2012年高中数学 第三章 三角恒等变换1同步练习 新人教A版必修4

合集下载

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。

新华教育高中部数学同步人教A版必修四第三章三角恒等变换测试题.

新华教育高中部数学同步人教A版必修四第三章三角恒等变换测试题.

三角恒等变换测试题一、选择题1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<答案:C解析: 00000sin 30cos 6cos30sin 6sin 24,sin 26,sin 25,a b c =-=== 2.函数221tan 21tan 2x y x-=+的最小正周期是( ) A .4π B .2π C .π D .2π 答案:B 解析: 221tan 22cos 4,1tan 242x y x T x ππ-====+ 3.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .2 答案 : B解析: 0sin17(sin 43)(sin 73)(sin 47)cos17cos 43sin17sin 43cos 60-+--=-=4.已知3sin(),45x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .725答案:D解析: 27sin 2cos(2)cos 2()12sin ()24425x x x x πππ=-=-=--= 5.若(0,)απ∈,且1cos sin 3αα+=-,则cos2α=( )A .917B .C .D .317 答案:A解析:214(cos sin ),sin cos sin 0,cos 099αααααα+==-><,而cos sin3αα-==-221cos2cos sin(cos sin)(cos sin)(33ααααααα=-=+-=-⨯-6.函数xxy24cossin+=的最小正周期为()A.4πB.2πC.πD.2π答案:B解析:2222222213(sin)cos(sin)sin1(sin)24y x x x x x=+=-+=-+21313cos2(1cos4)4484x x=+=++二、填空题1.已知在ABC∆中,3sin4cos6,4sin3cos1,A B B A+=+=则角C的大小为.答案:6π解析:22(3sin4cos)(4sin3cos)37,2524sin()37A B B A A B+++=++=11sin(),sin22A B C+==,事实上A为钝角,6Cπ∴=2.计算:oooooo80cos15cos25sin10sin15sin65sin-+的值为_______.答案:2+00000000000000sin(8015)sin15sin10sin80cos15cos152sin(1510)cos15cos80sin15cos10sin15-+===+-3.函数22sin cos()336x xyπ=++的图象中相邻两对称轴的距离是.答案:32π解析:22222sin cos cos sin sin cos cos sin sin336363636x x x x xyππππ=+-=+22cos(),32363xTπππ=-==,相邻两对称轴的距离是周期的一半4.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 答案:34解析:2max 113()cos cos ,cos ,()224f x x x x f x =-++==当时 5.已知)sin()(ϕω+=x A x f 在同一个周期内,当3π=x 时,)(x f 取得最大值为2,当 0=x 时,)(x f 取得最小值为2-,则函数)(x f 的一个表达式为______________. 答案:()2sin(3)2f x x π=- 解析:222,,,3,sin 1,2332T A T ππππωϕϕω======-=-可取 三、解答题1. 求值:(1)000078sin 66sin 42sin 6sin ; (2)00020250cos 20sin 50cos 20sin ++。

第三章 三角恒等变换复习-高一数学教材配套学案(人教A版必修4)

第三章 三角恒等变换复习-高一数学教材配套学案(人教A版必修4)

第三章 三角恒等变换知识④思维导图专题④综合串讲专题1三角函数式的求值【例1】已知0<α<π4,0<β<π4,且3sin β=sin (2α+β),4tan α2=1-tan 2α2,求α+β的值. 【分析】 本题主要考查三角函数式的恒等变换及已知三角函数值求角,因为2α+β=α+(α+β),β=(α+β)-α,可先将条件式3sin β=sin (2α+β)展开后求α+β的正切值.【解】∵3sin β=sin (2α+β),即3sin (α+β-α)=sin (α+β+α),整理得2sin (α+β)cos α=4cos (α+β)sin α.即tan (α+β)=2tan α.又4tan α2=1-tan 2α2, ∴tan α=2tan α21-tan 2α2=12, tan (α+β)=2tan α=2×12=1. 又0<α<π4,0<β<π4, ∴α+β∈⎝⎛⎭⎫0,π2, ∴α+β=π4. 【方法总结】三角函数式求值的类型与方法三角函数式的求值主要有三种类型:一是给角求值;二是给值求值;三是给值求角.1. 给角求值:这类题目的解法相对简单,主要是利用所学的诱导公式、同角三角函数的基本关系式、两角和与差的正弦、余弦、正切公式及二倍角公式等,化非特殊角为特殊角,在转化过程中要注意上述公式的正用及逆用.2. 给值求值:这类题目的解法较上类题目灵活、多变,主要解答方法是利用三角恒等变形中的拆角变形及同角三角函数的基本关系式,和、差、倍、半角公式的综合应用.由于此类题目在解答过程中涉及的数学方法及数学思想相对较多,因此也是平时乃至高考考查的一个热点.3. 已知三角函数值求角问题,通常分两步:(1)先求角的某个三角函数值(由题中已知名称和范围确定),确定求所求角的哪种三角函数值,要根据具体题目,结合所给角的范围确定;(2)根据角的范围确定角及角的范围.必要时,可利用值缩小角的范围.几种形式的题目本质上都是“给值求值”,只不过往往求出的值是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.【变式训练1】已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎫2α+π4的值. 【解】 ∵π2≤α<3π2,∴3π4≤α+π4<7π4. ∵cos ⎝⎛⎭⎫α+π4>0,∴3π2<α+π4<7π4. ∴sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4 =-1-⎝⎛⎭⎫352=-45. ∴cos 2α=sin ⎝⎛⎭⎫2α+π2=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4 =1-2×⎝⎛⎭⎫352=725. ∴cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α =22×⎝⎛⎭⎫-2425-725=-31250. 专题2三角函数式的化简【例2】化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α. 【分析】本题主要考查二倍角公式,同角三角函数的基本关系及角的变换,从角的特点及内在联系上探求.π4-α与π4+α互余,可先用诱导公式减少角的种类.或π4-α与π4+α均化为α的三角函数. 【解】解法一:原式=2cos 2α-12sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·sin 2⎝⎛⎭⎫π4+α =2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·cos 2⎝⎛⎭⎫π4-α=2cos 2α-1sin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1. 解法二:原式=cos 2α2·1-tan α1+tan α(22sin α+22cos α)2 =cos 2αcos α-sin αcos α+sin α·(sin α+cos α)2=cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=cos 2αcos 2α=1. ,【方法总结】三角函数式化简的分类与解题技巧1.三角函数式的化简,主要有以下几类:(1)三角的和式,基本思路是降幂、消项和逆用公式;(2)三角的分式,基本思路是分子与分母的约分和逆用公式,最终变成整式或较简式子;(3)二次根式,则需要运用倍角公式的变形形式.在具体过程中体现的则是化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”“单角化复角”“复角化复角”等具体手段,以实现三角函数式的化简.2. 化简三角函数式时:(1)若切函数、弦函数共存时,可利用切化弦;(2)若含分式三角函数的问题,一般需分子、分母化简后出现公因式,以便于约分.【变式训练2】化简sin ⎝⎛⎭⎫α+π42cos 2α2+2sin α2cos α2-1. 【解】原式=sin αcosπ4+cos αsin π4cos α+sin α=22(sin α+cos α)cos α+sin α=22. 专题3三角恒等式的证明【例3】求证:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=tan x 2. 【分析】本题主要考查二倍角公式及其变形应用,因等式右端为tan x 2,故可将左边的角4x ,2x ,x 化为x 2的形式. 【解】∵左边=2sin 2xcos 2x 2cos 22x ·cos 2x 2cos 2x ·cos x 2cos 2x 2=2sin 2x·cos 22x·cos x 2cos 22x·2cos 2x·2cos 2x 2=sin 2x 2cos x·2cos 2x 2=2sin x 2cos x 22cos 2x 2=sin x 2cos x 2=tan x 2=右边, ∴等式成立.【方法总结】三角函数等式的证明策略三角函数等式的证明包括无条件三角函数等式的证明和有条件三角函数等式的证明.对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口.对于有条件三角函数等式的证明,要认真观察条件式与被证式的区别与联系,灵活使用条件等式,通过代入法、消元法等方法进行证明.【变式训练3】求证:3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A .【证明】∵左边=3-4cos 2A +2cos 2 2A -13+4cos 2A +2cos 2 2A -1=⎝⎛⎭⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2 A 2cos 2 A 2=(tan 2 A )2 =tan 4 A =右边.∴3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A . 专题4三角函数与平面向量的综合应用【例4】设a =(1+cos α,sin α),b =(1-cos β,sin β),c =(1,0),α∈(0,π),β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=π6,求sin α-β4的值. 【分析】 利用向量的夹角公式得三角函数式,然后利用三角函数知识得出角之间的关系.【解】 由题意知|a |=(1+cos α)2+sin 2α=2cos α2, |b |=(1-cos β)2+sin 2β=2sin β2,|c |=1. 又a·c =1+cos α=2cos 2α2,b·c =1-cos β=2sin 2β2, ∴cos θ1=a·c |a||c|=cos α2,cos θ2=b·c |b||c|=sin β2. ∵α∈(0,π),∴α2∈⎝⎛⎭⎫0,π2,∴θ1=α2. 又β∈(π,2π),∴β2∈⎝⎛⎭⎫π2,π,即0<β2-π2<π2. 由cos θ2=sin β2=cos ⎝⎛⎭⎫β2-π2,得θ2=β2-π2. 由θ1-θ2=π6,得α2-⎝⎛⎭⎫β2-π2=π6, ∴α-β2=-π3,∴α-β4=-π6. ∴sin α-β4=sin ⎝⎛⎭⎫-π6=-12. 【方法总结】三角函数与平面向量的解题策略三角函数与平面向量相结合包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往比较基础,所涉及的三角函数往往是讨论三角函数的图象与性质,以及三角函数的化简、求值.【变式训练4】在平面直角坐标系xOy 中,已知向量m =(22,-22),n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 【解】(1)∵m =(22,-22),n =(sin x ,cos x ),且m ⊥n , ∴m ·n =(22,-22)·(sin x ,cos x )=22sin x -22cos x =sin ⎝⎛⎭⎫x -π4=0. 又x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=0,即x =π4,∴tan x =tan π4=1. (2)由(1)知cos π3=m ·n |m |·|n |=sin ⎝⎛⎭⎫x -π4(22)2+(-22)2·sin 2x +cos 2x =sin ⎝⎛⎭⎫x -π4,∴sin ⎝⎛⎭⎫x -π4=12. 又x -π4∈⎝⎛⎭⎫-π4,π4,∴x -π4=π6,即x =5π12.。

高中数学第三章三角恒等变换教材习题本新人教A版必修4

高中数学第三章三角恒等变换教材习题本新人教A版必修4

第三章 三角恒等变换P1461, 已知βα,都是锐角,()135cos ,54sin =+=βαα,求βsin 的值,2, 已知⎪⎭⎫⎝⎛∈⎪⎭⎫ ⎝⎛∈-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-4,0,43,4,131245sin ,534cos πβππαβπαπ,求()s i n αβ+=3, 已知βα,都是锐角,1010sin ,71tan ==βα,求()=+βα2tan4, 证明()()βαβαβαβα+-+=+tan tan tan tan tan tan 求000040tan 20tan 340tan 20tan ++的值 若43πβα=+,求()()βαtan 1tan 1--的值 求000040tan 20tan 120tan 40tan 20tan 0++的值5, 化简0010cos 310sin 1-()()310tan 40sin 00-()120tan 310cos 70tan 000-()0010tan 3150sin +6, 已知23,53cos πθπθ<<-=,求22cos 2sin ⎪⎭⎫⎝⎛-θθ的值 已知512cos 2sin =-θθ,求θsin 的值 已知95cos sin 44=+θθ,求θ2sin 的值 已知532cos =θ,=+θθ44cos sin7已知()()53cos ,51cos =-=+βαβα,求tan tan αβ的值 8证明 ()()A AA A A 424tan 4cos 2cos 434cos 2cos 43sin sin cos 2sin 2sin 21tan 212sin cos 22sin 1cos 832cos 44cos =+++-=+-++=++=++αββααβαααααααα 9,已知函数()x x x y 22cos 2cos sin ++= 求它的递减区间求它的最大值和最小值10.已知函数x x x x y 44sin cos sin 2cos --=求y 的最小正周期 当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求y 的最小值以及取得最小值时的x 的集合 11,已知函数)cos (sin sin 2x x x y +=求y 的最小正周期和最大值画出函数y 在区.2,2⎥⎦⎤⎢⎣⎡-ππ上的图形 12已知函数a x x x y ++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=cos 6sin 6sin ππ的最大值为1 求常数a 的值 求使y ≥0成立的x 的取值范围13已知直线21//l l ,A 是21,l l 之间的一个定点,且A 点到21,l l 的距离分别为21,h h ,B 是直线2l 上一动点,作AB AC ⊥,且使AC 与直线1l 交于点C ,求三角形ABC 面积的最小值B 组 已知πααα≤≤=-051cos sin ,求⎪⎭⎫ ⎝⎛-42sin πα的值 已知11sin sin ,cos cos 23αβαβ+=+=,求()βα-cos 的值 已知02,534sin 3sin <<--=+⎪⎭⎫ ⎝⎛+απαπα,求αcos 的值 已知471217,534cos πππ<<=⎪⎭⎫ ⎝⎛+x x ,求x x x tan 1sin 22sin 2-+的值 已知βθθαθθ2sin cos sin ,sin 2cos sin ==+,求证βα2cos 2cos 422= 若函数m x x y ++=2cos 22sin 3在区间⎥⎦⎥⎢⎣⎢2.0π的最大值为6,求常数m 的值及函数当R x ∈时的最小值,并求相应的x 的值的集合在正方形ABCD 的边长为1,P,Q 分别为边AB,DA 上的点,当三角形APQ 的周长为2时,求角PCO 的大小已知()π,0,51cos sin ∈=+x x x ,求=x tan P139用αcos 表示2tan 2cos ,2sin222ααα 求证P A Q DCBA P C Q D OB ()()[]2cos 2sin 2sin sin sin sin 21sin sin φθφθφθβαβαβα++=+-++=求函数x x y cos 3sin +=的周期及最大值和最小值例题4、如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形。

人教A版必修4《第三章三角恒等变换》综合测试卷含答案

人教A版必修4《第三章三角恒等变换》综合测试卷含答案

人教A 版必修4《第三章三角恒等变换》综合测试卷含答案(B 卷)(测试时刻:120分钟 满分:150分) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 【2018届广东省阳春市第一中学高三上学期第三次月考】已知角θ的终边通过点34,55⎛⎫- ⎪⎝⎭,则2sin 2θ的值为( )A. 45B. 15C. 110D. 910【答案】A【解析】因为角θ的终边通过点34,55⎛⎫- ⎪⎝⎭, 43sin ,cos 55θθ==- ,则21cos 4sin 225θθ-==故选A.2.【2018届四川省成都市双流中学高三11月月考】若,则的值为( ) A.B. C.D.【答案】C3.【2018届江西省抚州市临川区第一中学高三上学期期中】已知角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则cos 3πθ⎛⎫+⎪⎭的值为( ) A. 19- B. 59 C. 45 D. 19【答案】D【解析】2214,1cos 26326239sin sin θπθππθ⎡⎤⎛⎫⎛⎫⎛⎫+=∴+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦Q ,因此1cos 39πθ⎛⎫+= ⎪⎝⎭,故选D.4. 下列各式中值为22的是( )A. sin15cos15︒︒B. sin45cos15cos45sin15︒︒-︒︒C. cos75cos30sin75sin30︒︒+︒︒D. tan60tan301tan60tan30︒-︒+︒︒【答案】C【解析】()2cos75cos30sin75sin30cos 7530cos452+=-==o o o o o o o ,故选C 5.【2018届陕西省西安市长安区高三上大联考(一)】设α为锐角,若1cos 63πα⎛⎫+=- ⎪⎝⎭,则sin 212πα⎛⎫+ ⎪⎝⎭的值为A. 725B. 72818-C. 17250-D. 25【答案】B【解析】αQ 为锐角,若1cos 63πα⎛⎫+=- ⎪⎝⎭, 设2,0,62663πππππβααα=+<<<+<Q ,22242722221399sin sin sin cos cos cos ββββββ∴===-=-=-,,,222221234444sin sin sin sin cos cos sin ππππππααβββ∴+=+-=-=-()()()42272728929218-=-⨯--⨯=()(). 故选B .6.【2018届江西省赣州市上高二中高三上第三次月考】函数2sin cos 44y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭图象的一条对称轴方程是( )A. 8x π=B. 4x π=C. 2x π= D. x π=【答案】B【解析】按照诱导公式可得: cos sin 44x x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭ ,故原式等于2sin cos 44y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭22sin 1cos 21sin242x x x ππ⎛⎫⎛⎫⎛⎫=+=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故图像的一条对称轴是4x π=.故答案选B .7.将函数sin()cos()22y x x ϕϕ=++的图象沿x 轴向右平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( )A .54π-B .4π-C .4πD .34π 【答案】C8.【2018届安徽省六安市第一中学高三上学期第三次月考】若1tan 47πα⎛⎫-=- ⎪⎝⎭,则2cos 2sin2αα+=( )A. 6425B. 4825C. 1D. 1625【答案】A 【解析】∴1tan tan 163447tan αtan 1448411tan tan 744ππαππαππα⎛⎫-+-+ ⎪⎡⎤⎛⎫⎝⎭=-+==== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+-- ⎪⎝⎭, 22222cos 2sin214tan α64cos 2sin2sin cos tan 125ααααααα+++===++, 故选:A.9.已知函数()3sin cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( )A.2πB.23πC.πD.2π 【答案】C【解析】因为()2sin()6f x x πω=+,因此由()2sin()16f x x πω=+=得:266x k ππωπ+=+或52,(,)66x m m k Z ππωπ+=+∈,因此由相邻交点距离的最小值为3π得:52,2,.366T ππππωωπω⋅=-===选C.10.已知函数)0(21sin 212sin )(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范畴是( )(A )]81,0( (B ))1,85[]41,0(Y (C )]85,0( (D )]85,41[]81,0(Y【答案】D 11.设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==,若0=⋅b a ,则=θtan ( ).A .13- B .12- C .13D .12【答案】D 【解析】因为0a b ⋅=r r,因此2sin 21cos 0θθ⨯-=,即2sin 2cos θθ=,因此22sin cos cos θθθ= 因为20πθ<<,因此cos 0θ≠ 因此2sin cos θθ=因此sin 1tan cos 2θθθ== 故答案为12.12.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,(2)(0)P m m m -≠,是角α终边上的一点,则tan()4απ+的值为( )A . 3B . 13C .13-D .3-【答案】C 【解析】 因为(2)(0)P m m m -≠,是角α终边上的一点,因此tan 2α=-,因此tan()4απ+=tan tan21141(2)131tan tan4ααπ+-+==-π--⨯-,故选C . 第Ⅱ卷(共90分) 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知22cos 63πθ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫+= ⎪⎝⎭__________. 【答案】13±【解析】 cos 3πθ⎛⎫+= ⎪⎝⎭31)6(cos 1)6sin(2±=--±=-θπθπ,故应填答案13±.14.已知,则____.【答案】【解析】由题意可得,将分不平方,再整体相加,即可得到的值.15.已知0<α<β<π,且52sin sin ,51cos cos ==αβαβ ,则tan (β-α)的值为 .【答案】43【解析】53sin sin cos cos )(cos =+=-αβαβαβ,又παβ<-<0, 因此34)tan(,54)(sin =-=-αβαβ . 16.【2018届陕西省西安市长安区第五中学高三上学期第二次模拟】已知,则__________.【答案】三、解答题 (本大题共6小题,共70分.解承诺写出文字讲明、证明过程或演算步骤.)17.(本小题10分)已知3sin(3)2sin()2ππαα+=+,求下列各式的值. (1)sin 4cos 5sin 2cos αααα-+;(2)2sin sin 2αα+.【答案】(1)16-;(2)85. 【解析】(1)∵3sin(3)2sin()2ππαα+=+, ∴sin 2cos αα-=-,即sin 2cos αα=,则原式2cos 4cos 2110cos 2cos 126αααα--===-+.(2)∵sin 2cos αα=,即tan 2a =,∴原式22222sin 2sin cos tan 2tan 448sin cos tan 1415αααααααα+++====+++. 18.(本小题12分)【2018届全国名校大联考高三第二次联考】已知向量()2,sin m α=v , ()cos ,1n α=-v,其中0,2πα⎛⎫∈ ⎪⎝⎭,且m n ⊥v v . (1)求sin2α和cos2α的值; (2)若()10sin 10αβ-=,且0,2πβ⎛⎫∈ ⎪⎝⎭,求角β.【答案】(1)4sin25α=, 3cos25α=-;(2)4πβ=.【解析】试题分析:(1)由已知得2cos sin 0αα-=,从而由22cos sin 1αα+=即可得cos α和sin α,由二倍角公式即可得解;(2)由()sin sin βααβ⎡⎤=--⎣⎦利用两角差的正弦展开即可得解.(2)∵0,2πα⎛⎫∈ ⎪⎝⎭, 0,2πβ⎛⎫∈ ⎪⎝⎭,∴,22ππαβ⎛⎫-∈- ⎪⎝⎭. 又()10sin 10αβ-=,∴()310cos 10αβ-=.∴sin sin βααβ⎡⎤=--=⎣⎦ ()()sin cos cos sin ααβααβ---= 2531051025105102-⨯=. 因0,2πβ⎛⎫∈ ⎪⎝⎭,得4πβ=. 19.(本小题12分)已知函数23()2cos 2f x x x m =--.(1)求函数()f x 的最小正周期与单调递增区间;(2)若53,244x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为0,求实数m 的值. 【答案】(1)T π=;(2)12m =.【解析】(1)23()sin 2cos 2f x x x m =--31cos 2sin 222x x m +=--1sin(2)62x m π=---, 则函数()f x 的最小正周期T π=,按照222262k x k πππππ-+≤-≤+,k Z ∈,得63k x k ππππ-+≤≤+,k Z ∈,因此函数()f x 的单调递增区间为,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈.(2)因为53,244x ππ⎡⎤∈⎢⎥⎣⎦,因此42,643x πππ⎡⎤-∈⎢⎥⎣⎦,则当262x ππ-=,3x π=时,函数取得最大值0,即1102m --=,解得12m =.届北京市海淀区高三上学期期中】已知函数()22cos sin 14f x x x π⎛⎫=+- ⎪⎝⎭.(Ⅰ)求4f π⎛⎫⎪⎝⎭的值;(Ⅱ)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【答案】(1)1(2)8x π=时, ()f x 有最大值2, 2x π=时, ()f x 有最小值1-【解析】试题分析:(Ⅰ)直截了当将4x π=代入函数解析式可得22cos sin 1442f πππ⎛⎫=- ⎪⎝⎭222112=⨯⨯- 1=;(Ⅱ)按照两角和的正弦公式及二倍角公式可得()224f x sin x π⎛⎫=+ ⎪⎝⎭,求出24x π+的范畴,结合正弦函数的单调性求解即可.试题解析:(Ⅰ)因为 22cos sin 1442f πππ⎛⎫=- ⎪⎝⎭222112=⨯⨯- 1= (Ⅱ)()22cos sin 14f x x x π⎛⎫=+- ⎪⎝⎭2222cos sin +cos 122x x x ⎛⎫=⋅- ⎪ ⎪⎝⎭22sin cos 2cos 1x x x =+-sin2cos2x x =+2sin 24x π⎛⎫=+ ⎪⎝⎭因为02x π≤≤, 因此52444x πππ≤+≤因此 2sin 2124x π⎛⎫-≤+≤ ⎪⎝⎭ 故 12sin 224x π⎛⎫-≤+≤ ⎪⎝⎭当2,42x ππ+=即8x π=时,()f x 有最大值2当52,44x ππ+=即2x π=时,()f x 有最小值1-1()2sin()cos 62f x x x ωωπ=-⋅+ (其中0ω>)的最小正周期为π.(Ⅰ) 求ω的值;(Ⅱ) 将函数()y f x =的图象向左平移6π个单位,再将所得图象上各点的横坐标伸长为原先的2倍,纵坐标不变,得到函数()g x 的图象.求函数()g x 在[]-ππ,上零点.【答案】(Ⅰ) ω=1;(Ⅱ) 6π-和65π. 【解析】 (Ⅰ)211()2sin()cos 3sin cos cos 622f x x x x x x ωωωωωπ=-⋅+=⋅-+31sin 2cos2sin(2)226x x x ωωωπ=-=-. 由最小正周期22T ωπ==π,得ω=1. 6分22.(本小题12分)【2018届广东省珠海市珠海二中、斗门一中高三上学期期中】已知函数()()22cos sin sin cos 2f x x x x x π⎛⎫=-++ ⎪⎝⎭. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原先的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求6g π⎛⎫⎪⎝⎭的值. 【答案】(1)()3,,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)36g π⎛⎫= ⎪⎝⎭【解析】试题分析:(1)按照诱导公式、二倍角的正弦余弦公式以及辅助角公式将函数化为()y Asin x ωϕ=+的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原先的2倍(纵坐标不变),再把得到的图象向左平移3π个单位可得到()g x 的解析式,从而得求6g π⎛⎫ ⎪⎝⎭的值.试题解析:(1)()()22cos sin sin cos sin2cos222f x x x x x x x π⎛⎫=-++=-+ ⎪⎝⎭2sin 224x π⎛⎫=-+ ⎪⎝⎭由()222,242k x k k Z πππππ-≤-≤+∈得()3,88k x k k Z ππππ-≤≤+∈因此()f x 的单调递增区间是()3,,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦。

第三章三角恒等变换3.1二倍角的正弦、余弦、正切公式(1)学案(无答案)新人教A版必修4

第三章三角恒等变换3.1二倍角的正弦、余弦、正切公式(1)学案(无答案)新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式(1)【学习目标】1.掌握公式α2S 、α2C 、α2T 及其推导过程;2.会应用二倍角公式进行简单的求值、化简.【重点难点】重点:二倍角公式的推导、理解与运用.难点:余弦的二倍角公式.【学法指导】建议同学们重视公式型的特点,特别是二倍角的余弦公式有三种形式,需要在运用的过程加深记忆.另外,仍然需要通过例题与练习,多多体会公式是如何使用的?找出规律性.【学习过程】一.课前预习1.复习公式:=+)sin(βα ;=+)cos(βα ;=+)tan(βα .2.自学教材,P132-P135(1)二倍角公式的推导:当βα=时,由上面的和角公式分别得到公式:=α2sin ;=α2cos ;=α2tan .(2)公式的变形:由公式1cos sin 22=+αα及上面三个公式完成下面填空:①用αsin 表示α2cos 得:α2cos = ;②用αcos 表示α2cos 得 :α2cos = ;以上(1)、(2)得到的五个公式都叫做什么公式? .3.快乐体验,求下列各式的值:(1)sin15cos15_________=(2)22cos sin ________88ππ-=(3)2tan 22.5__________1tan 22.5=-(4)22cos 22.51_________-=二.课堂学习与研讨例1. 已知),2(,135sin ππ∈α=α,求sin2α,cos2α,tan2α的值.练习1.(1)已知4cos ,81285απαπ=-<<,求sin ,cos 44αα的值.(2)已知3sin()5απ-=,求cos 2α的值.例2.(1)已知1tan 2,3α= α是第三象限角,求tan α的值.(2)α为第四象限的角,且cossin 22αα-=,求αα2cos 2sin +的值.练习2.(1)已知sin 2sin ,(,)2παααπ=-∈,求tan α的值.(2)已知1tan 23α=,求tan α的值.课堂小结:1.公式α2S 、α2C 、α2T 分别是公式)(βα+S 、)(βα+C 、)(βα+T 的特殊情况; 2.公式的相同特点:从左至右升幂;从右至左降幂;3.应用倍角公式要注意“倍”的关系,即2α是α的两倍,4α是2α的两倍,α是2α的两倍,等等.三.课堂检测1.化简)4(sin )4(cos 22απαπ---得到( )A.α2sinB.α2sin -C.α2cosD. α2cos -2.=+-)12sin 12)(cos 12sin 12(cos ππππ( ) A.21 B.21- C.23 D.23-3.已知31cos sin =+αα,则=α2sin ( ) A.98- B.98 C.98± D.322四.作业1.教材13815,P A2.函数sin()cos()44y x x ππ=--是( )A.周期为2π的奇函数 B .周期为2π的偶函数C .周期为π的奇函数D .周期为π的偶函数3.在△ABC 中,2tan ,54cos ==B A ,求)22tan(B A +的值.。

高中数学 第三章 三角恒等变换 3_1-3_1.3 二倍角的正弦、余弦、正切公式练习 新人教A版必修4

高中数学 第三章 三角恒等变换 3_1-3_1.3 二倍角的正弦、余弦、正切公式练习 新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式A 级 基础巩固一、选择题1.sin 15°sin 75° 的值为( ) A.12 B.32 C.14 D.34解析:原式=sin 15°cos 15°=12(2sin 15°cos 15°)=12sin 30°=14. 答案:C2.已知sin α=23,则cos (π-2α)=( ) A .-53 B .-19 C.19 D.53 解析:因为sin α=23, 所以cos (π-2α)=-cos 2α=-(1-2sin 2 α)=-1+2×⎝ ⎛⎭⎪⎫232=-19. 答案:B3.1-sin 24°等于( )A.2cos 12° B .2cos 12° C .cos 12°-sin 12° D .sin 12°-cos 12°解析:1-sin 24°=sin 2 12°-2sin 12°cos12°+cos 212°= (sin 12°-cos 12°)2=|sin 12°-cos 12°|=cos 12°-sin 12°.答案:C4.已知cos ⎝ ⎛⎭⎪⎫α+π4=14,则sin 2α的值为( )A.78 B .-78 C.34 D .-34解析:因为cos ⎝ ⎛⎭⎪⎫α+π4=14,所以sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=1-2cos 2⎝ ⎛⎭⎪⎫α+π4=1-116×2=78.答案:A5.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2 α+cos 2α=14,则tan α的值等于()A.22 B.33 C. 2 D.3解析:因为sin 2 α+cos 2α=14,所以sin 2 α+cos 2 α-sin 2 α=cos 2 α=14所以cos α=±12.又α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=12,sin α=32.所以tan α= 3.答案:D二、填空题 6.已知tan α=-13,则sin 2α -cos 2 α1+cos 2α=________. 解析:sin 2α-cos 2 α1+cos 2α=2sin αcos α-cos 2 α1+2cos 2α-1= 2sin αcos α-cos 2 α2cos 2 α=tan α-12=-56. 答案:-56 7.已知sin θ2+cos θ2=233,那么sin θ=________,cos 2θ=________. 解析:因为sin θ2+cos θ2=233, 所以⎝ ⎛⎭⎪⎫sin θ2+cos θ22=43, 即1+2sin θ2cos θ2=43,所以sin θ=13, 所以cos 2θ=1-2sin 2 θ=1-2×⎝ ⎛⎭⎪⎫132=79. 答案:13 798.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x 的值等于________. 解析:法一:因为sin ⎝ ⎛⎭⎪⎫π4-x =35,所以cos ⎝ ⎛⎭⎪⎫π2-2x =1-2sin 2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫352=725, 所以 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =725. 法二:由sin ⎝ ⎛⎭⎪⎫π4-x =35,得22(sin x -cos x )=-35, 所以sin x -cos x =-325,两边平方得 1-sin 2x =1825, 所以sin 2x =725. 答案:725三、解答题9.化简:tan 70°cos 10°(3tan 20°-1). 解:原式sin 70°cos 70°·cos 10°·⎝ ⎛⎭⎪⎫3sin 20°cos 20°-1= sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20°= sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°= -sin 70°cos 70°·sin 20°cos 20°=-1. 10.已知tan α=17,tan β=13,并且α、 β均为锐角,求α+2 β的值. 解:因为tan β=13,所以tan 2 β=2tan β1-tan 2 β=2×131-⎝ ⎛⎭⎪⎫132=34,所以tan(α+2 β )=tan α+tan 2 β1-tan αtan 2 β=17+341-17×34=1. 0<tan α=17<1,0<tan β=13<1, 又已知α, β均为锐角,所以0<α<π4,0< β <π4,0<2 β <π2, 所以0<α+2 β <3π4. 又tan(α+2 β )=1,所以α+2 β=π4. B 级 能力提升1.函数y =12sin 2x +sin 2 x ,x ∈R 的值域是( ) A.⎣⎢⎡⎦⎥⎤-12,32 B.⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎢⎡⎦⎥⎥⎤-22+12,22+12 D.⎣⎢⎢⎡⎦⎥⎥⎤-22-12,22-12 解析:y =12sin 2x +1-cos 2x 2= 22⎝⎛⎭⎪⎪⎫22sin 2x -22cos 2x +12= 22sin ⎝ ⎛⎭⎪⎫2x -π4+12. 因为x ∈R,所以2x -π4∈R ,sin ⎝⎛⎭⎪⎫2x -π4∈[-1,1], 所以函数y 的值域是⎣⎢⎢⎡⎦⎥⎥⎤-22+12,22+12.答案:C2.已知等腰三角形底角的余弦值等于45,则这个三角形顶角的正弦值为________. 解析:设此三角形的底角为α,顶角为 β,则cos α=45,sin α=35, 所以sin β=sin (π-2α)=sin 2α=2sin αcos α=2×35×45=2425. 答案:24253.(2014·江苏卷)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55. (1)求sin ⎝ ⎛⎭⎪⎫π4+α的值; (2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 解:(1)由题意知cos α=- 1-⎝ ⎛⎭⎪⎪⎫552=-255, 所以sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α= 22×⎝ ⎛⎭⎪⎪⎫-255+22×55=-1010. (2)sin 2α=2sin αcos α=-45, cos 2α=2cos 2 α-1=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=-32×35+12×⎝ ⎛⎭⎪⎫-45=-33+410.。

2012年高考数学分类汇编(人教A必修四):第三章三角恒等变换全解全析版

2012年高考数学分类汇编(人教A必修四):第三章三角恒等变换全解全析版

2012年高考数学按章节分类汇编(人教A 必修四)第三章三角恒等变换一、选择题1 .(2012年高考(重庆文))sin 47sin17cos30cos17-( )A .2-B .12-C .12D .22 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .33 .(2012年高考(陕西文))设向量a =(1.cos θ)与b=(-1, 2cos θ)垂直,则cos 2θ等于12C .0D .-14 .(2012年高考(辽宁文))已知sin cos αα-=,α∈(0,π),则sin 2α= ( )A .-1B .CD .15 .(2012年高考(辽宁理))已知sin cos αα-=,α∈(0,π),则tan α=( )A .-1B .CD .16.(2012年高考(江西文))若sin cos 1sin cos 2αααα+=-,则tan2α=( )A .-34B .34C .-43D .437.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ=( )A .15B .14C .13D .128.(2012年高考(大纲文))已知α为第二象限角,3sin 5α=,则sin 2α=( )A .2425-B .1225-C .1225D .24259 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ= ( )A .35B .45C D .3410.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .11.(2012年高考(大纲理))已知α为第二象限角,sin cos 3αα+=,则cos 2α= ( )A .B .CD 二、填空题1.(2012年高考(大纲文))当函数sin (02)y x x x π=≤<取最大值时,x =____.2.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____.3.(2012年高考(大纲理))当函数s i n c o s (02)y x x x π=≤<取得最大值时,x =_______________.三、解答题1.(2012年高考(四川文))已知函数21()cossin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()10f α=,求sin 2α的值.2.(2012年高考(湖南文))已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<的部分图像如图5所示.(Ⅰ)求函数f(x)的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.3.(2012年高考(湖北文))设函数22()sin cos cos ()f x x x x x x R ωωωωλ=+-+∈的图像关于直线x π=对称,其中,ωλ为常数,且1(,1)2ω∈ (1) 求函数()f x 的最小正周期; (2) 若()y f x =的图像经过点(,0)4π,求函数()f x 的值域.4.(2012年高考(福建文))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos48sin(18)cos48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.5.(2012年高考(北京文))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递减区间.6.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.7.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域 (Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8.(2012年高考(四川理))函数2()6cos3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9.(2012年高考(山东理))已知向量(sin ,1),cos ,cos 2)(0)3Am x n x x A ==> ,函数()f x m n =⋅的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.10.(2012年高考(湖北理))已知向量(c o s s x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.11.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π. (Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.12.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒(4)2sin (18)cos48sin(18)cos48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.13.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.14.(2012年高考(安徽理))设函数2()cos(2)sin 24f x x x π=++ (I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.参考答案一、选择题 1. 【答案】:C【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====【考点定位】本题考查三角恒等变化,其关键是利用473017=+2. 【答案】A【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.3. 解析:0a b ⋅=,212cos 0θ-+=,2cos 22cos 10θθ=-=,故选C.4. 【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=- 故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.5. 【答案】A【解析一】sin cos )sin()144ππαααα-=-=-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα--=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中. 6. 【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果.7. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 8.答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用.【解析】因为α为第二象限角,故cos0α<,而3sin 5α=,故4cos 5α==-,所以24sin 22sin cos 25ααα==-,故选答案A.9. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.10. 【答案】B【解析】f(x)=sinx-cos(x+6π)1sin sin )26x x x x π=+=-,[]sin()1,16x π-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.11. 答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题.【解析】s i n c o s3αα+=,两边平方可得121sin 2sin 233αα+=⇒=- α是第二象限角,因此sin 0,cos 0αα><,所以cos sin 3αα-===-22cos 2cos sin (cos sin )(cos sin )ααααααα∴=-=+-=法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 1.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π=-=-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.2. 【考点】同角三角函数,倍角三角函数,和角三角函数. 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+=⎪⎝⎭,∴3sin 65απ⎛⎫+=⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭ 247=2525- 3.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π=-=-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.三、解答题1. [解析](1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)( )(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22, (2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-=257251814cos 212=-=+-=)(πα, [点评]本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想.2. 【解析】(Ⅰ)由题设图像知,周期11522(),21212T Tππππω=-=∴==. 因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即. 又55450,,=26636πππππϕϕϕπ<<∴<+<+ 从而,即=6πϕ.又点0,1()在函数图像上,所以s i n 1,26A A π==,故函数f(x)的解析式为()2sin(2).6f x x π=+(Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2sin 22sin(2)3x x π=-+12sin 22(sin 22)2x x x =-+sin 2x x =2sin(2),3x π=-由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期1152(),1212T πππ=-=从而求得22Tπω==.再利用特殊点在图像上求出,A ϕ,从而求出f(x)的解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+的单调性求得.3. 【解析】(1)因为22()sin cos cos cos 222sin(2)6f x x x x x x x πωωωωλωωλωλ=-++=-+=-+由直线x π=是()y f x =图像的一条对称轴,可得sin(2)16x πω-=±所以2()62x k k Z ππωπ-=+∈,即1()23k k Z ω=+∈又1(,1),2k Z ω∈∈,所以1k =时,56ω=,故()f x 的最小正周期是65π.(2)由()y f x =的图象过点(,0)4π,得()04f π=即52sin()2sin 6264πππλ=-⨯-=-=即λ=故5()2sin()36f x x π=-函数()f x 的值域为[2.【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.4. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化的思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sincos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=++-22333sin cos 444αα=+= 5. 【考点定位】本题考查三角函数,三角函数难度较低,此类型题平时的练习中练习得较多,考生应该觉得非常容易入手.解:(1)由sin 0x ≠得,()x k k Z π≠∈,故()f x 的定义域为{|,}x R x k k Z π∈≠∈. 因为(s()sin x xxf x x-==2cos (sin cos )x x x -=sin 2cos 21x x --=)14x π--,所以()f x 的最小正周期22T ππ==. (2)函数sin y x =的单调递减区间为3[2,2]()22k k k Z ππππ++∈.由3222,()242k x k x k k Z ππππππ+≤-≤+≠∈得37,()88k x k k Z ππππ+≤≤+∈ 所以()f x 的单调递减区间为37[],()88k x k k Z ππππ+≤≤+∈ 6. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sin sin 2cos cos 2sin cos 23333f x x x x x x ππππ++-+sin 2cos 2)4x x x π=+=+所以,()f x 的最小正周期22T ππ==. (2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()()184f f ππ==,故函数()f x 在区间[,]44ππ-最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.7. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值.解:(1)()14sin sin cos 222f x x x x x ωωωω⎛⎫=++ ⎪ ⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567=[点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.9.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A x f ,则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24π上的值域为]6,3[-. 另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x ,于是367sin6)245(,62sin 6)24(,333sin 6)0(-======πππππg g g ,故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-. 10.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --故函数()f x 在3π[0,]5上的取值范围为[12-. 11.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s i n5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4cos 5α,15sin 17β,所以()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-. 12. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒=(2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=++-22333sin cos 444αα=+=13. 【考点定位】本题考醒三角函数知识,此类型题在平时练习时练得较多,考生应该觉得非常容易入手.解:(sin cos )sin 2()sin x x x f x x -==(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x -=sin 21cos 2x x --)14x π--,{|,}x x k k Z π≠∈(1) 原函数的定义域为{|,}x x k k Z π≠∈,最小正周期为π; (2)原函数的单调递增区间为[,)8k k k Z πππ-+∈,3(,]8k k k Z πππ+∈. 14. 【解析】2111())sin cos 2sin 2(1cos 2)4222f x x x x x x π=++=-+-11sin 222x =-(I)函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。

【数学】第三章《三角恒等变换》单元测试题(新人教版必修4)

【数学】第三章《三角恒等变换》单元测试题(新人教版必修4)

六安市田家炳实验中学2011-2012学年度第二学期第一次月考高一数学(文科)试题一、选择题(每题5分,共55分)请将答案填入答题卡中,否则不计分。

1.化简AC - BD + CD - AB得( )A . AB B . DC C . BCD . 02.0570cos =( )A .12-B .12C .32-D .323.以下说法错误的是( )A .与任意向量都平行的向量是零向量B .零向量与单位向量都没有方向C .共线向量一定在一条直线上D .平行向量一定不在一条直线上4.设四边形ABCD 中,有DC =21AB,且|AD |=|BC |,则这个四边形是( )A .平行四边形B .矩形C .等腰梯形D .菱形5.下列命题正确的是( )A .向量AB的长度与向量BA 的长度相等。

B .两个有共同起点且相等的向量,其终点可能不同。

C .若非零向量AB与CD 是共线向量,则A B C D 、、、四点共线。

D .若AB=DC , 则A B C D 、、、四点构成平行四边形6. 判断下列命题:①若a b = 则a b =,②四边形ABCD 是平行四边形,则AB DC = ,③若a b = ,b c = ,则a c =,④若//a b ,//b c ,则//a c ,其中正确的有( )A .①②B .②③C .③④D .②④7.函数221tan 21tan 2xy x-=+的最小正周期是( )A .4π B .2πC .πD .2π 8.设2132tan131cos50cos6sin 6,,,221tan 132a b c -=-==+则有( ) A.a b c >> B.a b c << C.a c b << D.b c a <<9.已知3sin(),45x π-=则sin 2x 的值为( ) A.1925 B.1625 C.1425 D.72510.已知53sin ,54cos =-=αα,那么角α2的终边所在的象限为( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 11.对于等式,sin 2sin 3sin x x x +=下列说法正确的是A 对于任意x ,R ∈ 等式都成立B .对于任意x ,R ∈ 等式都不成立C .存在无数个x ,R ∈ 使等式都成立D .只有有限个x ,R ∈ 使等式都成立 选择题答题卡 题号 1 2 3 4 5 6 7 8 9 10 11 答案二、填空题(每题5分,共25分)请将答案填入题后横线上。

人教A版数学必修四习题第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 分层训练 含答案

人教A版数学必修四习题第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 分层训练 含答案

分层训练·进阶冲关A组基础练(建议用时20分钟)1.已知cos x=,则cos 2x= ( D )A.-B.C.-D.2.已知α∈,tan=,那么sin 2α+cos 2α的值为( A )A.-B.C.-D.3.已知α为锐角,且7sin α=2cos 2α,则sin= ( A )A. B.C. D.4.sin 20°cos10°-cos 160°sin 10°=( D )A.-B.C.-D.5.(2018·贵阳高一检测)已知sin+sin α=,则sin的值是( D )A.-B.C.D.-6.如果tan θ=2,那么1+sin θcos θ= ( B )A. B. C. D.7.计算:cos cos=.8.的值是2.9.若θ∈(0,π),且sin 2θ=-,则cos θ-sin θ=-.10.tan 20°+tan 40°+tan 20°tan40°=.11.已知tan α=,tanβ=,且α,β均为锐角,求α+2β的值.【解析】tan 2β==,tan(α+2β)==1.因为α,β均为锐角,且tan α=<1,tan β=<1,所以α,β∈,所以α+2β∈,所以α+2β=.12.已知cos α-sin α=,且π<α<,求的值.【解析】因为cos α-sin α=,所以1-2sin αcos α=,2sin αcos α=.又因为α∈,所以sin α+cos α=-=-,所以====-.B组提升练(建议用时20分钟)13.已知sin 2α=,则cos2= ( A )A. B. C. D.14.若α∈,且3cos 2α=sin,则sin 2α的值为( D )A. B.- C. D.-15.已知α是第二象限角,且sin(π-α)=,则sin 2α的值为-.16.已知0<α<,0<β<,tan(α+β)=2tan α,4tan=1-tan2,则α+β=.17.已知0<α<,sin α=.(1)求的值.(2)求tan的值.【解析】(1)由0<α<,sin α=,得cos α=,所以===20.(2)因为tan α==,所以tan===.18.已知cos=,x∈.(1)求sin x的值.(2)求sin的值.【解析】(1)因为x∈,所以x-∈.sin= =,sin x=sin=sin cos+cos sin =×+×=.(2)因为x∈,所以cos x=-=-=-,sin 2x=2sin xcos x=-,cos 2x=2cos2x-1=-.所以sin=sin 2xcos +cos 2xsin=-.C组培优练(建议用时15分钟)19.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos 2θ= ( B )A.-B.-C.D.20.已知向量a=(3sin α,cos α),b=(2sin α,5sin α-4cos α),α∈,且a⊥b.(1)求tan α的值.(2)求cos的值.【解析】(1)因为a⊥b,所以a·b=6sin2α+5sin αcos α-4cos2α=0,由于cos α≠0, 所以6tan2α+5tan α-4=0,解得tan α=-或tan α=.因为α∈,所以tan α<0,所以tan α=-.(2)因为α∈,所以∈.由tan α=-,求得tan =-或tan =2(舍去).所以sin =,cos =-,所以cos=cos cos -sin sin=-×-×=-.关闭Word文档返回原板块。

高中数学 第三章 三角恒等变换测试题(含解析)新人教A版必修4(2021年最新整理)

高中数学 第三章 三角恒等变换测试题(含解析)新人教A版必修4(2021年最新整理)

高中数学第三章三角恒等变换测试题(含解析)新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章三角恒等变换测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章三角恒等变换测试题(含解析)新人教A版必修4的全部内容。

第三章三角恒等变换一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的) 1.15sin 951852-等于 ( ) A 。

185 B.365C 。

3635 D.18352。

已知m A A =+tan 1tan ,则A 2sin 的值为 ( ) A 。

21mB.m 1C.m 2 D 。

m 23.sin 12π—3cos 12π的值是 ( )A .0B . —2C . 2D . 2 sin 125π4.已知3cos ()52x x ππ=-<<,则sin 2x =( )A.55B.55-C.255- D.2555.若△ABC 中,sin B·sin C=cos 2错误!,则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形6。

函数sin 3cos 22x xy =+的图象的一条对称轴方程是 ( )A 。

x =113π B.x =53π C 。

53x π=- D 。

3x π=-7.已知α为锐角,且cos 错误!=错误!,则cos α的值为( )A 。

错误! B.错误! C 。

错误! D.错误!8。

函数22()cos ()sin ()11212f x x x ππ=-++-是( )A 。

高中数学第三章三角恒等变换阶段复习课第4课三角恒等变换课件新人教A版必修

高中数学第三章三角恒等变换阶段复习课第4课三角恒等变换课件新人教A版必修

一级达标重点名校中学课件
3.半角公式 1-cos α α sin2=± . 2 1+cos α α cos2=± 2 .
1-cos α sin α 1-cos α α 1+cos α =__________ 1+cos α =__________. sin α tan2=±____________
一级达标重点名校中学课件
1 -2sin xcos x+2 [ 解] (1)原式= π π 2sin4-xcos24-x π cos4-x
2 2
1 1 2 2 21-sin 2x 2cos 2x 1 = π π = π =2cos 2x. 2sin4-xcos4-x sin2-2x
一级达标重点名校中学课件
[ 规律方法] 三角函数式化简的基本技巧 (1)sin α,cos α→凑倍角公式. (2)1±cos α→升幂公式. (3)asin α+bcos α→辅助角公式asin α+bcos α= a2+b2· sin(α+φ),其中tan b a 2 2 φ=a或asin α+bcos α= a +b · cos(α-φ),其中tan φ=b.
一级达标重点名校中学课件
4.辅助角公式
b a +b sin(α+φ)tan φ= (1)asin α+bcos α=_________________________. a
2 2
(2)与特殊角有关的几个结论: π 2sinα± 4 , sin α±cos α=_____________ π α± 2sin 3sin α±cos α=_____________ , 6 π α± 2sin sin α± 3cos α=______________. 3

高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A版必修4

高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A版必修4

高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A 版必修41.设α是第四象限角,已知sin α=-35,则sin2α,cos2α和tan2α的值分别为( )A .-2425,725,-247B .2425,725,247C .-2425,-725,247D .2425,-725,-247答案 A解析 因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=725,tan2α=sin2αcos2α=-247.2.已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,cos2α=725,则cos α=( )A .45B .-45C .-35D .35 答案 A解析 ∵sin ⎝ ⎛⎭⎪⎫α+π4=7210,∴22sin α+22cos α=7210,即sin α+cos α=75,∵cos2α=725,∴cos 2α-sin 2α=725,即(cos α-sin α)(cos α+sin α)=725,∴cos α-sin α=15,可得cos α=45,故选A .3.1-tan 215°2t an15°等于( )A . 3B .33C .1D .-1 答案 A解析 原式=12tan15°1-tan 215°=1tan30°=3.4.cos 275°+cos 215°+cos75°cos15°的值等于( ) A .62 B .32 C .54 D .1+34答案 C解析 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=1+14=54.5.sin65°cos25°+cos65°sin25°-tan 222.5°2tan22.5°等于( )A .12 B .1 C .3 D .2 答案 B解析 原式=sin90°-tan 222.5°2tan22.5°=1-tan 222.5°2tan22.5°=1tan45°=1.6.3-sin70°2-cos 210°的值是________. 答案 2 解析3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2. 7.若cos(75°-α)=13,则cos(30°+2α)=________.答案 79解析 由cos(75°-α)=13,得cos(150°-2α)=2cos 2(75°-α)-1=-79,则cos(30°+2α)=cos[180°-(150°-2α)] =-cos(150°-2α)=79.8.若α∈2,2,则1+sin α+1-sin α的值为( )A .2cos α2B .-2cos α2 C .2sin α2 D .-2sin α2 答案 D解析 ∵α∈5π2,7π2,∴α2∈5π4,7π4,∴原式=sin α2+cos α2+sin α2-cos α2=-sin α2-cos α2-sin α2+cos α2=-2sin α2. 9.已知角α在第一象限且cos α=35,则1+2cos2α-π4sin α+π2等于( )A .25B .75C .145D .-25 答案 C解析 ∵cos α=35且α在第一象限,∴sin α=45.∴cos2α=cos 2α-sin 2α=-725,sin2α=2sin αcos α=2425,∴原式=1+2cos2αcos π4+sin2αsinπ4cos α=1+cos2α+sin2αcos α=145.10.已知sin x 2-2cos x2=0.(1)求tan x 的值;(2)求cos2xcos ⎝ ⎛⎭⎪⎫5π4+x sin π+x 的值.解 (1)由sin x 2-2cos x 2=0,知cos x2≠0,∴tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43.(2)由(1),知tan x =-43,∴cos2xcos ⎝ ⎛⎭⎪⎫5π4+x sin π+x =cos2x-cos ⎝ ⎛⎭⎪⎫π4+x -sin x=cos 2x -sin 2x⎝ ⎛⎭⎪⎫22cos x -22sin x sin x=cos x -sin x cos x +sin x22cos x -sin x sin x=2×cos x +sin x sin x =2×1+tan x tan x =24.对应学生用书P90一、选择题1.12-sin 215°=( ) A .64 B .6-24 C .32 D .34答案 D解析 原式=12-1-cos 2×15°2=cos30°2=34.2.函数f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 答案 C解析 ∵f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1=-cos2x 2+π4=-cos ⎝ ⎛⎭⎪⎫x +π2=sin x ,∴函数f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1是最小正周期为2π的奇函数.3.已知cos π4-x =35,则sin2x 的值为( )A .1825B .725C .-725D .-1625 答案 C解析 因为sin2x =cos π2-2x =cos2π4-x =2cos 2π4-x -1,所以sin2x =2×352-1=1825-1=-725.4.已知cos2θ=23,则sin 4θ+cos 4θ的值为( ) A .1318 B .1118 C .79 D .-1 答案 B解析 sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-12sin 22θ=1-12(1-cos 22θ)=1118.5.若cos2αsin α-π4=-22,则cos α+sin α的值为( )A .-72 B .-12C .12D .72 答案 C解析 cos2αsin α-π4=cos 2α-sin 2α22sin α-cos α=cos α+sin αcos α-sin α22sin α-cos α=-2(cos α+sin α)=-22. ∴sin α+cos α=12.二、填空题6.已知tan x +π4=2,则tan xtan2x 的值为________.答案 49解析 ∵tan x +π4=2,∴tan x +11-tan x =2,∴tan x =13.∴tan x tan2x =tan x 2tan x 1-tan 2x=1-tan 2x2=1-192=49. 7.已知sin 22α+sin2αcos α-cos2α=1,α∈0,π2,则 α=________.答案π6解析 ∵sin 22α+sin2αcos α-(cos2α+1)=0. ∴4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0. ∵α∈0,π2.∴2cos 2α>0.∴2sin 2α+sin α-1=0.∴sin α=12(sin α=-1舍).∴α=π6.8.设a =12cos7°-32sin7°,b =2cos12°·cos78°,c =1-cos50°2,则a ,b ,c 的大小关系是________.答案 c >b >a解析 a =12cos7°-32sin7°=sin30°cos7°-cos30°sin7°=sin(30°-7°)=sin23°,b =2cos12°cos78°=2sin12°·cos12°=sin24°,c =1-cos50°2=1-1-2sin 225°2=sin 225°=sin25°,所以c >b >a .三、解答题9.求下列各式的值:(1)sin π8sin 3π8;(2)cos 215°-cos 275°;(3)2cos25π12-1;(4)tan30°1-tan 230°; (5)求s in10°sin30°sin50°sin70°的值. 解 (1)∵sin 3π8=sin ⎝ ⎛⎭⎪⎫π2-π8=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24.(2)∵cos 275°=cos 2(90°-15°)=sin 215°, ∴cos 215°-cos 275°=cos 215°-sin 215°=cos30°=32. (3)2cos25π12-1=cos 5π6=-32. (4)tan30°1-tan 230°=12×2tan30°1-tan 230°=12tan60°=32. (5)解法一:∵sin10°sin50°sin70°=sin20°sin50°sin70°2cos10°=sin20°cos20°sin50°2cos10°=sin40°sin50°4cos10°=sin40°cos40°4cos10°=sin80°8cos10°=18,∴sin10°sin30°sin50°sin70°=116.解法二:sin10°sin30°sin50°sin70°=12cos20°cos40°cos80°=2sin20°cos20°cos40°cos80°4sin20°=sin40°cos40°cos80°4sin20°=sin80°cos80°8sin20°=116·sin160°sin20°=116.10.已知α为钝角,且tan π4-α=2.(1)求tan α的值;(2)求sin2αcos α-sin αcos2α的值.解 (1)tan π4-α=1-tan α1+tan α,所以1-tan α1+tan α=2,1-tan α=2+2tan α,所以tan α=-13.(2)sin2αcos α-sin αcos2α=2sin αcos 2α-sin αcos2α=sin α2cos 2α-1cos2α=sin αcos2αcos2α=sin α.因为tan α=-13,所以cos α=-3sin α,又sin 2α+cos 2α=1,所以sin 2α=110,又α为钝角,所以sin α=1010, 所以sin2αcos α-sin αcos2α=1010.。

高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、

高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、

3.1.3 二倍角的正弦、余弦、正切公式[提出问题]问题1:在公式C (α+β),S (α+β)和T (α+β)中,若α=β,公式还成立吗? 提示:成立.问题2:在上述公式中,若α=β,你能得到什么结论?提示:cos 2α=cos 2α-sin 2α,sin 2α=2sin αcos α,tan 2α=2tan α1-tan 2α. [导入新知]二倍角公式[化解疑难] 细解“倍角公式”(1)要注意公式运用的前提是所含各三角函数有意义.(2)倍角公式中的“倍角”是相对的,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.(3)注意倍角公式的灵活运用,要会正用、逆用、变形用.[例1] (1)sin π12cos π12;(2)1-2sin 2750°;(3)2tan 150°1-tan 2150°;(4)1sin 10°-3cos 10°; (5)cos 20°cos 40°cos 80°.[解] (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3. (4)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4.(5)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.[类题通法] 化简求值的四个方向三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.[活学活用]化简:(1)11-tan θ-11+tan θ;(2)2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.答案:(1)tan 2θ (2)1[例2] (1)已知cos ⎝ ⎛⎭⎪⎫α+4=5,2≤α<2,求cos ⎝ ⎛⎭⎪⎫2α+π4的值;(2)已知α∈⎝ ⎛⎭⎪⎫-π2,π2,且sin 2α=sin ⎝⎛⎭⎪⎫α-π4,求α.[解] (1)∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝ ⎛⎭⎪⎫α+π4>0,∴3π2<α+π4<7π4. ∴sin ⎝ ⎛⎭⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin2α+π2=2sin α+π4cos α+π4=2×-45×35=-2425,sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=1-2cos 2⎝⎛⎭⎪⎫α+π4=1-2×⎝ ⎛⎭⎪⎫352=725.∴cos ⎝ ⎛⎭⎪⎫2α+π4=22cos 2α-22sin 2α =22×⎝ ⎛⎭⎪⎫-2425-725=-31250. (2)∵sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-⎣⎢⎡⎦⎥⎤2cos 2⎝⎛⎭⎪⎫α+π4-1,sin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫π4-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=-cos ⎝ ⎛⎭⎪⎫π4+α, ∴原方程可化为1-2cos 2α+π4=-cos α+π4,解得cos ⎝ ⎛⎭⎪⎫α+π4=1或cos ⎝ ⎛⎭⎪⎫α+π4=-12.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α+π4∈⎝ ⎛⎭⎪⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12.[类题通法]解决条件求值问题的方法条件求值问题,注意寻找已知式与未知式之间的联系,有两个观察方向:(1)有方向地将已知式或未知式化简,使关系明朗化;(2)寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.[活学活用]1.已知sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=16,α∈⎝ ⎛⎭⎪⎫π2,π,求sin 4α的值. 答案:-4292.已知sin 22α+sin 2αcos α-cos 2α=1,求锐角α. 答案:π6[例3] A 为锐角. (1)求角A 的大小;(2)求函数f (x )=cos 2x +4cos A sin x (x ∈R)的值域. [解] (1)由题意得a ·b =3sin A -cos A =1,2sin ⎝ ⎛⎭⎪⎫A -π6=1,sin ⎝⎛⎭⎪⎫A -π6=12.由A 为锐角得A -π6=π6,所以A =π3.(2)由(1)知cos A =12,所以f (x )=cos 2x +2sin x =1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32.因为x ∈R ,所以sin x ∈[-1,1], 因此,当sin x =12时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3. 所以所求函数f (x )的值域是⎣⎢⎡⎦⎥⎤-3,32.[类题通法]二倍角公式的灵活运用(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. (2)公式的变形用:公式间有着密切的联系,这就要求思考时融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2, 1+cos 2α=2cos 2α,cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.[活学活用](福建高考节选)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.求函数g (x )的解析式.答案:(1)2π (2)g (x )=10sin x -89.二倍角的配凑问题[典例] 已知cos ⎝ ⎛⎭⎪⎫π4+x =35,求sin 2x -2sin 2x 1-tan x 的值.[解] 原式=2sin x cos x -2sin 2x1-sin x cos x=2sin x x -sin xcos x -sin xcos x=2sin x cos x =sin 2x .或原式=sin 2x -2sin x cos x ·sin xcos x1-tan x=sin 2x -sin 2x tan x1-tan x=sin 2x -tan x1-tan x=sin 2x .∵2x =2⎝⎛⎭⎪⎫x +π4-π2,∴sin 2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π2 =-cos 2⎝ ⎛⎭⎪⎫x +π4. ∵cos ⎝⎛⎭⎪⎫x +π4=35,∴cos 2⎝ ⎛⎭⎪⎫x +π4=2cos 2⎝ ⎛⎭⎪⎫x +π4-1 =2×925-1=-725,∴原式=-⎝ ⎛⎭⎪⎫-725=725.[多维探究]1.解决上面典例要注意角“2x ”与“π4+x ”的变换方法,即sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x ;常见的此类变换,还有: (1)sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x ;(2)cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x ;(3)cos 2x =sin ⎝⎛⎭⎪⎫π2+2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x .2.倍角公式中的“倍角”是相对的.对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,3α是3α2 的二倍角等.在解决此类问题时,有时二倍角关系不是很明显,需要结合条件和结论中的函数名和角的关系去发现.[活学活用]1.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α=________.答案:-792.计算:cos 2π7·cos 4π7·cos 6π7=________.答案:183.计算:sin 10°sin 30°sin 50°sin 70°=________. 答案:1164.求值:+3-cos 20°cos 80°1-cos 20°.答案: 2[随堂即时演练]1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215° D .sin 215°+cos 215°答案:B2.化简1+sin 100°-1-sin 100°=( ) A .-2cos 50° B .2cos 50° C .-2sin 50° D .2sin 50°答案:B3.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,则tan 2α=________. 答案:-434.函数f (x )=2cos 2⎝ ⎛⎭⎪⎫x -π4-1的最小正周期为________. 答案:π5.已知α为第二象限角,且sin α=154, 求sin ⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1的值. 答案:- 2[课时达标检测]一、选择题 1.若sin ⎝⎛⎭⎪⎫3π2-x =35,则cos 2x 的值为( )A .-725 B.1425C .-1625 D.1925答案:A2.若sin α+cos αsin α-cos α=12,则tan 2α=( )A .-34 B.34C .-43 D.43答案:B3.设-3π<α<-5π2,化简1-α-π2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α2答案:C4.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22 B.33C. 2D. 3 答案:D 5.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35B.45C.74 D.34答案:D 二、填空题6.函数f (x )=2cos 2x +sin 2x 的最小值是________. 答案:1- 27.已知α∈⎝ ⎛⎭⎪⎫0,π2,sin α=35,则1cos 2α+tan 2α=________. 答案:78.等腰三角形一个底角的余弦为23,那么这个三角形顶角的正弦值为________.答案:459三、解答题9.已知α为锐角,且tan ⎝ ⎛⎭⎪⎫π4+α=2. (1)求tan α的值;(2)求sin 2αcos α-sin αcos 2α的值.解:(1)tan ⎝⎛⎭⎪⎫π4+α=1+tan α1-tan α,所以1+tan α1-tan α=2,1+tan α=2-2tan α,所以tan α=13.(2)sin 2αcos α-sin αcos 2α=2sin αcos 2α-sin αcos 2α=sin α2α-cos 2α=sin αcos 2αcos 2α=sin α.因为tan α=13,所以cos α=3sin α,又sin 2α+cos 2α=1,所以sin 2α=110,又α为锐角,所以sin α=1010, 所以sin 2αcos α-sin αcos 2α=1010.10.已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R).若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos 2x 0的值.解:∵f (x )=23sin x cos x +2cos 2x -1 =3(2sin x cos x )+(2cos 2x -1) =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴sin ⎝⎛⎭⎪⎫2x 0+π6=35.又∵x 0∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6.∴cos ⎝⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝⎛⎭⎪⎫2x 0+π6=-45.∴cos 2x 0=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 0+π6-π6=cos ⎝ ⎛⎭⎪⎫2x 0+π6cos π6+sin ⎝ ⎛⎭⎪⎫2x 0+π6sin π6=-45×32+35×12=3-4310.11.设函数f (x )=53cos 2x +3sin 2x -4sin x cos x . (1)求f ⎝⎛⎭⎪⎫5π12;(2)若f (α)=53,α∈⎝ ⎛⎭⎪⎫π2,π,求角α. 解:f (x )=53cos 2x +3sin 2x -4sin x cos x =53cos 2x +53sin 2x -2sin 2x -43sin 2x =53-2sin 2x -23(1-cos 2x ) =33-2sin 2x +23cos 2x =33-4⎝ ⎛⎭⎪⎫sin 2x ×12-cos 2x ×32=33-4⎝ ⎛⎭⎪⎫sin 2x cos π3-cos 2x sin π3 =33-4sin ⎝ ⎛⎭⎪⎫2x -π3, (1)f ⎝⎛⎭⎪⎫5π12=33-4sin ⎝ ⎛⎭⎪⎫5π6-π3=33-4sin π2=33-4.(2)由f (α)=53,得sin ⎝⎛⎭⎪⎫2α-π3=-32, 由α∈⎝ ⎛⎭⎪⎫π2,π, 得2α-π3∈⎝ ⎛⎭⎪⎫2π3,5π3, ∴2α-π3=4π3,α=5π6.。

人教A版高中数学必修四同步练习第三章三角恒等变换新

人教A版高中数学必修四同步练习第三章三角恒等变换新

必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos 66cos54︒︒︒︒-的值为 ( )A 0 B12 C D 12- 2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan xx+=-则sin 2x 的值是 ( )A35 B 34- C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( ) A 47-B 47C 18D 18- 5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( ) A3365 B 1665 C 5665 D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( ) A 725-B 2425-C 2425D 7257.cos 23x x a +=-中,a 的取值域范围是 ( ) A2521≤≤a B 21≤a C 25>a D 2125-≤≤-a8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( ) A 1010 B 1010- C 10103 D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( ) A 、向右平移6π个单位 B 、向右平移12π个单位C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113π B 、x =53π C 、53x π=- D 、3x π=- 11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [B (-C [-D (-12.在ABC ∆中,tan tan tan A B A B ++=,则C 等于 ( ) A3πB23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C =15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos 2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

人教A版高中数学必修四同步练习第三章三角恒等变换新(1)

人教A版高中数学必修四同步练习第三章三角恒等变换新(1)

必修4 第三章 三角恒等变换(2)一、选择题1 已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A247 B 247- C 724 D 724-2 函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于 ( )A 3-B 2-C 1- D3 在△ABC 中,cos cos sin sin A B A B >,则△ABC 为 ( )A 锐角三角形B 直角三角形C 钝角三角形D 无法判定4 函数)cos[2()]y x x ππ=-+是 ( ) A 周期为4π的奇函数 B 周期为4π的偶函数 C 周期为2π的奇函数 D 周期为2π的偶函数5 函数221tan 21tan 2xy x-=+的最小正周期是 ( )A4π B 2πC πD 2π 6 sin163sin 223sin 253sin 313+= ( )A 12-B 12C D7 已知3sin(),45x π-=则sin 2x 的值为 ( )A 1925B 1625C 1425D 7258 若(0,)απ∈,且1cos sin 3αα+=-,则cos 2α= ( )A 917B C D 3179 函数x x y 24cos sin +=的最小正周期为 ( )A4πB2πC πD 2π10 当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是 ( )A 4 B12 C 2 D 1411 函数2sin cos y x x x =-的图象的一个对称中心是 ( )A 2(,3π B 5(,6π C 2(3π- D (,3π12 0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是 ( )A 16B 8C 4D 2二、填空题13 已知在ABC ∆中,3sin 4cos 6,4sin 3cos 1,A B B A +=+=则角C 的大小为14.在ABC ∆中,,53sin ,135cos ==B A 则C cos =______. 15 函数f x x x x ()cos sin cos =-223的最小正周期是___________16 已知sincos22θθ+=那么sin θ的值为 ,cos 2θ的值为 三、解答题17 求值:(1)000078sin 66sin 42sin 6sin ;(2)00020250cos 20sin 50cos 20sin ++18 已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数19. 求值:001001cos 20sin10(tan 5tan 5)2sin 20-+--20. 已知函数.,2cos 32sinR x xx y ∈+= (1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象。

人教A版高中数学必修四第三章三角恒等变换同步练习五新

人教A版高中数学必修四第三章三角恒等变换同步练习五新

第三章 三角恒等变换 单元测试一、选择题1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<2.函数221tan 21tan 2x y x-=+的最小正周期是( ) A .4π B .2π C .π D .2π 3.sin163sin 223sin 253sin313+=( )A .12-B .12C .D 4.已知3sin(),45x π-=则sin 2x 的值为( ) A .1925 B .1625 C .1425 D .7255.若(0,)απ∈,且1cos sin 3αα+=-,则cos2α=( )A .917B .C .D .317 6.函数x x y 24cos sin +=的最小正周期为( )A .4πB .2π C .π D .2π 二、填空题 1.已知在ABC ∆中,3sin 4cos 6,4sin 3cos 1,A B B A +=+=则角C 的大小为 .2.计算:o o o oo o 80cos 15cos 25sin 10sin 15sin 65sin -+的值为_______. 3.函数22sincos()336x x y π=++的图象中相邻两对称轴的距离是 . 4.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .5.已知)sin()(ϕω+=x A x f 在同一个周期内,当3π=x 时,)(x f 取得最大值为2,当 0=x 时,)(x f 取得最小值为2-,则函数)(x f 的一个表达式为______________.三、解答题1. 求值:(1)000078sin 66sin 42sin 6sin ; (2)00020250cos 20sin 50cos 20sin ++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4 第三章 三角恒等变换(1)
一、选择题:
1.cos 24cos 36cos 66cos 54︒︒︒︒-的值为 ( )
A 0
B 12
C
2
D 12
-
2.3cos 5
α=-
,,2π
απ⎛⎫

⎪⎝⎭
,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 3365
- B
6365
C
5665
D 1665
-
3.设
1tan 2,1tan x x
+=-则sin 2x 的值是 ( )
A 35
B 34
- C
34
D 1-
4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )
A 47
-
B
47
C
18
D 18
-
5.βα,都是锐角,且5sin 13
α=,()4cos 5
αβ+=-
,则βsin 的值是 ( )
A
3365
B
1665
C 5665
D 6365
6. )4,
43(π
π-∈x 且3cos 45x π⎛⎫
-=- ⎪⎝⎭
则cos2x 的值是 ( )
A 7
25
-
B 2425
- C 2425
D
725
7.在cos 23x x a +=-中,a 的取值域范围是 ( )
A
2
521≤
≤a B 2
1≤
a C 2
5>
a D 2
12
5-
≤≤-
a
8. 已知等腰三角形顶角的余弦值等于
5
4,则这个三角形底角的正弦值为 ( )
A 10
10 B 10
10- C 10
103 D 10
103-
9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )
A 、向右平移6
π
个单位 B 、向右平移12
π
个单位 C 、向左平移

个单位 D 、向左平移
12
π
个单位
10. 函数sin 2
2
x x y =+
的图像的一条对称轴方程是 ( )
A 、x =
113
π B 、x =53
π C 、53
x π=-
D 、3
x π
=-
11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )
A [
B 1(1,]2
- C 1[1,]2
-- D 1(1,)2
-
12.在A B C ∆中,tan tan tan A B A B ++
=,则C 等于 ( )
A 3
π
B
23
π C
6
π
D
4
π
二、填空题:
13.若βαtan ,tan 是方程04332
=++x x 的两根,且),2
,2(,π
πβα-
∈则βα+等于
14. .在A B C ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则
3sin 22cos 2cos 23sin 2x x x x
+-的值为
16. 关于函数()cos 2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤
-
⎢⎥⎣⎦
上是单调递增; ③函数()f x 的图像关于点,012π
⎛⎫
⎪⎝⎭
成中心对称图像; ④将函数()f x 的图像向左平移
512
π个单位后将与2sin 2y x =的图像重合.
其中正确的命题序号 (注:把你认为正确的序号都填上)
三、解答题:
17. 化简0
00020
cos 1)]10tan 31(10sin 50sin 2[+++
18. 求)
212cos 4(12sin 3
12
tan 30
20
--的值.
19. 已知α为第二象限角,且 sin α=,4
15求
1
2cos 2sin )4sin(+++
ααπ
α的值.
20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

(2)函数的单调减区间
(3
)此函数的图像可以由函数2y x =的图像经过怎样变换而得到。

相关文档
最新文档