15πcm2 7、如图,A、B、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A、35° B、140° C、70° D、70°或 140° 8、如图,梯形 ABCD 中,AD∥BC,对角线 AC、BD 相交于 O,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( )

A、21 B、41 C、81 D、161

1、如图,平行四边形 ABCD 中,AB:BC=3:2,∠DAB=60°,E 在 AB 上,且 AE:EB=1:2,F 是BC的

中点,过 D 分别作 DP⊥AF 于 P,DQ⊥CE 于 Q,则 DP∶DQ 等于 ( )

A、3:4 B、3:52 C、13:62 D、32:13 10、已知点 A(0,0),B(0,4),C(3,t+4),D(3,t). 记 N(t)为□ABCD 内部(不含边界)

第7题图 第8题图 第9题图 2

整 点的个数,其中整点是指横坐标和纵坐标都是整数的点,则 N(t)所有可能的值为 ( ) A、 6,7 B、7,8 C、6,7,8 D、6,8,9 二、填空题(本大题共 8小题,每小题 2分,共 16分) 11、分解因式:2x2-4x= 。 12、去年,中央财政安排资金 8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子 女公平接受义务教育,这个数据用科学记数法可表示为 元。

13、已知双曲线 xky1经过点(-1,2)那么k的值等于 。 14、六边形的外角和等于 °。 15、如图,菱形 ABCD 中,对角线 AC 交 BD 于 O,AB=8, E 是 CD 的中点,则 OE 的长等于 。

16、如图,△ABC 中,AB=AC,DE 垂直平分 AB,BE⊥AC,AF⊥BC,则∠EFC= °。 17、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 。 18、已知点 D 与点 A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则 CD 长的最小值 为 。 三、解答题 19、(本题满分 8 分)计算: (1)02)1.0()2(9 (2)2212xxx

20、(本题满分 8 分) (1)解方程:0232xx; (2)解不等式组:1212132xxxx

第15题图 第16题图 第17题图 3

(2)(本题满分 6 分)如图,在 Rt△ABC 中,∠C=90°,AB=10,sin∠A= 2 ,求 BC 的长和 tan∠B 的值。

22、(本题满分

8 分)小明与甲、乙两人一起玩“手心手背”的游戏. 23、 (本题满分

6

分)某校为了解“课程选

请根据图中提供的信息,解答下面的问题: (1)此次共调查了 名学生,扇形统计图中“艺术鉴赏”部分的圆心角是 度。 (2)请把这个条形统计图补充完整。 (3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目。

C B A 4 24、本题满分 10 分)如图,四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,在①AB//CD;②AO=CO;③AD=BC 中任意选取两个作为条件,“四边形 ABCD 是平行四边形”为结论构造命题。 (1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果„,那么„.”的形式)。

25、(本题满分 8 分)已知甲、乙两种原料中均含有 A 元素,其含量及每吨原料的购买单价如下表所示: A 元素含量 单价(万元/吨)

甲原料 5% 2.5 乙原料 8% 6 已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若 某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?

B A D

C O 5 26、(本题满分 10 分)如图,直线4x与x轴交于点 E,一开口向上的抛物线过原点交线段 OE 于点 A,交直线4x于点 B,过 B 且平行于x轴的直线与抛物线交于点 C,直线 OC 交直线 AB 于 D,且 AD : BD=1:3。 (1)求点 A 的坐标; (2)若△OBC 是等腰三角形,求此抛物线的函数关系式。

27、(本题满分10分)如图1,菱形 ABCD 中,∠A=600。点P从A出发,以 2cm/s 的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t (s)。△APQ的面积S(cm2)与t(s)之间函数关系的图像由图2中的曲线段OE与线段EF、FG给出。 (1)求点Q运动的速度; (2)求图2中线段FG的函数关系式; (3)问:是否存在这样的t,使 PQ 将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由。

4x

D C

Q E

F 239

S(cm2) 6 7

28.(12分)下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明. (1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等; (2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等; (3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等. 8 2013无锡市中考数学试卷参考答案 一、选择题 1~10 ABCAD BBDDC 二、填空题 11、2x(x-2) 12.8.2×109 13.-3 14.360 15.4 16.45 17.72

18.72 三、解答题 19. 解:(1)原式=3﹣4+1=0; (2)原式=x2+2x+1﹣x2+4=2x+5.

20. 解:(1)x2+3x﹣2=0,

∵b2﹣4ac=32﹣4×1×(﹣2)=17,

∴x=,

x1=,x2=﹣;

(2) ∵解不等式①得:x≥4, 解不等式②得:x>5, ∴不等式组的解集为:x>5. 21. 解:在Rt△ABC中,∠C=90°,AB=10,sinA===,

∴BC=4, 根据勾股定理得:AC==2,

则tanB===.

22.: 解:画树状图得: 9

∵共有4种等可能的结果,在一个回合中,如果小明出“手心”,则他获胜的有1种情况, ∴他获胜的概率是:.

23. 解:根据题意得: 调查的总学生数是:50÷25%=200(名),

“艺术鉴赏”部分的圆心角是×360°=144°; 故答案为:200,144;

(2)数学思维的人数是:200﹣80﹣30﹣50=40(名), 补图如下:

(3)根据题意得:800×=120(名), 答:其中有120名学生选修“科技制作”项目.

24. (1)以①②作为条件构成的命题是真命题, 证明:∵AB∥CD, ∴△AOB∽△COD,

∴=, ∵AO=OC, ∴OB=OD, ∴四边形ABCD是平行四边形.

(2)根据①③作为条件构成的命题是假命题,即如果有一组对边平行,而另一组对边相等的四边形时平行四边形,如等腰梯形符合,但不是平行四边形; 根据②③作为条件构成的命题是假命题,即如果一个四边形ABCD的对角线交于O,且OA=OC,

相关文档
最新文档