HadoopDB An Archetectual Hybrid for MapReduce and DBMS

合集下载

hadoop使用场景

hadoop使用场景

hadoop使用场景Hadoop使用场景Hadoop是一个开源的分布式计算框架,可以处理大规模数据集。

它的出现解决了传统计算机无法处理大规模数据的问题,因此被广泛应用于各种场景。

以下是Hadoop的一些使用场景:1. 大数据存储Hadoop的分布式文件系统HDFS可以存储大规模数据集,并在集群中进行数据备份和恢复。

它的数据可靠性和可扩展性是传统文件系统无法比拟的。

因此,许多大型企业和组织都将Hadoop用于大数据存储。

2. 数据处理和分析Hadoop的MapReduce框架使得分布式计算变得简单和高效。

它可以在集群中并行执行任务,处理大规模数据集。

许多企业使用Hadoop来处理和分析数据,以便发现数据中的模式和趋势,作出更好的业务决策。

3. 数据挖掘和机器学习Hadoop的机器学习库Mahout可以帮助企业在大规模数据集上训练机器学习模型。

许多企业使用Hadoop来分析客户行为、识别欺诈或评估风险等。

Mahout还可以用于推荐系统、分类和聚类等任务。

4. 日志分析许多企业使用Hadoop来分析日志,以便了解产品的使用情况、识别系统故障或发现安全问题。

Hadoop可以帮助企业处理大量的日志数据,从中提取有价值的信息。

5. 图像和音频处理Hadoop可以用于处理图像和音频数据。

许多企业使用Hadoop来分析图像和音频数据,以便识别图像中的物体、提取音频中的声音特征等。

这些信息可以用于图像搜索、音频识别等应用。

总结Hadoop是一个强大的分布式计算框架,可以处理大量的数据。

它被广泛应用于各种场景,包括大数据存储、数据处理和分析、数据挖掘和机器学习、日志分析、图像和音频处理等。

随着大数据的不断增长,Hadoop的使用场景会越来越多,对企业的业务决策和发展有着重要的意义。

Hadoop大数据开发基础教案Hadoop介绍教案

Hadoop大数据开发基础教案Hadoop介绍教案

Hadoop大数据开发基础教案Hadoop介绍教案第一章:Hadoop概述1.1 课程目标了解Hadoop的定义、发展历程及应用场景掌握Hadoop的核心组件及其作用理解Hadoop在大数据领域的优势1.2 教学内容Hadoop的定义与发展历程Hadoop的核心组件:HDFS、MapReduce、YARN Hadoop的应用场景与优势1.3 教学方法讲解与案例分析相结合互动提问,巩固知识点1.4 课后作业简述Hadoop的发展历程及其在大数据领域的优势。

第二章:HDFS(分布式文件系统)2.1 课程目标掌握HDFS的架构与工作原理了解HDFS的优势与局限性掌握HDFS的常用操作命令2.2 教学内容HDFS的架构与工作原理HDFS的优势与局限性HDFS的常用操作命令:hdfs dfs, hdfs dfsadmin2.3 教学方法讲解与实践操作相结合案例分析,理解HDFS的工作原理2.4 课后作业利用HDFS命令练习文件的与。

第三章:MapReduce编程模型3.1 课程目标掌握MapReduce的基本概念与编程模型理解MapReduce的运行原理与执行过程学会使用MapReduce解决大数据问题3.2 教学内容MapReduce的基本概念:Mapper、Reducer、Shuffle与Sort MapReduce的编程模型:Map阶段、Shuffle阶段、Reduce阶段MapReduce的运行原理与执行过程3.3 教学方法讲解与编程实践相结合剖析经典MapReduce案例,理解编程模型3.4 课后作业编写一个简单的MapReduce程序,实现单词计数功能。

第四章:YARN(资源管理器)4.1 课程目标掌握YARN的基本概念与架构了解YARN的工作原理与调度策略掌握YARN的资源管理与优化方法4.2 教学内容YARN的基本概念与架构YARN的工作原理与调度策略YARN的资源管理与优化方法4.3 教学方法讲解与案例分析相结合实操演练,掌握YARN的资源管理方法4.4 课后作业分析一个YARN集群的资源使用情况,提出优化方案。

hadoop项目结构及各部分具体内容

hadoop项目结构及各部分具体内容

hadoop项目结构及各部分具体内容Hadoop是一个开源的分布式计算框架,由Apache基金会管理。

它的核心是Hadoop分布式文件系统(HDFS)和MapReduce计算模型。

其项目结构包括以下几个部分:1. Hadoop Common:这是Hadoop项目的核心模块,包含文件系统、I/O操作、网络通信、安全性等基本功能的实现。

2. Hadoop HDFS:这是Hadoop的分布式文件系统,用于存储和管理大量数据。

它将数据分割成块,将这些块存储在不同的计算机上,以实现数据的可靠性和高可用性。

3. Hadoop YARN:这是Hadoop的资源管理器,用于管理集群中的资源,包括内存、CPU、磁盘等。

它可以将集群资源分配给运行在集群上的应用程序,从而提高资源利用率。

4. Hadoop MapReduce:这是Hadoop的计算模型,用于在分布式环境下执行大数据处理任务。

MapReduce将任务分成更小的子任务,然后在不同的计算机上并行执行这些子任务,最后将结果合并。

除了以上核心部分,Hadoop还包括一些其他功能模块:1. Hadoop Hive:这是一个基于Hadoop的数据仓库,提供了SQL 查询功能。

它可以将结构化数据映射到Hadoop HDFS上,从而实现大规模数据的查询和分析。

2. Hadoop Pig:这是一个基于Hadoop的数据流语言和平台,用于进行大规模数据处理和分析。

它支持多种数据源和处理方式,可以快速地进行数据的转换和操作。

3. Hadoop HBase:这是一个基于Hadoop的分布式数据库,用于存储大量的结构化数据。

它支持高可用性、可靠性和扩展性,并提供了快速查询和插入数据的功能。

总之,Hadoop是一个强大的大数据处理框架,它的各个部分提供了不同的功能和特性,可以轻松地处理大规模数据。

Hadoop 生态系统介绍

Hadoop 生态系统介绍

Hadoop 生态系统介绍Hadoop生态系统是一个开源的大数据处理平台,它由Apache基金会支持和维护,可以在大规模的数据集上实现分布式存储和处理。

Hadoop生态系统是由多个组件和工具构成的,包括Hadoop 核心,Hive、HBase、Pig、Spark等。

接下来,我们将对每个组件及其作用进行介绍。

一、Hadoop核心Hadoop核心是整个Hadoop生态系统的核心组件,它主要由两部分组成,一个是Hadoop分布式文件系统(HDFS),另一个是MapReduce编程模型。

HDFS是一个高可扩展性的分布式文件系统,可以将海量数据存储在数千台计算机上,实现数据的分散储存和高效访问。

MapReduce编程模型是基于Hadoop的针对大数据处理的一种模型,它能够对海量数据进行分布式处理,使大规模数据分析变得容易和快速。

二、HiveHive是一个开源的数据仓库系统,它使用Hadoop作为其计算和存储平台,提供了类似于SQL的查询语法,可以通过HiveQL 来查询和分析大规模的结构化数据。

Hive支持多种数据源,如文本、序列化文件等,同时也可以将结果导出到HDFS或本地文件系统。

三、HBaseHBase是一个开源的基于Hadoop的列式分布式数据库系统,它可以处理海量的非结构化数据,同时也具有高可用性和高性能的特性。

HBase的特点是可以支持快速的数据存储和检索,同时也支持分布式计算模型,提供了易于使用的API。

四、PigPig是一个基于Hadoop的大数据分析平台,提供了一种简单易用的数据分析语言(Pig Latin语言),通过Pig可以进行数据的清洗、管理和处理。

Pig将数据处理分为两个阶段:第一阶段使用Pig Latin语言将数据转换成中间数据,第二阶段使用集合行处理中间数据。

五、SparkSpark是一个快速、通用的大数据处理引擎,可以处理大规模的数据,支持SQL查询、流式数据处理、机器学习等多种数据处理方式。

hadoop 原理

hadoop  原理

hadoop 原理Hadoop是一个开源的分布式计算框架,基于Google的MapReduce和分布式文件系统(HDFS)的概念而设计。

它可以处理大规模数据集并将其分布式存储在集群中的多个计算节点上。

Hadoop的核心原理包括:1. 分布式存储:Hadoop将大规模的数据集分散存储在集群中的多个计算节点上。

这些数据被分割为多个块,并复制到多个节点上以提供容错性。

这种分布式存储方式以Hadoop分布式文件系统(HDFS)实现,允许在存储节点上进行数据读写操作。

2. 分布式计算:Hadoop利用MapReduce模型进行分布式计算。

MapReduce模型将计算任务分为两个关键步骤:Map和Reduce。

Map阶段将输入数据集映射为键值对,并为每个键值对生成一个中间结果。

Reduce阶段将相同键的中间结果聚合为最终结果。

这种分布式计算模型允许在不同计算节点上并行处理数据块,并将结果合并。

3. 容错性:Hadoop实现了容错机制,使得在集群中的节点发生故障时能够自动恢复和重新分配任务。

当一个节点失败时,Hadoop会将该节点上的任务重新分配给其他可用节点,以确保计算过程的连续性和可靠性。

4. 数据局部性优化:Hadoop提供了数据局部性优化机制,通过将计算任务调度到存储有数据块的节点上来减少数据传输开销。

这样可以最大限度地利用集群内部的带宽和计算资源,提高计算效率。

5. 扩展性:Hadoop的分布式架构具有良好的可扩展性,允许根据需求增加或减少集群中的计算节点。

这种可扩展性使得Hadoop能够处理大规模数据集,并且可以处理节点故障或新节点的加入。

综上所述,Hadoop通过分布式存储和计算、容错性、数据局部性优化和可扩展性等主要原理,实现了对大规模数据集的高效处理和分析。

hadoop的生态体系及各组件的用途

hadoop的生态体系及各组件的用途

hadoop的生态体系及各组件的用途
Hadoop是一个生态体系,包括许多组件,以下是其核心组件和用途:
1. Hadoop Distributed File System (HDFS):这是Hadoop的分布式文件系统,用于存储大规模数据集。

它设计为高可靠性和高吞吐量,并能在低成本的通用硬件上运行。

通过流式数据访问,它提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。

2. MapReduce:这是Hadoop的分布式计算框架,用于并行处理和分析大规模数据集。

MapReduce模型将数据处理任务分解为Map和Reduce两个阶段,从而在大量计算机组成的分布式并行环境中有效地处理数据。

3. YARN:这是Hadoop的资源管理和作业调度系统。

它负责管理集群资源、调度任务和监控应用程序。

4. Hive:这是一个基于Hadoop的数据仓库工具,提供SQL-like查询语言和数据仓库功能。

5. Kafka:这是一个高吞吐量的分布式消息队列系统,用于实时数据流的收集和传输。

6. Pig:这是一个用于大规模数据集的数据分析平台,提供类似SQL的查询语言和数据转换功能。

7. Ambari:这是一个Hadoop集群管理和监控工具,提供可视化界面和集群配置管理。

此外,HBase是一个分布式列存数据库,可以与Hadoop配合使用。

HBase 中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。

大数据技术和Hadoop的基本原理和架构

大数据技术和Hadoop的基本原理和架构

大数据技术和Hadoop的基本原理和架构随着互联网时代的到来,数据量呈现出爆发式增长的趋势,数据信息化也成为了各行业的一个重要趋势。

越来越多的企业和机构在进行各种数据分析,比如市场调研、金融分析、运营分析、医疗研究等。

针对这个问题,业界产生了一种新的技术解决方案:大数据技术(Big Data)。

大数据技术是一种关注数据处理、管理和分析的技术体系。

它的目标是能够处理任何规模和复杂程度的数据。

在大数据技术中,最著名的技术之一就是Hadoop。

Hadoop是一种基于Java的开源框架,主要用于分布式存储和处理大规模数据集,包括结构化和非结构化数据。

Hadoop的架构Hadoop架构可以分为两个核心部分:存储层和计算层。

这两个层次相互独立,但又联系紧密。

其中,存储层主要包括HDFS (Hadoop Distributed File System)和YARN(Yet Another Resource Negotiator)两个组件。

计算层主要包括Hadoop MapReduce。

Hadoop Distributed File System(HDFS)HDFS是Hadoop的存储组件,同时也是一个与Unix文件系统类似的文件系统。

它是一个分布式文件系统,被设计来存储大量的数据,并且能够持续地给该数据提供高可用性和高性能。

HDFS使用“块”来存储数据,每个块的默认大小是64M,每个文件可以被划分为许多块,并且每个都可以复制到许多机器上,以提高数据的可靠性和可用性。

为了实现高可靠性和高可用性,HDFS有三种类型的组件:NameNode、DataNode和SecondaryNameNode。

其中,NameNode是HDFS的“大管家”,负责整个集群中字节点的元数据信息存储、命名空间管理、数据块处理等。

DataNode则是HDFS集群的“工人”,实际存储数据的地方。

SecondaryNameNode的作用是辅助NameNode,通过定期备份NameNode来提高整个集群的可靠性。

Hadoop数据库

Hadoop数据库

Hadoop数据库简介Hadoop是一个众所周知的开源软件框架,它是一个高度可扩展性和分布式性能的数据库解决方案。

提供了一种分布式存储和分析大型数据的集群环境。

它的灵活性、高扩展性和数据处理速度是传统关系型数据库不可比拟的。

在Hadoop环境中,数据是分布式存储的,不同的节点负责处理不同的数据。

Hadoop MapReduce可以进行并行处理,将大规模的数据处理成小块。

在并行处理的基础上,可以轻松地处理数千万甚至数亿行数据。

的优点的最大优点是它的扩展性。

Hadoop的框架可以横向扩展,从而扩大集群大小,以适应数据量增加的需求。

而且,它可以在廉价的硬件上运行,降低了部署和维护的成本。

另一个显著的优点是它的数据处理速度。

通过使用并行处理,Hadoop可以在非常短的时间内处理大量数据,从而提高了数据处理的效率。

用例作为分布式数据库的代表,广泛应用于各种行业和领域。

以下是一些的应用场景:金融: 可以用于检测欺诈、预测市场趋势以及风险管理等方面,掌握金融行业的数据分析。

医疗保健: 可以存储大量的医疗数据,进行药物开发和试验、预测医疗风险、进行医学诊断等方面的任务。

电子商务: 可以用于分析用户数据,预测用户行为,制定个性化推荐策略,提高电商领域的销售业绩。

总结是一个高度可扩展性和分布式性能的数据库解决方案。

通过使用Hadoop MapReduce技术实现并行处理,Hadoop可以在较短的时间内处理大量数据。

作为分布式数据库的代表,广泛应用于各种行业和领域。

随着大数据应用场景的日益增多,的应用前景也越来越广泛。

简述hadoop核心组件及功能应用

简述hadoop核心组件及功能应用

简述hadoop核心组件及功能应用Hadoop是一个开源的分布式计算系统,由Apache组织维护。

它可以处理大量的数据,支持数据的存储、处理和分析。

其核心组件包括HDFS(Hadoop分布式文件系统)、MapReduce计算框架、YARN(资源管理)。

以下是对每个核心组件的简要介绍:1. HDFSHDFS是Hadoop分布式文件系统,它是Hadoop最核心的组件之一。

HDFS是为大数据而设计的分布式文件系统,它可以存储大量的数据,支持高可靠性和高可扩展性。

HDFS的核心目标是以分布式方式存储海量数据,并为此提供高可靠性、高性能、高可扩展性和高容错性。

2. MapReduce计算框架MapReduce是Hadoop中的一种计算框架,它支持分布式计算,是Hadoop的核心技术之一。

MapReduce处理海量数据的方式是将数据拆分成小块,然后在多个计算节点上并行运行Map和Reduce任务,最终通过Shuffle将结果合并。

MapReduce框架大大降低了海量数据处理的难度,让分布式计算在商业应用中得以大规模应用。

3. YARNYARN是Hadoop 2.x引入的新一代资源管理器,它的作用是管理Hadoop集群中的资源。

它支持多种应用程序的并行执行,包括MapReduce和非MapReduce应用程序。

YARN的目标是提供一个灵活、高效和可扩展的资源管理器,以支持各种不同类型的应用程序。

除了以上三个核心组件,Hadoop还有其他一些重要组件和工具,例如Hive(数据仓库)、Pig(数据分析)、HBase(NoSQL数据库)等。

这些组件和工具都是Hadoop生态系统中的重要组成部分,可以帮助用户更方便地处理大数据。

总之,Hadoop是目前最流行的大数据处理框架之一,它的核心组件和工具都为用户提供了丰富的数据处理和分析功能。

揭秘Hadoop生态系统技术架构

揭秘Hadoop生态系统技术架构

揭秘Hadoop生态系统技术架构Hadoop是一个广泛应用于海量数据处理的开源平台。

其生态系统包含多个组件和技术,架构复杂,本文将从技术架构的角度解析Hadoop生态系统。

1. Hadoop技术架构概览Hadoop生态系统包含多个组件,其中最为重要的是Hadoop分布式文件系统(HDFS)和MapReduce。

HDFS是一种分布式文件系统,可在多个计算机之间共享文件,并提供数据存储和访问服务。

MapReduce则是一种分布式计算模型,用于将海量数据分成多个小块进行并行计算。

除了HDFS和MapReduce,Hadoop还包含多个组件,如HBase、ZooKeeper、Hive、Pig等。

这些组件共同构成了一个完整的Hadoop生态系统。

2. HDFS技术架构HDFS是Hadoop生态系统的核心部分之一,它提供了分布式文件存储和访问功能。

HDFS的技术架构包括以下三个部分:(1)NameNodeNameNode是HDFS的中央管理节点,它负责处理客户端请求和管理HDFS文件系统的元数据。

所有数据块的信息和位置信息都存储在NameNode中,因此,NameNode是HDFS中最重要的组件之一。

(2)DataNodeDataNode是存储实际数据块的节点。

当客户端上传数据时,DataNode将数据块存储到本地磁盘,并向NameNode注册该数据块的位置信息。

(3)Secondary NameNodeSecondary NameNode不是NameNode的备份节点,而是NameNode的辅助节点。

它可以定期备份NameNode的元数据,以便在NameNode的故障情况下恢复文件系统。

3. MapReduce技术架构MapReduce是Hadoop中用于分布式计算的核心组件,它的技术架构包括以下三个部分:(1)JobTrackerJobTracker是MapReduce计算集群的中央节点,它负责管理计算任务、调度Map和Reduce任务、监控任务执行状态等。

hadoop介绍讲解

hadoop介绍讲解

hadoop介绍讲解Hadoop是一个由Apache软件基金会开发的开源分布式系统。

它的目标是处理大规模数据集。

Hadoop可以更好地利用一组连接的计算机和硬件来存储和处理海量数据集。

Hadoop主要由Hadoop分布式文件系统(HDFS)和MapReduce两部分组成。

以下是hadoop的详细介绍。

1. Hadoop分布式文件系统(HDFS)HDFS是Hadoop的分布式文件系统。

HDFS将大量数据分成小块并在多个机器上进行存储,从而使数据更容易地管理和处理。

HDFS适合在大规模集群上存储和处理数据。

它被设计为高可靠性,高可用性,并且容错性强。

2. MapReduceMapReduce是Hadoop中的计算框架。

它分为两个阶段:Map和Reduce。

Map阶段将数据分为不同的片段,并将这些片段映射到不同的机器上进行并行处理,Reduce阶段将结果从Map阶段中得到,并将其组合在一起生成最终的结果。

MapReduce框架根据数据的并行处理进行拆分,而输出结果则由Reduce阶段组装而成。

3. Hadoop生态系统Hadoop是一个开放的生态系统,其包含了许多与其相关的项目。

这些项目包括Hive,Pig,Spark等等。

Hive是一个SQL on Hadoop工具,用于将SQL语句转换为MapReduce作业。

Pig是另一个SQL on Hadoop工具,它是一个基于Pig Latin脚本语言的高级并行运算系统,可以用于处理大量数据。

Spark是一个快速通用的大数据处理引擎,它减少了MapReduce 的延迟并提供了更高的数据处理效率。

4. Hadoop的优点Hadoop是一个灵活的、可扩展的与成本优势的平台,它可以高效地处理大规模的数据集。

同时,它的开放式和Modular的体系结构使得其在大数据环境下无论是对数据的处理还是与其他开发者的协作都非常便利。

5. 总结Hadoop是一个很好的大数据处理工具,并且在行业中得到了广泛的应用。

大规模数据处理中的并行计算技术教程

大规模数据处理中的并行计算技术教程

大规模数据处理中的并行计算技术教程随着互联网的快速发展以及科技进步,大规模数据处理已成为当今的重大挑战之一。

从社交媒体、电子商务到生物信息学和医疗保健等领域,大数据的应用范围越来越广泛。

为了有效地处理和分析海量数据,必须运用并行计算技术。

并行计算是一种将计算任务分配给多个处理器同时执行的技术,以提高计算效率和处理速度。

在大规模数据处理中,我们经常会遇到需要同时处理多个数据文件、执行多个计算任务的情况。

通过并行计算技术,可以同时运行多个任务,将计算任务分解为更小的子任务,并在多个处理器上并行执行,以减少计算时间和提高处理效率。

本教程将介绍大规模数据处理中的并行计算技术,包括分布式计算框架、并行计算模型和常用的并行算法。

一、分布式计算框架分布式计算框架是一种用于处理大规模数据的软件架构,它将数据和计算任务分布在多个计算节点上,并通过网络进行通信和协调。

常见的分布式计算框架包括Apache Hadoop和Apache Spark等。

1. Apache HadoopApache Hadoop是一个开源的分布式计算框架,它基于Google的MapReduce思想,并包括分布式文件系统HDFS。

Hadoop将数据分为多个块,并将这些块分布在多个计算节点上进行并行计算。

通过Hadoop,可以实现大规模数据的分布式存储和计算,适用于批处理任务。

2. Apache SparkApache Spark是另一个流行的分布式计算框架,它支持更广泛的计算模型,如批处理、交互式查询和流式处理等。

Spark引入了弹性分布式数据集(RDD)的概念,将数据分布在多个工作节点上,以支持高速计算和迭代算法。

与Hadoop相比,Spark具有更快的速度和更丰富的功能。

二、并行计算模型并行计算模型是用于描述和分析并行计算过程的抽象模型,它定义了任务的分解方式、计算单元的交互方式和数据通信机制。

在大规模数据处理中,常用的并行计算模型包括共享内存模型和消息传递模型。

Hadoop大数据开发基础教案Hadoop集群的搭建及配置教案

Hadoop大数据开发基础教案Hadoop集群的搭建及配置教案

Hadoop大数据开发基础教案-Hadoop集群的搭建及配置教案教案章节一:Hadoop简介1.1 课程目标:了解Hadoop的发展历程及其在大数据领域的应用理解Hadoop的核心组件及其工作原理1.2 教学内容:Hadoop的发展历程Hadoop的核心组件(HDFS、MapReduce、YARN)Hadoop的应用场景1.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节二:Hadoop环境搭建2.1 课程目标:学会使用VMware搭建Hadoop虚拟集群掌握Hadoop各节点的配置方法2.2 教学内容:VMware的安装与使用Hadoop节点的规划与创建Hadoop配置文件(hdfs-site.xml、core-site.xml、yarn-site.xml)的编写与配置2.3 教学方法:演示与实践相结合手把手教学,确保学生掌握每个步骤教案章节三:HDFS文件系统3.1 课程目标:理解HDFS的设计理念及其优势掌握HDFS的搭建与配置方法3.2 教学内容:HDFS的设计理念及其优势HDFS的架构与工作原理HDFS的搭建与配置方法3.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节四:MapReduce编程模型4.1 课程目标:理解MapReduce的设计理念及其优势学会使用MapReduce解决大数据问题4.2 教学内容:MapReduce的设计理念及其优势MapReduce的编程模型(Map、Shuffle、Reduce)MapReduce的实例分析4.3 教学方法:互动提问,巩固知识点教案章节五:YARN资源管理器5.1 课程目标:理解YARN的设计理念及其优势掌握YARN的搭建与配置方法5.2 教学内容:YARN的设计理念及其优势YARN的架构与工作原理YARN的搭建与配置方法5.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节六:Hadoop生态系统组件6.1 课程目标:理解Hadoop生态系统的概念及其重要性熟悉Hadoop生态系统中的常用组件6.2 教学内容:Hadoop生态系统的概念及其重要性Hadoop生态系统中的常用组件(如Hive, HBase, ZooKeeper等)各组件的作用及相互之间的关系6.3 教学方法:互动提问,巩固知识点教案章节七:Hadoop集群的调优与优化7.1 课程目标:学会对Hadoop集群进行调优与优化掌握Hadoop集群性能监控的方法7.2 教学内容:Hadoop集群调优与优化原则参数调整与优化方法(如内存、CPU、磁盘I/O等)Hadoop集群性能监控工具(如JMX、Nagios等)7.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节八:Hadoop安全与权限管理8.1 课程目标:理解Hadoop安全的重要性学会对Hadoop集群进行安全配置与权限管理8.2 教学内容:Hadoop安全概述Hadoop的认证与授权机制Hadoop安全配置与权限管理方法8.3 教学方法:互动提问,巩固知识点教案章节九:Hadoop实战项目案例分析9.1 课程目标:学会运用Hadoop解决实际问题掌握Hadoop项目开发流程与技巧9.2 教学内容:真实Hadoop项目案例介绍与分析Hadoop项目开发流程(需求分析、设计、开发、测试、部署等)Hadoop项目开发技巧与最佳实践9.3 教学方法:案例分析与讨论团队协作,完成项目任务教案章节十:Hadoop的未来与发展趋势10.1 课程目标:了解Hadoop的发展现状及其在行业中的应用掌握Hadoop的未来发展趋势10.2 教学内容:Hadoop的发展现状及其在行业中的应用Hadoop的未来发展趋势(如Big Data生态系统的演进、与大数据的结合等)10.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点重点和难点解析:一、Hadoop生态系统的概念及其重要性重点:理解Hadoop生态系统的概念,掌握生态系统的组成及相互之间的关系。

hadoop特点和适用场合

hadoop特点和适用场合

hadoop特点和适用场合Hadoop是一个开源的分布式计算框架,最初由Apache基金会开发和维护。

它的特点是高可靠性、高扩展性、高效性和容错性,同时适用于大规模数据处理和分布式存储。

下面将详细解释Hadoop 的特点和适用场合。

1. 高可靠性:Hadoop通过数据冗余的方式提供高可靠性。

它将数据分散存储在集群中的多个节点上,每个数据块都有多个副本。

当某个节点发生故障时,可以从其他节点上的副本中恢复数据。

这种冗余机制确保了数据的可靠性和持久性。

2. 高扩展性:Hadoop可以轻松地扩展到数千台服务器,处理PB级别的数据。

它采用了分布式存储和计算的方式,允许用户在需要时添加新的节点,从而提高系统的处理能力和存储容量。

通过横向扩展,Hadoop可以处理海量数据并提供高性能的计算能力。

3. 高效性:Hadoop的高效性体现在两个方面。

首先,它采用了分布式计算的方式,可以将任务分解为多个子任务并在不同节点上并行执行,从而加快计算速度。

其次,Hadoop使用了本地数据处理策略,即将计算任务分发到存储数据的节点上执行,减少了数据传输的开销,提高了计算效率。

4. 容错性:Hadoop通过副本机制和任务重试机制提供容错性。

当某个节点或任务失败时,Hadoop可以自动将任务重新分配给其他可用的节点,并从副本中恢复数据。

这种容错机制使得Hadoop在出现故障时能够保持系统的稳定性和可用性。

Hadoop适用于以下场合:1. 大数据处理:Hadoop是为大规模数据处理而设计的。

它能够高效地处理TB、PB级别的数据,适用于需要对大数据集进行批处理、数据挖掘、机器学习等任务的场景。

2. 分布式存储:Hadoop提供了分布式文件系统HDFS,它能够将数据分布式存储在多个节点上。

HDFS具有高容错性和高可用性,适用于需要大规模存储和访问数据的场景。

3. 日志分析:Hadoop可以用于处理大量的日志数据。

通过将日志数据存储在HDFS中,并使用Hadoop的分布式计算能力,可以实时分析和提取有用的信息,帮助企业进行业务监控、故障排查等工作。

hadoop是什么_华为大数据平台hadoop你了解多少

hadoop是什么_华为大数据平台hadoop你了解多少

hadoop是什么_华为大数据平台hadoop你了解多少Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。

Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。

Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。

Hadoop是一个能够对大量数据进行分布式处理的软件框架。

Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。

Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。

Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。

Hadoop 还是可伸缩的,能够处理PB 级数据。

此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。

华为大数据平台hadoop你了解多少提到大数据平台,就不得不提Hadoop。

Hadoop有三大基因:第一,Hadoop需要sharenothing的架构,所以它可以scale-out。

第二,它是一个计算存储解耦的架构,好处是计算引擎可以多样化。

举个例子,批处理有Hive,交互查询有Spark,机器学习还可以有后面的tensorflow这些深度学习的框架。

第三,Hadoop是近数据计算的。

因为大数据平台是一个数据密集的计算场景,在这种非场景下,IO会是个瓶颈,所以把计算移动到数据所在地会提升计算的性能。

网络技术的发展是推动大数据平台发展的一个关键因素。

2012年以前是一个互联网的时代,这个时期互联网公司和电信运营商,掌握着海量的数据,所以他们开始利用Hadoop 平台来进行大数据的处理。

那时候程序员自己写程序跑在Hadoop平台上来解决应用问题。

Hadoop 公平调度器 使用指南

Hadoop 公平调度器 使用指南

Hadoop 公平调度器指南翻译自Hadoop包中的 docs/capacity_scheduler.html,版本Cloudera Hadoop 0.20.1+152Spork目 录目的 (1)引言 (1)安装 (1)配置 (2)mapred-site.xml 中的调度器参数 (2)基本参数 (2)高级参数 (3)配额文件格式 (4)管理 (5)实现 (5)目的本文档描述了公平调度器 (Fair Scheduler), 这是一个用于 Hadoop的插件式的 Map/Reduce 调度器,它提供了一种共享大规模集群的方法。

引言公平调度是一种赋予作业(job)资源的方法,它的目的是让所有的作业随着时间的推移, 都能平均的获取等同的共享资源。

当单独一个作业在运行时,它将使用整个集群。

当有其它 作业被提交上来时,系统会将任务(task)空闲时间片(slot)赋给这些新的作业,以使得每 一个作业都大概获取到等量的 CPU 时间。

与 Hadoop 默认调度器维护一个作业队列不同,这 个特性让小作业在合理的时间内完成的同时又不“饿”到消耗较长时间的大作业。

它也是一 个在多用户间共享集群的简单方法。

公平共享可以和作业优先权搭配使用——优先权像权重 一样用作为决定每个作业所能获取的整体计算时间的比例。

公平调度器按资源池(pool)来组织作业,并把资源公平的分到这些资源池里。

默认情况 下,每一个用户拥有一个独立的资源池,以使每个用户都能获得一份等同的集群资源而不管 他们提交了多少作业。

按用户的 Unix 群组或作业配置(jobconf)属性来设置作业的资源池也 是可以的。

在每一个资源池内,会使用公平共享(fair sharing)的方法在运行作业之间共享容 量(capacity) 。

你也可以给予资源池相应的权重,以不按比例的方式共享集群。

除了提供公平共享方法外,公平调度器允许赋给资源池保证(guaranteed)最小共享资源, 这个用在确保特定用户、群组或生产应用程序总能获取到足够的资源时是很有用的。

hadoop基本概念 -回复

hadoop基本概念 -回复

hadoop基本概念-回复什么是Hadoop?Hadoop是一个开源的分布式计算框架,被设计用于处理大规模数据量和复杂的计算任务。

它主要用来解决海量数据的存储和处理问题,并具备高容错性、可扩展性和高性能的特点。

Hadoop主要有两个核心模块,分别是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。

HDFS是Hadoop的分布式文件系统,它允许将大规模的数据集分布式地存储在集群中的多个节点上。

HDFS采用了主从模式的架构,其中有一个NameNode作为主节点,负责管理文件系统的命名空间、目录和文件的访问控制,以及数据块的位置和副本管理;同时还有多个DataNode作为从节点,负责存储实际的数据块。

HDFS提供了高容错性,通过数据冗余的方式实现了数据的自动备份和自动恢复。

此外,HDFS还具备高吞吐量的特性,可以高效地处理大规模数据的读写操作。

MapReduce是Hadoop的分布式计算框架,它用于在集群中并行地处理大规模数据集。

MapReduce将大规模的数据集划分成若干个小的数据块,并将这些数据块分发到集群中的多个节点上进行并行计算。

MapReduce 的计算过程分为两个阶段:Map阶段和Reduce阶段。

在Map阶段中,每个节点独立对所负责的数据块进行处理,将输入数据转化为键值对(Key-Value Pair),然后将这些键值对根据键分配到不同的Reduce节点上。

在Reduce阶段中,每个Reduce节点将接收到的多个键值对进行进一步的计算和合并,最终得到最终的结果。

MapReduce提供了编程模型和执行框架,使得开发人员可以方便地进行并行计算。

Hadoop生态系统是由一系列与Hadoop相关的开源项目组成的,这些项目在Hadoop基础上提供了更多的功能和扩展。

例如,HBase是一个分布式的面向列的数据库,可以在Hadoop上构建实时查询和随机读写的应用;Hive是一个数据仓库工具,可以将结构化的数据转化为Hadoop 支持的格式,然后使用类似SQL的语法进行查询和分析;Spark是一个快速的分布式计算框架,可以与Hadoop集成,提供更高级别的API和更丰富的功能。

Hadoop生态系统中的大数据处理和存储技术

Hadoop生态系统中的大数据处理和存储技术

Hadoop生态系统中的大数据处理和存储技术随着社会的不断发展,数据的规模和种类也随之不断增加,传统的数据处理方式已经无法满足现代化的需求。

而大数据处理技术则成为了现代企业所必需掌握的技能。

Hadoop生态系统是大数据处理和存储技术中最受欢迎的解决方案之一。

本文将介绍Hadoop生态系统中的大数据处理和存储技术。

Hadoop是一种擅长处理大数据的解决方案,它由Apache开发和维护。

Hadoop分为四个模块:Hadoop Common,HDFS,Hadoop YARN和Hadoop MapReduce,每个模块都具有不同的功能。

Hadoop Common提供了Hadoop生态系统中的其他组件所需的共享库和工具等。

HDFS是一种分布式文件系统,可以存储非常大的数据集,同时也具有容错性。

Hadoop YARN是一个分布式的资源管理框架,可协调Hadoop生态系统中的其他组件。

Hadoop MapReduce是一个框架,可以帮助用户在Hadoop生态系统上运行大规模数据处理作业。

Hadoop生态系统中的其他组件也具有重要的作用。

例如,Apache Hive是一种基于Hadoop的数据仓库,可以将结构化数据存储在Hadoop分布式文件系统中。

它提供了一种类似于SQL的查询语言,使用户可以轻松地查询和分析数据。

Apache Pig是一个处理非结构化数据和半结构化数据的平台。

它通过一种称为PigLatin的语言提供了一种高级的编程接口,用于在Hadoop上运行复杂的数据管道。

Hadoop生态系统中的NoSQL数据库也很重要。

Apache Cassandra是一种面向列的分布式数据存储系统,具有高可靠性和高可伸缩性。

它还提供了一些高级特性,例如多数据中心复制和线性扩展。

Apache HBase是一种面向行的分布式数据库,具有类似Google Bigtable的架构。

它具有高可靠性和高可扩展性,非常适合存储半结构化和非结构化数据。

Hadoop与关系型数据库的联合技术及性能优化

Hadoop与关系型数据库的联合技术及性能优化

Hadoop与关系型数据库的联合技术及性能优化随着大数据时代的到来,各种大规模数据处理的技术也日渐成熟。

其中,Hadoop和关系型数据库是两个主要的技术方向,它们在大数据处理的领域中发挥着重要作用。

为了兼顾Hadoop和关系型数据库的优势,并实现更好的性能优化,联合使用这两种技术已经成为一个解决方案。

本文将介绍Hadoop与关系型数据库联合技术的一些常见应用场景以及性能优化的方法。

Hadoop是由Apache基金会开发的一个开源框架,用于分布式存储和处理大规模数据集。

它通过将数据分散存储在集群的各个节点上,并使用MapReduce编程模型进行并行计算来实现大数据处理。

Hadoop在处理海量数据方面具有独特的优势,可以适用于各种不同类型的数据处理需求。

然而,Hadoop并不适合用于关系型数据处理,例如复杂的事务处理等。

关系型数据库是一种传统的数据管理系统,它以表格形式存储数据,并使用SQL查询语言进行数据操作。

关系型数据库在处理结构化数据方面具有优势,并且可以支持复杂的事务处理和数据一致性。

针对Hadoop和关系型数据库各自的优势与不足,通过联合使用这两种技术可以实现更好的性能优化和数据处理能力。

以下是一些常见的Hadoop与关系型数据库联合技术的应用场景:1. 数据汇总和预处理:Hadoop可以用于从不同的数据源中收集和汇总数据,并进行初步的数据清洗和转换。

在这一过程中,关系型数据库可以提供辅助存储和查询的支持,以便将处理后的数据加载到数据库中进行进一步的分析和挖掘。

2. 数据仓库和数据集市:Hadoop可以用作数据存储和分发平台,将来自不同业务系统的数据集成到一个统一的数据仓库或数据集市中。

而关系型数据库可以用于管理和查询这些集成后的数据,提供高效的数据访问和复杂的数据分析能力。

3. 实时数据处理:Hadoop可以通过将数据流实时写入关系型数据库中,实现实时数据处理和分析。

这样可以在Hadoop的大数据处理能力和关系型数据库的高性能查询能力之间取得平衡,同时满足对实时数据处理的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HadoopDB:An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical WorkloadsAzza Abouzeid1,Kamil Bajda-Pawlikowski1,Daniel Abadi1,Avi Silberschatz1,Alexander Rasin21Y ale University,2Brown University{azza,kbajda,dna,avi}@;alexr@ABSTRACTThe production environment for analytical data management ap-plications is rapidly changing.Many enterprises are shifting away from deploying their analytical databases on high-end proprietary machines,and moving towards cheaper,lower-end,commodity hardware,typically arranged in a shared-nothing MPP architecture, often in a virtualized environment inside public or private“clouds”. At the same time,the amount of data that needs to be analyzed is exploding,requiring hundreds to thousands of machines to work in parallel to perform the analysis.There tend to be two schools of thought regarding what tech-nology to use for data analysis in such an environment.Propo-nents of parallel databases argue that the strong emphasis on per-formance and efficiency of parallel databases makes them well-suited to perform such analysis.On the other hand,others argue that MapReduce-based systems are better suited due to their supe-rior scalability,fault tolerance,andflexibility to handle unstructured data.In this paper,we explore the feasibility of building a hybrid system that takes the best features from both technologies;the pro-totype we built approaches parallel databases in performance and efficiency,yet still yields the scalability,fault tolerance,andflexi-bility of MapReduce-based systems.1.INTRODUCTIONThe analytical database market currently consists of$3.98bil-lion[25]of the$14.6billion database software market[21](27%) and is growing at a rate of10.3%annually[25].As business“best-practices”trend increasingly towards basing decisions off data and hard facts rather than instinct and theory,the corporate thirst for systems that can manage,process,and granularly analyze data is becoming insatiable.Venture capitalists are very much aware of this trend,and have funded no fewer than a dozen new companies in recent years that build specialized analytical data management soft-ware(e.g.,Netezza,Vertica,DATAllegro,Greenplum,Aster Data, Infobright,Kickfire,Dataupia,ParAccel,and Exasol),and continue to fund them,even in pressing economic times[18].At the same time,the amount of data that needs to be stored and processed by analytical database systems is exploding.This is Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment.To copy otherwise,or to republish,to post on servers or to redistribute to lists,requires a fee and/or special permission from the publisher,ACM.VLDB‘09,August24-28,2009,Lyon,FranceCopyright2009VLDB Endowment,ACM000-0-00000-000-0/00/00.partly due to the increased automation with which data can be pro-duced(more business processes are becoming digitized),the prolif-eration of sensors and data-producing devices,Web-scale interac-tions with customers,and government compliance demands along with strategic corporate initiatives requiring more historical data to be kept online for analysis.It is no longer uncommon to hear of companies claiming to load more than a terabyte of structured data per day into their analytical database system and claiming data warehouses of size more than a petabyte[19].Given the exploding data problem,all but three of the above mentioned analytical database start-ups deploy their DBMS on a shared-nothing architecture(a collection of independent,possibly virtual,machines,each with local disk and local main memory, connected together on a high-speed network).This architecture is widely believed to scale the best[17],especially if one takes hardware cost into account.Furthermore,data analysis workloads tend to consist of many large scan operations,multidimensional ag-gregations,and star schema joins,all of which are fairly easy to parallelize across nodes in a shared-nothing network.Analytical DBMS vendor leader,Teradata,uses a shared-nothing architecture. Oracle and Microsoft have recently announced shared-nothing an-alytical DBMS products in their Exadata1and Madison projects, respectively.For the purposes of this paper,we will call analytical DBMS systems that deploy on a shared-nothing architecture paral-lel databases2.Parallel databases have been proven to scale really well into the tens of nodes(near linear scalability is not uncommon).However, there are very few known parallel databases deployments consisting of more than one hundred nodes,and to the best of our knowledge, there exists no published deployment of a parallel database with nodes numbering into the thousands.There are a variety of reasons why parallel databases generally do not scale well into the hundreds of nodes.First,failures become increasingly common as one adds more nodes to a system,yet parallel databases tend to be designed with the assumption that failures are a rare event.Second,parallel databases generally assume a homogeneous array of machines,yet it is nearly impossible to achieve pure homogeneity at scale.Third, until recently,there have only been a handful of applications that re-quired deployment on more than a few dozen nodes for reasonable performance,so parallel databases have not been tested at larger scales,and unforeseen engineering hurdles await.As the data that needs to be analyzed continues to grow,the num-ber of applications that require more than one hundred nodes is be-ginning to multiply.Some argue that MapReduce-based systems 1To be precise,Exadata is only shared-nothing in the storage layer. 2This is slightly different than textbook definitions of parallel databases which sometimes include shared-memory and shared-disk architectures as well.Copyright 2009 VLDB Endowment, ACM 978-1-60558-948-0/09/08[8]are best suited for performing analysis at this scale since they were designed from the beginning to scale to thousands of nodes in a shared-nothing architecture,and have had proven success in Google’s internal operations and on the TeraSort benchmark[7]. Despite being originally designed for a largely different application (unstructured text data processing),MapReduce(or one of its pub-licly available incarnations such as open source Hadoop[1])can nonetheless be used to process structured data,and can do so at tremendous scale.For example,Hadoop is being used to manage Facebook’s2.5petabyte data warehouse[20].Unfortunately,as pointed out by DeWitt and Stonebraker[9], MapReduce lacks many of the features that have proven invaluable for structured data analysis workloads(largely due to the fact that MapReduce was not originally designed to perform structured data analysis),and its immediate gratification paradigm precludes some of the long term benefits offirst modeling and loading data before processing.These shortcomings can cause an order of magnitude slower performance than parallel databases[23].Ideally,the scalability advantages of MapReduce could be com-bined with the performance and efficiency advantages of parallel databases to achieve a hybrid system that is well suited for the an-alytical DBMS market and can handle the future demands of data intensive applications.In this paper,we describe our implementa-tion of and experience with HadoopDB,whose goal is to serve as exactly such a hybrid system.The basic idea behind HadoopDB is to use MapReduce as the communication layer above multiple nodes running single-node DBMS instances.Queries are expressed in SQL,translated into MapReduce by extending existing tools,and as much work as possible is pushed into the higher performing sin-gle node databases.One of the advantages of MapReduce relative to parallel databases not mentioned above is cost.There exists an open source version of MapReduce(Hadoop)that can be obtained and used without cost.Yet all of the parallel databases mentioned above have a nontrivial cost,often coming with sevenfigure price tags for large installations.Since it is our goal to combine all of the advantages of both data analysis approaches in our hybrid system, we decided to build our prototype completely out of open source components in order to achieve the cost advantage as well.Hence, we use PostgreSQL as the database layer and Hadoop as the communication layer,Hive as the translation layer,and all code we add we release as open source[2].One side effect of such a design is a shared-nothing version of PostgreSQL.We are optimistic that our approach has the potential to help transform any single-node DBMS into a shared-nothing par-allel database.Given our focus on cheap,large scale data analysis,our tar-get platform is virtualized public or private“cloud computing”deployments,such as Amazon’s Elastic Compute Cloud(EC2) or VMware’s private VDC-OS offering.Such deployments significantly reduce up-front capital costs,in addition to lowering operational,facilities,and hardware costs(through maximizing current hardware utilization).Public cloud offerings such as EC2 also yield tremendous economies of scale[14],and pass on some of these savings to the customer.All experiments we run in this paper are on Amazon’s EC2cloud offering;however our techniques are applicable to non-virtualized cluster computing grid deployments as well.In summary,the primary contributions of our work include:•We extend previous work[23]that showed the superior per-formance of parallel databases relative to Hadoop.While this previous work focused only on performance in an ideal set-ting,we add fault tolerance and heterogeneous node experi-ments to demonstrate some of the issues with scaling parallel databases.•We describe the design of a hybrid system that is designed to yield the advantages of both parallel databases and MapRe-duce.This system can also be used to allow single-node databases to run in a shared-nothing environment.•We evaluate this hybrid system on a previously published benchmark to determine how close it comes to parallel DBMSs in performance and Hadoop in scalability.2.RELATED WORKThere has been some recent work on bringing together ideas from MapReduce and database systems;however,this work focuses mainly on language and interface issues.The Pig project at Yahoo [22],the SCOPE project at Microsoft[6],and the open source Hive project[11]aim to integrate declarative query constructs from the database community into MapReduce-like software to allow greater data independence,code reusability,and automatic query optimiza-tion.Greenplum and Aster Data have added the ability to write MapReduce functions(instead of,or in addition to,SQL)over data stored in their parallel database products[16].Although thesefive projects are without question an important step in the hybrid direction,there remains a need for a hybrid solu-tion at the systems level in addition to at the language and interface levels.This paper focuses on such a systems-level hybrid.3.DESIRED PROPERTIESIn this section we describe the desired properties of a system de-signed for performing data analysis at the(soon to be more com-mon)petabyte scale.In the following section,we discuss how par-allel database systems and MapReduce-based systems do not meet some subset of these desired properties.Performance.Performance is the primary characteristic that com-mercial database systems use to distinguish themselves from other solutions,with marketing literature oftenfilled with claims that a particular solution is many times faster than the competition.A factor of ten can make a big difference in the amount,quality,and depth of analysis a system can do.High performance systems can also sometimes result in cost sav-ings.Upgrading to a faster software product can allow a corporation to delay a costly hardware upgrade,or avoid buying additional com-pute nodes as an application continues to scale.On public cloud computing platforms,pricing is structured in a way such that one pays only for what one uses,so the vendor price increases linearly with the requisite storage,network bandwidth,and compute power. Hence,if data analysis software product A requires an order of mag-nitude more compute units than data analysis software product B to perform the same task,then product A will cost(approximately) an order of magnitude more than B.Efficient software has a direct effect on the bottom line.Fault Tolerance.Fault tolerance in the context of analytical data workloads is measured differently than fault tolerance in the con-text of transactional workloads.For transactional workloads,a fault tolerant DBMS can recover from a failure without losing any data or updates from recently committed transactions,and in the con-text of distributed databases,can successfully commit transactions and make progress on a workload even in the face of worker node failures.For read-only queries in analytical workloads,there are neither write transactions to commit,nor updates to lose upon node failure.Hence,a fault tolerant analytical DBMS is simply one thatdoes not have to restart a query if one of the nodes involved in query processing fails.Given the proven operational benefits and resource consumption savings of using cheap,unreliable commodity hardware to build a shared-nothing cluster of machines,and the trend towards extremely low-end hardware in data centers[14],the probability of a node failure occurring during query processing is increasing rapidly.This problem only gets worse at scale:the larger the amount of data that needs to be accessed for analytical queries,the more nodes are required to participate in query processing.This further increases the probability of at least one node failing during query execution.Google,for example,reports an average of1.2 failures per analysis job[8].If a query must restart each time a node fails,then long,complex queries are difficult to complete. Ability to run in a heterogeneous environment.As described above,there is a strong trend towards increasing the number of nodes that participate in query execution.It is nearly impossible to get homogeneous performance across hundreds or thousands of compute nodes,even if each node runs on identical hardware or on an identical virtual machine.Part failures that do not cause com-plete node failure,but result in degraded hardware performance be-come more common at scale.Individual node disk fragmentation and software configuration errors can also cause degraded perfor-mance on some nodes.Concurrent queries(or,in some cases,con-current processes)further reduce the homogeneity of cluster perfor-mance.On virtualized machines,concurrent activities performed by different virtual machines located on the same physical machine can cause2-4%variation in performance[5].If the amount of work needed to execute a query is equally di-vided among the nodes in a shared-nothing cluster,then there is a danger that the time to complete the query will be approximately equal to time for the slowest compute node to complete its assigned task.A node with degraded performance would thus have a dis-proportionate effect on total query time.A system designed to run in a heterogeneous environment must take appropriate measures to prevent this from occurring.Flexible query interface.There are a variety of customer-facing business intelligence tools that work with database software and aid in the visualization,query generation,result dash-boarding,and advanced data analysis.These tools are an important part of the analytical data management picture since business analysts are of-ten not technically advanced and do not feel comfortable interfac-ing with the database software directly.Business Intelligence tools typically connect to databases using ODBC or JDBC,so databases that want to work with these tools must accept SQL queries through these interfaces.Ideally,the data analysis system should also have a robust mech-anism for allowing the user to write user defined functions(UDFs) and queries that utilize UDFs should automatically be parallelized across the processing nodes in the shared-nothing cluster.Thus, both SQL and non-SQL interface languages are desirable.4.BACKGROUND AND SHORTFALLS OFA V AILABLE APPROACHESIn this section,we give an overview of the parallel database and MapReduce approaches to performing data analysis,and list the properties described in Section3that each approach meets.4.1Parallel DBMSsParallel database systems stem from research performed in the late1980s and most current systems are designed similarly to the early Gamma[10]and Grace[12]parallel DBMS research projects.These systems all support standard relational tables and SQL,and implement many of the performance enhancing techniques devel-oped by the research community over the past few decades,in-cluding indexing,compression(and direct operation on compressed data),materialized views,result caching,and I/O sharing.Most (or even all)tables are partitioned over multiple nodes in a shared-nothing cluster;however,the mechanism by which data is parti-tioned is transparent to the end-user.Parallel databases use an op-timizer tailored for distributed workloads that turn SQL commands into a query plan whose execution is divided equally among multi-ple nodes.Of the desired properties of large scale data analysis workloads described in Section3,parallel databases best meet the“perfor-mance property”due to the performance push required to compete on the open market,and the ability to incorporate decades worth of performance tricks published in the database research commu-nity.Parallel databases can achieve especially high performance when administered by a highly skilled DBA who can carefully de-sign,deploy,tune,and maintain the system,but recent advances in automating these tasks and bundling the software into appliance (pre-tuned and pre-configured)offerings have given many parallel databases high performance out of the box.Parallel databases also score well on theflexible query interface property.Implementation of SQL and ODBC is generally a given, and many parallel databases allow UDFs(although the ability for the query planner and optimizer to parallelize UDFs well over a shared-nothing cluster varies across different implementations). However,parallel databases generally do not score well on the fault tolerance and ability to operate in a heterogeneous environ-ment properties.Although particular details of parallel database implementations vary,their historical assumptions that failures are rare events and“large”clusters mean dozens of nodes(instead of hundreds or thousands)have resulted in engineering decisions that make it difficult to achieve these properties.Furthermore,in some cases,there is a clear tradeoff between fault tolerance and performance,and parallel databases tend to choose the performance extreme of these tradeoffs.For example, frequent check-pointing of completed sub-tasks increase the fault tolerance of long-running read queries,yet this check-pointing reduces performance.In addition,pipelining intermediate results between query operators can improve performance,but can result in a large amount of work being lost upon a failure.4.2MapReduceMapReduce was introduced by Dean et.al.in2004[8]. Understanding the complete details of how MapReduce works is not a necessary prerequisite for understanding this paper.In short, MapReduce processes data distributed(and replicated)across many nodes in a shared-nothing cluster via three basic operations. First,a set of Map tasks are processed in parallel by each node in the cluster without communicating with other nodes.Next,data is repartitioned across all nodes of the cluster.Finally,a set of Reduce tasks are executed in parallel by each node on the partition it receives.This can be followed by an arbitrary number of additional Map-repartition-Reduce cycles as necessary.MapReduce does not create a detailed query execution plan that specifies which nodes will run which tasks in advance;instead,this is determined at runtime.This allows MapReduce to adjust to node failures and slow nodes on thefly by assigning more tasks to faster nodes and reassigning tasks from failed nodes.MapReduce also checkpoints the output of each Map task to local disk in order to minimize the amount of work that has to be redone upon a failure.Of the desired properties of large scale data analysis workloads,MapReduce best meets the fault tolerance and ability to operate in heterogeneous environment properties.It achieves fault tolerance by detecting and reassigning Map tasks of failed nodes to other nodes in the cluster(preferably nodes with replicas of the input Map data).It achieves the ability to operate in a heterogeneous environ-ment via redundant task execution.Tasks that are taking a long time to complete on slow nodes get redundantly executed on other nodes that have completed their assigned tasks.The time to complete the task becomes equal to the time for the fastest node to complete the redundantly executed task.By breaking tasks into small,granular tasks,the effect of faults and“straggler”nodes can be minimized. MapReduce has aflexible query interface;Map and Reduce func-tions are just arbitrary computations written in a general-purpose language.Therefore,it is possible for each task to do anything on its input,just as long as its output follows the conventions defined by the model.In general,most MapReduce-based systems(such as Hadoop,which directly implements the systems-level details of the MapReduce paper)do not accept declarative SQL.However,there are some exceptions(such as Hive).As shown in previous work,the biggest issue with MapReduce is performance[23].By not requiring the user tofirst model and load data before processing,many of the performance enhancing tools listed above that are used by database systems are not possible. Traditional business data analytical processing,that have standard reports and many repeated queries,is particularly,poorly suited for the one-time query processing model of MapReduce.Ideally,the fault tolerance and ability to operate in heterogeneous environment properties of MapReduce could be combined with the performance of parallel databases systems.In the following sec-tions,we will describe our attempt to build such a hybrid system.5.HADOOPDBIn this section,we describe the design of HadoopDB.The goal of this design is to achieve all of the properties described in Section3. The basic idea behind behind HadoopDB is to connect multiple single-node database systems using Hadoop as the task coordinator and network communication layer.Queries are parallelized across nodes using the MapReduce framework;however,as much of the single node query work as possible is pushed inside of the corre-sponding node databases.HadoopDB achieves fault tolerance and the ability to operate in heterogeneous environments by inheriting the scheduling and job tracking implementation from Hadoop,yet it achieves the performance of parallel databases by doing much of the query processing inside of the database engine.5.1Hadoop Implementation BackgroundAt the heart of HadoopDB is the Hadoop framework.Hadoop consits of two layers:(i)a data storage layer or the Hadoop Dis-tributed File System(HDFS)and(ii)a data processing layer or the MapReduce Framework.HDFS is a block-structuredfile system managed by a central NameNode.Individualfiles are broken into blocks of afixed size and distributed across multiple DataNodes in the cluster.The NameNode maintains metadata about the size and location of blocks and their replicas.The MapReduce Framework follows a simple master-slave ar-chitecture.The master is a single JobTracker and the slaves or worker nodes are TaskTrackers.The JobTracker handles the run-time scheduling of MapReduce jobs and maintains information on each TaskTracker’s load and available resources.Each job is bro-ken down into Map tasks based on the number of data blocks that require processing,and Reduce tasks.The JobTracker assigns tasks to TaskTrackers based on locality and load balancing.It achievesFigure1:The Architecture of HadoopDBlocality by matching a TaskTracker to Map tasks that process data local to it.It load-balances by ensuring all available TaskTrackers are assigned tasks.TaskTrackers regularly update the JobTracker with their status through heartbeat messages.The InputFormat library represents the interface between the storage and processing layers.InputFormat implementations parse text/binaryfiles(or connect to arbitrary data sources)and transform the data into key-value pairs that Map tasks can process.Hadoop provides several InputFormat implementations including one that allows a single JDBC-compliant database to be accessed by all tasks in one job in a given cluster.5.2HadoopDB’s ComponentsHadoopDB extends the Hadoop framework(see Fig.1)by pro-viding the following four components:5.2.1Database ConnectorThe Database Connector is the interface between independent database systems residing on nodes in the cluster and TaskTrack-ers.It extends Hadoop’s InputFormat class and is part of the Input-Format Implementations library.Each MapReduce job supplies the Connector with an SQL query and connection parameters such as: which JDBC driver to use,query fetch size and other query tuning parameters.The Connector connects to the database,executes the SQL query and returns results as key-value pairs.The Connector could theoretically connect to any JDBC-compliant database that resides in the cluster.However,different databases require different read query optimizations.We implemented connectors for MySQL and PostgreSQL.In the future we plan to integrate other databases including open-source column-store databases such as MonetDB and InfoBright.By extending Hadoop’s InputFormat,we integrate seamlessly with Hadoop’s MapReduce Framework.To the frame-work,the databases are data sources similar to data blocks in HDFS.5.2.2CatalogThe catalog maintains metainformation about the databases.This includes the following:(i)connection parameters such as database location,driver class and credentials,(ii)metadata such as data sets contained in the cluster,replica locations,and data partition-ing properties.The current implementation of the HadoopDB catalog stores its metainformation as an XMLfile in HDFS.Thisfile is accessed by the JobTracker and TaskTrackers to retrieve information necessaryto schedule tasks and process data needed by a query.In the future, we plan to deploy the catalog as a separate service that would work in a way similar to Hadoop’s NameNode.5.2.3Data LoaderThe Data Loader is responsible for(i)globally repartitioning data on a given partition key upon loading,(ii)breaking apart single node data into multiple smaller partitions or chunks and(iii)finally bulk-loading the single-node databases with the chunks.The Data Loader consists of two main components:Global Hasher and Local Hasher.The Global Hasher executes a custom-made MapReduce job over Hadoop that reads in raw datafiles stored in HDFS and repartitions them into as many parts as the number of nodes in the cluster.The repartitioning job does not incur the sorting overhead of typical MapReduce jobs.The Local Hasher then copies a partition from HDFS into the localfile system of each node and secondarily partitions thefile into smaller sized chunks based on the maximum chunk size setting. The hashing functions used by both the Global Hasher and the Local Hasher differ to ensure chunks are of a uniform size.They also differ from Hadoop’s default hash-partitioning function to en-sure better load balancing when executing MapReduce jobs over the data.5.2.4SQL to MapReduce to SQL(SMS)Planner HadoopDB provides a parallel database front-end to data analysts enabling them to process SQL queries.The SMS planner extends Hive[11].Hive transforms HiveQL,a variant of SQL,into MapReduce jobs that connect to tables stored asfiles in HDFS.The MapReduce jobs consist of DAGs of rela-tional operators(such asfilter,select(project),join,aggregation) that operate as iterators:each operator forwards a data tuple to the next operator after processing it.Since each table is stored as a separatefile in HDFS,Hive assumes no collocation of tables on nodes.Therefore,operations that involve multiple tables usually require most of the processing to occur in the Reduce phase of a MapReduce job.This assumption does not completely hold in HadoopDB as some tables are collocated and if partitioned on the same attribute,the join operation can be pushed entirely into the database layer.To understand how we extended Hive for SMS as well as the dif-ferences between Hive and SMS,wefirst describe how Hive creates an executable MapReduce job for a simple GroupBy-Aggregation query.Then,we describe how we modify the execution plan for HadoopDB by pushing most of the query processing logic into the database layer.Consider the following query:SELECT YEAR(saleDate),SUM(revenue)FROM sales GROUP BY YEAR(saleDate);Hive processes the above SQL query in a series of phases:(1)The parser transforms the query into an Abstract Syntax Tree.(2)The Semantic Analyzer connects to Hive’s internal catalog, the MetaStore,to retrieve the schema of the sales table.It also populates different data structures with meta information such as the Deserializer and InputFormat classes required to scan the table and extract the necessaryfields.(3)The logical plan generator then creates a DAG of relational operators,the query plan.(4)The optimizer restructures the query plan to create a more optimized plan.For example,it pushesfilter operators closer to the table scan operators.A key function of the optimizer is to break up the plan into Map or Reduce phases.In particular,it adds a Repar-tition operator,also known as a Reduce Sink operator,before Join or GroupBy operators.These operators mark the Map and ReduceFigure2:(a)MapReduce job generated by Hive(b)MapReduce job generated by SMS assuming sales is par-titioned by YEAR(saleDate).This feature is still unsup-ported(c)MapReduce job generated by SMS assumingno partitioning of salesphases of a query plan.The Hive optimizer is a simple,na¨ıve,rule-based optimizer.It does not use cost-based optimization techniques. Therefore,it does not always generate efficient query plans.This is another advantage of pushing as much as possible of the query pro-cessing logic into DBMSs that have more sophisticated,adaptive or cost-based optimizers.(5)Finally,the physical plan generator converts the logical query plan into a physical plan executable by one or more MapReduce jobs.Thefirst and every other Reduce Sink operator marks a tran-sition from a Map phase to a Reduce phase of a MapReduce job and the remaining Reduce Sink operators mark the start of new MapRe-duce jobs.The above SQL query results in a single MapReduce job with the physical query plan illustrated in Fig.2(a).The boxes stand for the operators and the arrows represent theflow of data.(6)Each DAG enclosed within a MapReduce job is serialized into an XML plan.The Hive driver then executes a Hadoop job. The job reads the XML plan and creates all the necessary operator objects that scan data from a table in HDFS,and parse and process one tuple at a time.The SMS planner modifies Hive.In particular we intercept the normal Hiveflow in two main areas:(i)Before any query execution,we update the MetaStore with references to our database tables.Hive allows tables to exist exter-nally,outside HDFS.The HadoopDB catalog,Section5.2.2,pro-vides information about the table schemas and required Deserial-izer and InputFormat classes to the MetaStore.We implemented these specialized classes.(ii)After the physical query plan generation and before the ex-ecution of the MapReduce jobs,we perform two passes over the physical plan.In thefirst pass,we retrieve datafields that are actu-ally processed by the plan and we determine the partitioning keys used by the Reduce Sink(Repartition)operators.In the second pass,we traverse the DAG bottom-up from table scan operators to the output or File Sink operator.All operators until thefirst repar-tition operator with a partitioning key different from the database’s key are converted into one or more SQL queries and pushed into the database layer.SMS uses a rule-based SQL generator to recre-ate SQL from the relational operators.The query processing logic that could be pushed into the database layer ranges from none(each。

相关文档
最新文档