高中数学必修1基础练习题

合集下载

数学高中必修一练习题及讲解

数学高中必修一练习题及讲解

数学高中必修一练习题及讲解### 数学高中必修一练习题及讲解#### 练习题一:函数的基本性质题目:已知函数 \(f(x) = 2x^2 - 3x + 1\),求其定义域和值域。

解答:函数 \(f(x) = 2x^2 - 3x + 1\) 是一个二次函数。

二次函数的定义域为全体实数,即 \(x \in (-\infty, +\infty)\)。

要找到值域,我们可以将函数转换为顶点形式。

首先,找到顶点的\(x\) 坐标:\[ x = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4} \]将 \(x = \frac{3}{4}\) 代入原函数,得到顶点的 \(y\) 坐标:\[ f\left(\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 -3\left(\frac{3}{4}\right) + 1 \]\[ f\left(\frac{3}{4}\right) = 2\left(\frac{9}{16}\right) -\frac{9}{4} + 1 = \frac{9}{8} - \frac{9}{4} + 1 = -\frac{1}{8} \]因此,函数的最小值为 \(-\frac{1}{8}\),由于开口向上,函数没有最大值,所以值域为 \([-\frac{1}{8}, +\infty)\)。

#### 练习题二:指数函数的运算题目:计算 \(2^3 \cdot 5^3\)。

解答:指数函数的乘法运算可以转换为基数相乘,指数相同的形式。

即:\[ 2^3 \cdot 5^3 = (2 \cdot 5)^3 \]计算基数的乘积:\[ 2 \cdot 5 = 10 \]将结果代入指数:\[ 10^3 = 1000 \]所以 \(2^3 \cdot 5^3 = 1000\)。

#### 练习题三:三角函数的图像和性质题目:已知 \(\sin(\alpha) = \frac{3}{5}\),\(\alpha\) 在第一象限,求 \(\cos(\alpha)\)。

数学高中必修一试题及答案

数学高中必修一试题及答案

数学高中必修一试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = log(x)答案:B2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的符号是:A. 正B. 负C. 零D. 不确定答案:B3. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值:A. 17B. 29C. 35D. 38答案:B4. 圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切答案:B5. 函数f(x) = 2x - 3在点x=1处的导数是:A. 2B. -3C. -2D. 1答案:A6. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B7. 集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B8. 已知等比数列的首项a1=2,公比q=2,求第5项a5的值:A. 16B. 32C. 64D. 128答案:C9. 函数y = x^3 - 3x^2 + 2在点x=1处的极值情况是:A. 极大值B. 极小值C. 无极值D. 不确定答案:B10. 已知向量a=(2, -1),b=(-3, 4),求向量a与b的点积:A. 5B. -5C. -10D. 10答案:B二、填空题(每题2分,共20分)11. 已知函数f(x) = x^2 + 2x + 1,求f(-1)的值。

答案:012. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:513. 已知集合M={x | x < 5},N={x | x > 3},求M∩N。

高中数学试卷必修一基础100题

高中数学试卷必修一基础100题

高中数学试卷必修一基础50题一、单选题(共15题;共30分)1.已知函数y=sinx的定义域为值域为,则的值不可能是( )A. B. C. D.2.已知集合, ,则()A. B. C. D.3.设集合是锐角,,从集合到的映射是“求正弦值”,则与中元素相对应的中元素是()A. B. C. D.4.设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为( )A. (x-5)(x-4)B. (x-6)(x-5)C. (x-6)(5-x)D. (x-6)(7-x)5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A. a≤1B. a<1C. a≥2D. a>26.已知集合,,则()A. B. C. D.7.已知函数的定义域为,的定义域为()A. B. C. D.8.已知偶函数在区间上是增函数,如果,则x的取值范围是()A. B. C. D.9.二次函数图象的对称轴方程为()A. B. C. D.10.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A. y=﹣x3B. y=ln|x|C. y=cosxD. y=2﹣|x|11.函数f(x)=a x﹣1+2的图象恒过定点()A. (3,1)B. (0,2)C. (1,3)D. (0,1)12.集合,,若,则实数a的取值范围是()A. B. C. D.13.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A. 10个B. 9个C. 8个D. 4个14.已知,b=0.53,,则a,b,c三者的大小关系是()A. b<a<cB. c<a<bC. a<c<bD. a<b<c15.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}二、填空题(共20题;共21分)16.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为________.17.若二次函数的图象经过点,则代数式的值等于________.18.已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.19.已知函数f(x)=2x﹣3,x∈N且1≤x≤5,则函数的值域为________.20.设集合M={x|﹣1<x<1},N={x|0≤x<2},则M∪N=________.21.设函数在区间上的最大值为,则________.22.函数的定义域为________.23.若函数f(x)= 在(﹣1,+∞)上的值域为________.24.已知幂函数的图象过点,则的单调减区间为________.25.设函数f(x)=(x﹣4)0+ ,则函数f(x)的定义域为________.26.若f(x)=2x+2﹣x lga是奇函数,则实数a=________.27.已知函数是奇函数,则=________.28.已知全集U={﹣1,0,2,4},集合A={0,2},则________.29.函数的单调递增区间为________.30.已知函数f(x)=,则f[f(-2)]=________ ,f(x)的最小值是________.31.设函数,若,则________.32.计算:的结果是________ .33.函数的单调增区间为________.34.化简:+=________35.已知集合,,若存在非零整数k,满足,则________.三、解答题(共15题;共135分)36.设,求证:(1);(2).37.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.38.(1)计算:;(2)已知( ) ,求的值.39.已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.40.已知集合A={x|﹣3<x≤4},集合B={x|k+1≤x≤2k﹣1},且A∪B=A,试求k的取值范围.41.比较下列各题中两个值的大小.(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4.42.已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f()= .(1)求函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(x2﹣1)+f(x)<0.43.已知函数.(1)求函数的定义域;(2)是否存在实数a,使得为奇函数.44.已知全集U={x|﹣5≤x≤3},集合A={x|﹣5≤x<﹣1},B={x|﹣1≤x≤1}.(1)求A∩B,A∪B;(2)求(∁U A)∩(∁U B),(∁U A)∪(∁U B).45.设集合,.若,求的值46.设函数f(x)=ax2+(b﹣8)x﹣a﹣ab的两个零点分别是﹣3和2.(Ⅰ)求f(x);(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.47.已知全集,若集合,B={x|x-m<0} .(1)若,求;(2)若, 求实数的取值范围.48.已知集合,.(1)当m=4时,求,;(2)若,求实数m的取值范围.49.已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.(1)若A⊊B,求实数a的取值范围;(2)若B⊊A,求实数a的取值范围.50.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】D12.【答案】C13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】17.【答案】[ ,1]18.【答案】{2,4}19.【答案】;20.【答案】821.【答案】b<a<c22.【答案】23.【答案】24.【答案】25.【答案】26.【答案】27.【答案】028.【答案】{0,2,6,10}29.【答案】30.【答案】231.【答案】②③32.【答案】33.【答案】[2,5)34.【答案】35.【答案】三、解答题36.【答案】(1)解:(2)。

高中数学必修1基础知识过关100题带答案

高中数学必修1基础知识过关100题带答案

高中数学必修1基础知识过关100题带答案1.方程组3x=6,x+2y=6的解构成的集合是{2}。

2.不同于另外三个集合的是C.{x=1}。

3.若函数f(x)=ax^2-x-1有且仅有一个零点,则实数a的值为1/4.4.是空集的是C.{x|x^2<0}。

5.能使A⊇B成立的实数a的取值范围是B.{a|3<a<4}。

6.若B⊆A,则实数m=4.7.M∪N={3,5,6,7,8}。

8.A∩B={x|x>-1}。

9.M∩N={0}。

10.A∩B={x|-1<x≤3}。

11.A∩(∁B U)=C.{3}。

12.集合C={x|x≥1/2}。

则f(x)=2x+1,x>2或x<-427.若f(x)=ax+b,且f(1)=2,f(2)=3,则a=(),b=().28.已知函数f(x)=x2-4x+3,g(x)=2x-1,则f(g(x))=()A.4x2-12xB.4x2-8x-1C.4x2-4x-1D.4x2-4x+129.已知函数f(x)=x2-x+1,g(x)=x+1,则f(g(x))=() A.x2+2xB.x2+x+1C.x2+2x+1D.x2-2x+130.已知函数f(x)=x3+1,g(x)=x-1,则f(g(x))=()A.x3-x2+xB.x3-3x2+3xC.x3-3xD.x3-2x2+x31.已知函数f(x)=x+1,g(x)=2x-1,则f(g(x))=()A.2xB.2x+1C.2x+2D.2x-132.已知函数f(x)=2x-1,g(x)=x2,则f(g(x))=()A.2x2-1B.2x4-1C.2x2-2D.2x4-2x+133.已知函数f(x)=x2-1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+2x-1D.x2+x34.已知函数f(x)=x+1,g(x)=x2,则f(g(x))=()A.x2+xB.x2+x+1C.x2+2xD.x2+2x+135.已知函数f(x)=x2+1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+x+2D.x2+2x+236.已知函数f(x)=|x|,g(x)=x2,则f(g(x))=()A.|x2|B.x2C.x2+1D.|x2|+137.已知函数f(x)=x2,g(x)=|x|,则f(g(x))=()A.x4B.x2C.|x|2D.|x|27.已知函数f(x) = {2x。

高中数学必修1练习题集

高中数学必修1练习题集

1.1.3 集合的基本运算例1 设集合A={x︱-1<x<2},集合B={ x︱1<x≤3 },求A B.例2 A={ x︱-1<x≤4},B={ x︱2<x≤5},求A B.例4 不等式组的解为A,U=R,试求A及CUA,并把它们分别表示在数轴上。

题型三集合的交集运算例3 若集合A={x∣x2- ax + a2- 19 = 0},B={x∣x2- 5x + 6 = 0},C={x∣x2+ 2x - 8 = 0},求a的值使得⊆∅(A B)与A C=∅同时成立。

题型四集合的补集运算例5 设全集U={1,2,x2- 2},A={1,x},求CUA例6设全集U为R,A={x︱x2- x –2 = 0},B={x︱x= y + 1,y∈A},求CUB题型五集合运算性质的简单应用例7 已知集合A={x︱x2+ ax + 12b = 0} 和B= {x︱x2- ax + b = 0},满足(CUA) B=2,A (CUB)={4},U = R,求实数a、b的值。

例8 已知A={x︱x2- px –2 = 0},B= {x︱x2+ qx + r = 0},且A B ={-2,1,5},A B ={-2},求实数p、q、r的值。

数学思想方法一、数形结合思想例9(用数轴解题)已知全集U={ x︱x≤4},集合A={x︱-2<x<3},集合B={ x︱-3<x≤3 },求CU A,A B ,CU( A B),(CUA) B例10(用V enn图解题)设全集U和集合A、B、P满足A= CU B,B= CUP,则A与P的关系是()A. A= CUP B. A=P C. A⊇P D. A⊆P二、分类讨论思想例11 设集合A={1+a,3,5},集合B={2a+1,a2+ 2a,a2+ 2a - 1},当A B={2,3}时,求A B三、“正难则反”策略与“补集”思想例12 已知方程x2+ ax + 1 = 0,x2+ 2x - a = 0,x2+ 2ax + 2 = 0,若三个方程至少有一个方程有实根,求实数a的取值范围。

高中数学必修1练习题及讲解

高中数学必修1练习题及讲解

高中数学必修1练习题及讲解### 高中数学必修1练习题及讲解#### 练习题1:函数的概念与性质题目:给定函数 \( f(x) = 3x^2 - 2x + 1 \),求:1. 函数的值域。

2. 函数的对称轴。

解答:1. 首先,我们可以通过完成平方来找到函数的顶点。

函数 \( f(x) = 3x^2 - 2x + 1 \) 可以重写为 \( f(x) = 3(x - \frac{1}{3})^2 +\frac{2}{3} \)。

由于 \( (x - \frac{1}{3})^2 \) 总是非负的,函数的最小值是 \( \frac{2}{3} \),因此值域是 \( [\frac{2}{3},+\infty) \)。

2. 对称轴是二次函数的顶点的 x 坐标,即 \( x = \frac{1}{3} \)。

#### 练习题2:指数函数题目:解指数方程 \( 2^x = 8 \)。

解答:由于 \( 8 = 2^3 \),我们可以将方程 \( 2^x = 8 \) 写成 \( 2^x= 2^3 \)。

由于底数相同,指数必须相等,所以 \( x = 3 \)。

#### 练习题3:对数函数题目:如果 \( \log_{10}100 = 2 \),求 \( \log_{10}1000 \)。

解答:由于 \( 1000 = 10 \times 100 \),我们可以将 \( \log_{10}1000 \) 写成 \( \log_{10}(10 \times 100) \)。

根据对数的性质,这等于 \( \log_{10}10 + \log_{10}100 \)。

我们知道 \( \log_{10}10 = 1 \),所以 \( \log_{10}1000 = 1 + 2 = 3 \)。

#### 练习题4:三角函数题目:已知 \( \sin \theta = \frac{3}{5} \) 且 \( \theta \) 在第一象限,求 \( \cos \theta \)。

高中数学必修1基本初等函数基础训练

高中数学必修1基本初等函数基础训练

数学测试一、选择题1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log = 2.下列函数中是奇函数的有几个( ) ①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a x y x +=- A .1 B .2 C .3 D .43.函数y x =3与y x =--3的图象关于下列那种图形对称( )A .x 轴B .y 轴C .直线y x =D .原点中心对称4.下列函数为偶函数是是 ( )A )f(x)=x 2+x-1B )f(x)=x|x|C )f(x)=x 2-x 3D )()f x =5.函数y = )A .[1,)+∞B .2(,)3+∞ C .2[,1]3 D .2(,1]3 6.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<< C .0.760.7log 660.7<< D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。

2.若3)1()(2++-=mx x m x f 是偶函数,则)(x f 的递增区间是____________。

3.计算:(log )log log 2222545415-++= 。

4.函数1218x y -=的定义域是______;5.判断函数2lg(y x x =的奇偶性 。

三、解答题1.已知二次函数f(x)的图像的顶点是(-1,2),且过原点,求f(x)的表达式附加题。

高中数学必修1第一章基础训练题(有详解)

高中数学必修1第一章基础训练题(有详解)

高中数学必修1第一章基础训练题(有详解) 一、单选题 1.已知定义在R 上的奇函数()f x 和偶函数()g x ,则( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是偶函数 D .()()f x g x ⋅是偶函数 2.已知奇函数()f x 定义在(1,1)-上,且对任意1212,(1,1)()x x x x ∈-≠都有2121()()0f x f x x x -<-成立,若(21)(32)0f x f x -+->成立,则x 的取值范围为( )A .(0,1)B .1(,1)3C .13(,)35D .3(0,5 3.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 4.已知函数是定义在上的奇函数,对于任意的,且,有.若,则的解集为( ) A . B . C . D . 5.设奇函数在上为单调递减函数,且,则不等式的解集为 ( ) A . B . C . D . 6.定义在的偶函数,当时,,则的解集为( ) A . B . C . D . 7.设奇函数在上是减函数,且,若不等式对所有的都成立,则的取值范围是( ) A . B . C . D .8.函数,则下列结论错误的是( ) A .是偶函数 B .的值域是 C .方程的解只有 D .方程的解只有 二、填空题 9.给定映射22f a b a b a b →+-:(,)(,),则在映射f 下,31(,)的原象是______.10.若函数f (x )同时满足: ①对于定义域上的任意x 恒有f (x )+f (﹣x )=0,②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有0,则称函数f (x )为“理想函数”.给出下列四个函数中①f (x ); ②f (x ); ③f (x );④f (x ),能被称为“理想函数”的有_______________(填相应的序号).11.给出下列五个命题:①函数f (x )=22a x ﹣1﹣1的图象过定点(12,﹣1);②已知函数f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x (x+1),若f (a )=﹣2则实数a =﹣1或2.③若log a 12>1,则a 的取值范围是(12,1);④若对于任意x ∈R 都f (x )=f (4﹣x )成立,则f (x )图象关于直线x =2对称; ⑤对于函数f (x )=lnx ,其定义域内任意12x x ≠都满足f (122x x +)()()122f x f x +≥其中所有正确命题的序号是_____.12.下列结论中:①定义在R 上的函数f (x )在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f (x )在R 上是增函数;②若f (2)=f (-2),则函数f (x )不是奇函数;③函数y=x -0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x 0是二次函数y=f (x )的零点,且m<x 0<n ,那么f (m )f (n )<0一定成立.写出上述所有正确结论的序号:_____. 13.已知函数,若函数过点,那么函数一定经过点____________ 14.已知是R 上的增函数,则的取值范围是__________; 15.函数在区间上的最小值为___________.三、解答题 16.已知函数. (Ⅰ)用定义证明是偶函数; (Ⅱ)用定义证明在上是减函数; (Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值. 17.设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ()=1,当x >0时,f (x )>0. (1)求f (0)的值; (2)判断函数的奇偶性; (3)如果f (x )+f (2+x )<2,求x 的取值范围. 18.已知全集为R ,集合, . (1)求, ; (2)若,且,求a 的取值范围. 19.已知f (x )为一次函数,g (x )为二次函数,且f[g (x )]=g[f (x )]. (1)求f (x )的解析式; (2)若y=g (x )与x 轴及y=f (x )都相切,且g (0)= ,求g (x )的解析式. 20.已知函数. (1)求; (2)求值域.参考答案1.D【解析】【分析】逐个选项去判断是否是奇函数或者偶函数。

(高一)高一数学必修1习题及答案5篇

(高一)高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。

高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。

高中数学必修一集合练习题

高中数学必修一集合练习题

高中数学必修一集合练习题1. 集合的表示法:给定集合A={1, 2, 3},请用描述法表示集合A。

2. 子集与真子集:若集合B={x | x是A的子集},集合A={1, 2, 3},请列出集合B的所有元素,并判断哪些是A的真子集。

3. 集合的并集:已知集合C={1, 2}和集合D={2, 3},请计算C∪D。

4. 集合的交集:若集合E={1, 3, 5}和集合F={2, 3, 5},请找出E∩F。

5. 集合的差集:给定集合G={1, 2, 3, 4}和集合H={3, 4, 5},求G-H。

6. 集合的补集:设全集U={1, 2, 3, 4, 5, 6},集合I={2, 4, 6},请求∁_U I。

7. 幂集:集合J={a, b},请列出J的所有幂集。

8. 集合的包含关系:若集合K={x | x是小于10的正整数},集合L={1, 3, 5, 7, 9},请判断K和L之间的关系。

9. 集合相等:集合M={x | x是偶数}和集合N={2, 4, 6, 8, 10},判断M和N是否相等。

10. 集合的笛卡尔积:若集合O={1, 2}和集合P={a, b},请计算O×P。

解答提示:- 对于第1题,描述法表示集合A可以写作A={x | x是正整数,且1≤x≤3}。

- 第2题中,集合B的所有元素包括空集和所有A的子集,即B={∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}。

其中,A的真子集是不包含A本身的所有子集。

- 第3题,C∪D={1, 2, 3}。

- 第4题,E∩F={3, 5}。

- 第5题,G-H={1, 2}。

- 第6题,∁_U I={1, 3, 5}。

- 第7题,J的幂集包括所有J的子集,即{∅, {a}, {b}, {a, b}}。

- 第8题,K包含L,因为L的所有元素都在K中。

- 第9题,M和N相等,因为它们包含相同的元素。

完整)高中数学必修1基础练习题

完整)高中数学必修1基础练习题

完整)高中数学必修1基础练习题1.下面的结论正确的是()A。

a∈Q,则a∈ND。

以上结论均不正确重写:哪个结论是正确的?A。

如果a是有理数,则a是自然数。

D。

没有任何结论是正确的。

2.下列说法正确的是()A。

某班中年龄较小的同学能够形成一个集合B。

由1,2,3和9,1,4组成的集合不相等C。

不超过20的非负数组成一个集合D。

方程x2-4=和方程|x-1|=1的解构成了一个四元集重写:哪个说法是正确的?A。

每个年龄较小的同学都可以形成一个集合。

B。

由1,2,3和1,4,9组成的集合不相等。

C。

非负整数不超过20组成一个集合。

D。

方程x2-4和|x-1|=1的解构成一个四元组。

3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A。

{(1,3),(3,1)}B。

{(2,2)}C。

{(1,3),(3,1),(2,2)}D。

{(4,0),(0,4)}重写:用列举法表示{(x,y)|x是正整数,y是正整数,x+y=4}应该是哪一个?A。

{(1,3),(3,1)} B。

{(2,2)} C。

{(1,3),(3,1),(2,2)} D。

{(4,0),(0,4)}4.下列命题:1)方程x-2+|y+2|=的解集为{2,-2};2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};3)集合{x|x-1a,a∈R}没有公共元素.其中正确的个数为()A。

0B。

1C。

2D。

3重写:有多少命题是正确的?A。

0 B。

1 C。

2 D。

35.对于集合A={2,4,6,8},若a∈A,则8-a∈A,则a的取值构成的集合是________.重写:集合A={2,4,6,8},如果a是A的元素,那么8-a也是A的元素。

a的可能值是什么?6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.重写:定义集合A*B={x|x=a-b,a是A的元素,b是B的元素},如果A={1,2},B={0,2},那么A*B中所有元素的总和是多少?7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.重写:如果集合A={-1,2},集合B={x|x2+ax+b=0},并且A=B,那么a和b是多少?8.已知集合A={a-3,2a-1,a2+1},a∈R.1)若-3∈A,求实数a的值;2)当a为何值时,集合A的表示不正确.重写:已知集合A={a-3,2a-1,a2+1},其中a是实数。

(完整版)高中数学必修一练习题及解析非常全

(完整版)高中数学必修一练习题及解析非常全

必修一数学练习题及解析第一章练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x =-[f(x)+x].所以F(-x)=-F(x).所以y=f(x)+x为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2) B .f (-1)<f (-32)<f (2) C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1 当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b . 又∵方程f (x )=x 有唯一实数解. ∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去).(3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎨⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章 练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克B .(1-0.5%)3克C .0.925克D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125. 答案:D6.函数y =log 2x 与y =log 12x 的图象( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称D .关于y =x 对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B 7.函数y =lg(21-x -1)的图象关于( ) A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c bD .log b c <log a c解析:y =x c 在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是() A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.图1图2 (2)当0<a<1时,图象如上图2,不满足题意.答案:A1112.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎨⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________. 解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________. 解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.12 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22.当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则13f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1.14 (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a1-ax11-a x 2=log a 1-a x 2+a x 2-a x11-a x2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-a x >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a 1-a}.15第三章 练习一、选择题(每小题5分,共60分)1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x 的零点是( ) A .(-1,0) B .-1 C .1D .0解析:令1+1x =0,得x =-1,即为函数零点. 答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.16 答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对17解析:定理的逆定理不成立,故f (x 1)f (x 2)的值不确定. 答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨解析:设该职工该月实际用水为x 吨,易知x >8. 则水费y =16+2×2(x -8)=4x -16=20, ∴x =9. 答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )答案:A11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0B .k >1C .0≤k <1D .k >1,或k =0解析:令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:x0.20.61.0 1.41.82.22.63.0 3.4 … y =2x 1.149 1.516 2.0 2.639 3.4824.595 6.063 8.0 10.556 … y =x 20.04 0.361.01.963.244.846.769.011.56…18 那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l 2.19答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,20 ∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x , 由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎨⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x )4.005.587.008.44(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎨⎧a +b =43a +b =7,解得a =32,b =52,∴f(x)=32x+52.检验:f(2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.全册书综合练习题及解析一、选择题(每小题5分,共60分)1.集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=() A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}解析:∵A∩B={1,2},∴(A∩B)∪C={1,2,3,4}.答案:D2.如图1所示,U表示全集,用A,B表示阴影部分正确的是()图1A.A∪B B.(∁U A)∪(∁U B)C.A∩B D.(∁U A)∩(∁U B)解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A)∩(∁U B).答案:D3.若f(x)=1-2x,g(1-2x)=1-x2x2(x≠0),则g⎝⎛⎭⎪⎫12的值为()A.1 B.3C.15 D.30解析:g(1-2x)=1-x2x2,令12=1-2x,则x=14,∴g⎝⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎨⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:23 14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎨⎧ 2k -1<2,2k -1≥k +1,或⎩⎨⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎨⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎨⎧ f (2)=2f (3)=5,即⎩⎨⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎨⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎨⎧ f (2)=5f (3)=2,即⎩⎨⎧ 4a -4a +2+b =59a -6a +2+b =2,解得⎩⎨⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, 由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎨⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u 是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x ,4又x∈(-∞,2],u=2x的最小值1.所以符合题意的实数k的范围是(-∞,1).。

高中数学必修一练习题及答案详解

高中数学必修一练习题及答案详解

一、选择题1.函数 f ( x ) =x|x+a|+b 是奇函数的充要条件是( )A . ab=0B . a+b=0C . a=bD . a 2+b 2 =01 x 1(x 0)12.设函数 f (x)2若f ( f (a))则实数 a ( )1,( x 0)2xA.4B.-2C.4或1 D.4或 -223.已知集合 A { y | yln( x 2 1), x R} ,则 C R A()A.B.(,0]C.( ,0)D.[0, )4.已知集合 M{ x |x1 1} ,集合 N { x | 2x 3 0} ,则 (C R M )N ( )x 1A . (3,1) B . (3,1] C .[3,1) D . [3,1]22225.设 a log 2.8 3.1,b log e, c log e ,则()A . a c bB . c a bC . b a cD . b c a6.函数 f ( x)1 x log2 x 的零点所在区间是()A .(1,1)B. (1 ,1)C. (1,2) D. (2,3)4 22A( 1 , 1) ,则它在 A 点处的切线方程为7.若幂函数f (x) 的图象经过点4 2( A ) 4 x 4y 1 0( B ) 4x 4 y 1 0( C ) 2x y 0( D ) 2x y 08. y= ( 1) x - 3x 在区间 [-1,1] 上的最大值等于()51416A.3B.C.5D.339.已知幂函数 f ( x)x m 的图象经过点( 4, 2),则 f (16)( )A. 22B.4C.4 2D.810.设 f ( x) 是定义在 R 上的奇函数,当 x0时 f( x)2x 2x ,则 f (1) = ()A.—3B. — 1C.1D.311.已知125 ()log 2 5 a,log 2 7b, 则 log 2 7A . a3b B . 3a b C . a 3D .3abb12.设集合 M22 x3 0,Nx 2 x2 ,则 MC R N 等于(x x)A .1,1B. ( 1,0) C . 1,3 D. (0,1)13.若 x log 3 4 1 ,则 4x 4 x()A. 1B. 2C. 8D.1033二、填空题14.若 f (x)3x sinx ,则满足不等式 f (2m1)f (3 m)0 的m的取值范围为.115. lg 4 lg 254 2 (4.16.已知函数 f ( x) ( 1) x , x 4log 2 3) 的值为2,则 f (2f ( x 1), x 417.函数 f ( x) sin( x) 的图象为 C , 有如下结论 : ①图象 C5 3 关于直线 x对称 ;②图象C 关于点 (4, 56,0) 对称 ; ③函数 f ( x) 在区间 [ ] 内是增函数。

高中数学必修1_第一章_集合与函数概念_练习题

高中数学必修1_第一章_集合与函数概念_练习题

1.1集合练习题1、用列举法表示下列集合:(1){大于10而小于20的合数} ;(2)方程组2219x y x y +=⎧⎨-=⎩的解集 。

2.用描述法表示下列集合:(1)直角坐标平面内X 轴上的点的集合 ; (2)抛物线222y x x =-+的点组成的集合 ;(3)使216y x x =+-有意义的实数x 的集合 。

3.含两个元素的数集{}a a a -2,中,实数a 满足的条件是 。

4. 若{}2|60B x x x =+-=,则3 B ;若}{|23D x Z x =∈-<<,则1.5 D 。

5.下列关系中表述正确的是( )A.{}002=∈x B.(){}00,0∈C.0φ∈D.0N ∈6.对于关系:①∉{x x ∣≤Q ;③0∈N ; ④0∈∅,其中正确的个数是A 、4B 、3C 、2D 、 1 7.下列表示同一集合的是( ) A .{}M =(2,1),(3,2){}N =(1,2),(2,3)B .{}{}M N ==1,22,1C .{}2|1M y y x x R ==+∈,{}2|1N y y x x N ==+∈, D .{}2|1M x y y x x R ==-∈(,),{}2|1N y y x x N ==-∈,8.已知集合}{,,S a b c=中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.设a 、b 、c 为非0实数,则=M a b c a b ca b c a b c+++的所有值组成的集合为( )A 、{4}B 、{-4}C 、{0}D 、 {0,4,-4}10. 已知(){}{}2,1,,0|2--=∈=++R n m n mx x x ,求m ,n 的值.11.已知集合{}2|A x ax x x R =∈-3-4=0,(1)若A 中有两个元素,求实数a 的取值范围, (2)若A 中至多只有一个元素,求实数a 的取值范围。

高中数学必修1基础知识过关100题带答案

高中数学必修1基础知识过关100题带答案

必修1 基础知识过关100题(1-23)班级_____________ 姓名___________1.方程组⎩⎪⎨⎪⎧3x =6,x +2y =6的解构成的集合是( )A .{2,2}B .{2}C .(2,2)D .{(2,2)} 2.下列集合中,不同于另外三个集合的是( ) A .{x |x =1} B .{y |(y -1)2=0} C .{x =1} D .{1}3.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值=________. 4.下列四个集合中,是空集的是( )A .{x |x +3=3}B .{(x ,y )|y 2=x 2,x ,y ∈R }C .{x |x 2<0}D .{x |x 2+x -1=0}5.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( ) A .{a |3<a ≤4} B .{a |3<a <4} C .{a |3≤a ≤4} D .∅6.已知集合A ={-1,3,m },集合B ={3,4}.若B ⊆A ,则实数m =________. 7.设集合M ={3,5,6,8},集合N ={3,6,7,8},那么M ∪N =( ) A .{3,5,6,7,8} B .{5,8} C .{3,5,7,8} D .{4,5,6,8}8.若A ={x |x +1>0},B ={x |x -3<0},则A ∩B =( ) A .{x |x >-1} B .{x |x <3} C .{x |-1<x <3} D .{x |1-x <3}9.集合M ={0,1,2},N ={x |x =2a ,a ∈M },则M ∩N =( ) A .{0} B .{0,1} C .{1,2} D .{0,2}10.若集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},则A ∩B =( ) A .{x |x ≤3或x >4} B .{x |-1<x ≤3} C .{x |3≤x <4} D .{x |-2≤x <-1}11.设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,5},则A ∩(∁U B )=( ) A .{2} B .{2,3} C .{3} D .{1,3}12.已知全集U =R ,A =⎩⎨⎧x ⎪⎪⎭⎬⎫-4<x <12,B ={x |x +4≤0},C ={x |2x ≥1},则集合C =( ) A .A ∩B B .A ∪B C .∁U (A ∩B ) D .∁U (A ∪B )13.若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =____________. 14.下列各图中,可表示函数y =f (x )的图象的只可能是( )15.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0) 16.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}17.下列四组函数中,表示同一个函数的是( ) A .f (x )=|x |,g (t )=t 2 B .f (x )=x 2,g (x )=(x )2 C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-118.已知函数f (x )=2x 3+|x -2|,则f (1)=____________.19.已知函数f (x )的定义域为[-2,2],则f (x -1)的定义域是( ) A .[-1,3] B .[0,3] C .[-3,3] D .[-2,2] 20.函数y =1x 的值域是( )A .(0,+∞)B .(-∞,0)C .(-∞,0)∪(0,+∞)D .R 21.函数y =1x 2+2x +3的值域是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎦⎤-∞,12C.⎝⎛⎦⎤0,12D.⎝⎛⎭⎫0,12 22.已知函数f (x +2)的定义域是[-2,3],则f (x -2)的定义域是( ) A .[-2,3] B .[-1,4] C .[2,7] D .[-4,1]23.已知函数f (x )的值域是[-2,3],则函数f (x -2)的值域为( ) A .[-4,1] B .[0,5] C .[-4,1]∪[0,5] D .[-2,3]必修1 基础知识过关100题(24-47)班级_____________ 姓名___________24.已知g (x +2)=2x +3,则g (3)=( ) A .2 B .3 C .4 D .525.已知f (2x )=4x -1,f (a )=5,则a 的值为( ) A .5 B .2 C .3 D.5426.已知f (x )=x +1,则f (x +1)=( ) A .x -1 B .x +2 C .x D .x +327.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2,则f (2)=________;若f (x 0)=8,则x 0=________.28.已知f (x )=ax 2+bx +c ,若f (0)=0,且f (x +1)=f (x )+x +1,则f (x )的表达式=________. 29.设集合A ={x |0≤x ≤6},集合B ={y |0≤y ≤2},从A 到B 的各对应关系中不是映射的是( ) A .f 1:x →y =12x B .f 2:x →y =13xC .f 3:x →y =14xD .f 4:x →y =15x30.下列函数中,在区间(0,2)上为增函数的是( ) A .y =-3x +1 B .y =3x C .y =x 2-4x +3 D .y =4x31.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-12 D .k <-1232.如果二次函数y =5x 2-nx -10在区间(-∞,1]上是减函数,在(1,+∞)上是增函数,则n 的值是( )A .1B .-1C .10D .-1033.定义在R 上的函数f (x )对任意两个不相等的实数x 1,x 2总有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则必有( ) A .函数f (x )是先增后减 B .函数f (x )是先减后增 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数 34.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减35.函数f (x )在(-∞,+∞)上为减函数,则f (-3)与f (2)的大小关系是__________. 36.函数f (x )=|x |的单调递减区间是__________.37.函数f (x )=x 在R 上的最大值是( ) A .0 B .+∞ C .-∞ D .不存在 38.函数f (x )=1x +1,x ∈[1,2]的最小值是( )A .f (1)B .f (2)C .f (0)D .不存在39.函数y =-x 2+2x 在[1,2]上的最大值是( ) A .1 B .2 C .-1 D .不存在40.函数f (x )在[-2,2]上的图象如图J1-3-1,则此函数的最小值和最大值分别是( )图J1-3-1A .f (-2),0B .0,2C .f (-2),2D .f (2),2 41.已知函数f (x )=x 2+x +1,x ∈⎣⎡⎦⎤0,32的最大(小)值情况为( ) A .有最大值为34,但无最小值 B .有最小值为34,有最大值为1C .有最小值为1,有最大值为194 D .无最大值,也无最小值42.下列函数是奇函数的是( ) A .y =|x +1| B .y =x 3-2x C .y =x D .y =x 3+2x 243.已知f (x )是R 上的奇函数,f (1)=-2,f (3)=1,则( ) A .f (3)>f (-1) B .f (3)<f (-1)C .f (3)=f (-1)D .无法比较f (3)和f (-1)的大小 44.函数y =x 2(x >0)( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 45.下列函数是偶函数的是( ) A .y =2x 2 B .y =x 3+x C .y =3x D .y =x46.已知函数f (x )是定义在[1-2a ,a ]上的奇函数,则a =________.47.设f (x )是定义在R 上的奇函数,当x <0时,f (x )=x 2+1,则f (2)=________.必修1 基础知识过关100题(48-72)班级_____________ 姓名___________48.对于定义域为R的任意奇函数f(x)都有()A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0C.f(x)·f(-x)<0 D.f(x)·f(-x)≤049.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)50.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则k=________.51.函数y=x2-6x的减区间是()A.(-∞,2] B.[2,+∞)C.[3,+∞) D.(-∞,3]52.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅53.已知f(x)=3xx-3,x∈[4,6].则f(x)的最大值与最小值分别为__________.54.已知函数f(x)=x2+4(1-a)x+1在[1,+∞)上是增函数,则实数a的取值范围是__________.55.将抛物线y=2(x+1)2-3向右平移1个单位,再向上平移2个单位,所得抛物线为______________,其顶点坐标为__________.()A.2 B.-2 C.±2 D.-857.323=()A. 2 D.2758.式子3(-2)3+4(π-2)4+3(2-π)3化简得__________.59.化简[(- 3 )2]12-的值等于()A. 3 B.- 3 C.33D.-3360.下列各式正确的是()A.35a-B.3x2=32x C.12a·14a·18a-=111248a⎛⎫⨯⨯-⎪⎝⎭D.1123331222x x x--⎛⎫-⎪⎝⎭=1-4x61.下列函数一定是指数函数的是()A.y=5x+1B.y=x4C.y=3-x D.y=2·3x62.下列各式错误的是()A.30.8>30.7B.0.50.4>0.50.6C.0.75-0.1<0.750.1D.(3)1.6>(3)1.463.指数函数y=a x与y=b x的图象如图J2-1-1,则()图J2-1-1A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<164.函数y=(1-a)x在R上为减函数,则实数a的取值范围是()A.a>1 B.0<a<1C.a>1且a≠2 D.a<1且a≠065.指数函数y=a x(a>0且a≠1)的图象过点(-1,2),则该指数函数的解析式为____________.66.方程4x+2x-2=0的解是____________.67.已知a=0.80.7,b=0.80.9,c=1.20.8,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.c>a>b68.当x∈[-1,1]时,函数f(x)=3x-2的值域为____________.69.函数f(x)=11-e x的定义域是____________.70.a b=N化为对数式是()A.log b a=N B.log a N=b C.log N b=a D.log N a=b 71.log a b=1成立的条件是()A.a=b B.a=b且b>0C.a>0且a≠1 D.a>0,a=b≠1 72.已知log3(lg x)=0,那么x=()A.1 B.10 C.110D.3必修1 基础知识过关100题(73-100)班级_____________ 姓名___________73.下列各式正确的个数是( )①log 416=2;②log 164=12;③log 10100=2;④log 100.01=-2.A .0个B .1个C .2个D .4个 74.已知log 2x =3,则12x =________. 75.log 6[log 4(log 381)]=________. 76.log 29log 23的值是( ) A.23 B.32 C .1 D .2 77.lg8+3lg5的值为( ) A .-3 B .-1 C .1 D .3 78.32log 103的值是( )A.109B.910C .20D .100 79.已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≤0,log 2x ,x >0,则f [f (-1)]=( )A .-2B .-1C .1D .2 80.4lg2+3lg5-lg 15=__________.81.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( ) A .{x |x >1} B .{x |x <1} C .{x |-1<x <1} D .∅82.若12log x <1,则x 的取值范围是( )A .x =12B .0<x <12C .x >12D .x >283.已知a =log 0.50.6,b =log 1.50.9,c =1.010.9,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .c <a <b D .b <a <c84.函数f (x )=log 5(2x +1)的单调增区间是____________. 85.函数y =6-5x -x 2lg (x +3)的定义域是____________.86.若a >1,0<x <1,则log a x 的值属于( ) A .(0,1) B .(0,+∞) C .(-∞,0) D .(1,+∞)87.函数y =log 2x 的定义域是[1,64),则值域是( ) A .R B .[0,+∞) C .[0,6) D .[0,64)88.下面不等式成立的是( )A .log 32<log 23<log 25B .log 32<log 25<log 23C .log 23<log 32<log 25D .log 23<log 25<log 3289.设a >0,且a ≠1,函数y =log a x 的反函数和y =a x 的反函数的图象关于( ) A .x 轴对称 B .y 轴对称 C .y =x 对称 D .原点对称 90.方程log 3(2x -1)=1的解x =____________.91.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么( ) A .F ∩G =∅ B .F =G C .F G D .G F 92.若a =log 3π,b =log 76,c =log 20.8,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a93.函数y =f (x )的图象与函数y =log 4x (x >0)的图象关于直线y =x 对称,则f (x )=____________. 94.下列函数中是幂函数的是( )①y =-x 2;②y =2x ;③y =x π;④y =(x -1)3;⑤y =1x 2;⑥y =x 2+1x .A .①③⑤B .①②⑤C .③⑤D .①⑤95.设a =⎝⎛⎭⎫353,b =⎝⎛⎭⎫254,c =⎝⎛⎭⎫253,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a96.已知幂函数f (x )的图象过点(2,2),若f (a )=8,则a 为( ) A .2 2 B .4 2 C .±2 2 D .±4 297.f (x )既是幂函数又是二次函数,则这个函数是____________.98.已知α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,则使函数y =x α在[0,+∞)上单调递增的所有α值为__________.99.函数y =lg(x -1)的零点是( ) A .1 B .2 C .10 D .11100.方程ln x =3-x 的根的个数是( ) A .0个 B .1个 C .2个 D .3个101.方程lg x+x=0在下列的哪个区间内有实数解()A.[-10,-0.1] B.[0.1,1]C.[1,10] D.(-∞,0]102.若x0是方程lg x+x=2的解,则x0属于区间()A.(0,1) B.(2,3) C.(3,4) D.(1,2)103.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是() A.(-1,1) B.(-2,2)C.(-∞,-2)∪(2,+∞) D.(-∞,-1)∪(1,+∞)104.若函数f(x)=x2+ax+b的零点是-2和1,则a=________,b=________.106.方程x5-x-1=0的一个正零点的存在区间可能是()A.[0,1] B.[1,2] C.[2,3] D.[3,4]107.已知函数f(x)的图象是连续不断的一条曲线,且有如下的对应值表:①函数f(x)在区间(-1,0)内至少有一个零点;②函数f(x)在区间(2,3)内至少有一个零点;③函数f(x)在区间(5,6)内至少有一个零点;④函数f(x)在区间(-1,7)内至少有三个零点.基础知识过关100题答案班级_____________ 姓名____________。

高中数学必修1基础练习题及答案解析

高中数学必修1基础练习题及答案解析

高中数学必修1基础练习题及答案解析一、选择题1.已知全集I={0,1,2},且满足CI ={2}的A、B 共有组数 A. B. C. D.11.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.ABB.BAC.A=BD.A∩B=?23.设A={x∈Z||x|≤2},B={y|y=x+1,x∈A},则B的元素个数是 A.5B.4C.D.2.若集合P={x|3 D.=的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元2-x素是 A. B.-C.-1 D.-3.已知f是一次函数,且2f-3f=5,2f-f=1,则f的解析式为 A.3x-B.3x+C.2x +D.2x-8.下列各组函数中,表示同一函数的是 A.f=1,g =xx2-4B.f=x+2,g=x-2D.f=x,g=2?x x≥0C.f=|x|,g=?-x x<02xx>09. f=?πx=0,则f{f[f]}等于0 x<0A.0B.πC.π2D.9x10.已知2lg=lgx+lgy,则的值为yA.1B.4C.1或41D. 或411.设x∈R,若a1 C.0 12.若定义在区间内的函数f=log2a满足f>0,则a的取值范围是1A.21?B.2D.二、填空题 13.若不等式x+ax+a-2>0的解集为R,则a可取值的集合为__________.214.函数yx+x+1 的定义域是______,值域为__ ____.2115.若不等式3x?2ax>x+1对一切实数x恒成立,则实数a的取值范围为______.3x?1??3?x?=?,则f值域为_____ _. 1?x??3?x??1,117.函数y=的值域是__________.2+118.方程log2+x+99=0的两个解的和是______.第Ⅱ卷一、选择题二、填空题三、解答题 19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求∩.20.已知f是定义在上的增函数,且满足f=f+f,f =1. 求证:f=3求不等式f-f>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.当每辆车的月租金定为3600元时,能租出多少辆车?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f=log12x-log1x+5,x∈[2,4],求f 的最大值及最小值.44a-23.已知函数f=是R上的增函数,求a的取值范围. a-2高一数学综合训练答案二、填空题13. ? 14. R [313+∞) 15. - 16. 18. -99三、解答题 19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求∩.∩={x|-1<x<1}20.已知f是定义在上的增函数,且满足f=f+f,f =1. 求证:f=3求不等式f-f>3的解集. 考查函数对应法则及单调性的应用. 由题意得f=f=f+f=f+f=f+f+f=3f 又∵f=1 ∴f=3不等式化为f>f+3∵f=∴f>f+f=f ∵f是上的增函数16?8?0∴?解得2 7x821.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.当每辆车的月租金定为3600元时,能租出多少辆车?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.当每辆车月租金为3600元时,未租出的车辆数为以这时租出了88辆.设每辆车的月租金定为x元,则公司月收益为 x-3000x-3000f=-×505050x212整理得:f=-+162x-2100=-+3070505050∴当x=4050时,f最大,最大值为f=307050 元22.已知函数f=log12x-log1x+5,x∈[2,4],求f 的最大值及最小值.443600-3000=12,所50考查函数最值及对数函数性质.令t=log1x ∵x∈[2,4],t=log1x在定义域递减有441log14 244412191∴f=t2-t+5=+,t∈[-1,-]242123∴当t=-时,f取最小值24当t=-1时,f取最大值7.a-23.已知函数f=是R上的增函数,求a的取值范围. a-2考查指数函数性质.f的定义域为R,设x1、x2∈R,且x1 ax?xx?x a-2a1xxx21a-2a?a由于a>0,且a≠1,∴1+1>0 ax1ax2x2∵f为增函数,则>0x22a?2?0?a?2?0于是有?x,或?xx1x122a?a?0?a?a?0解得a>或0 . . .必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷一、选择题:1.已知集合M??{4,7,8},且M中至多有一个偶数,则这样的集合共有3个个个个2.已知S={x|x=2n,n∈Z}, T={x|x=4k±1,k∈Z},则S??T T??SS≠T S=T23.已知集合P=y|y??x?2,x?R, Q=?y|y??x?2,x?R?,那么P?Q等 ??,{,} {1,2} ?y|y?2?4.不等式ax?ax?4?0的解集为R,则a的取值范围是16a0a116a0a05. 已知f=?2?x?5,则f的值为f36.函数y?x?4x?3,x?[0,3]的值域为[0,3] [-1,0] [-1,3] [0,2]7.函数y=x+b在上是减函数,则 k>21111 k? .k 28.若函数f=x+2x+2在区间a≤-a≥-3a≤ a≥39.函数y?a是指数函数,则a的取值范围是a?0,a?1 a?1 a? a?1或a?210.已知函数f?4?ax?12x的图象恒过定点p,则点p的坐标是11.函数y?的定义域是 [1,+?] [12.设a,b,c都是正数,且3a?4b?6c,则下列正确的是1122112212 1 C C ?a?b?a?bc?a?bc?a?b第Ⅱ卷二、填空题:13.已知在映射 f下的象是,则在f下的象是,原象是。

高中数学必修一集合练习题及讲解

高中数学必修一集合练习题及讲解

高中数学必修一集合练习题及讲解在高中数学必修一的课程中,集合是基础而重要的概念。

以下是一些集合的练习题以及相应的讲解:练习题1:已知集合A = {x | x > 3} 和集合B = {x | x < 5},求A∪B。

讲解:A∪B表示A和B的并集,即包含在A或B中的所有元素。

根据定义,A 包含所有大于3的数,B包含所有小于5的数。

因此,A∪B将包含所有大于3且小于5的数,以及所有大于3的数。

由于所有大于3的数自然也大于3且小于5,所以A∪B实际上就是所有大于3的数,即A∪B = {x | x > 3}。

练习题2:设集合C = {1, 2, 3} 和集合D = {2, 3, 4},求C∩D。

讲解:C∩D表示C和D的交集,即同时属于C和D的元素。

根据定义,C包含1, 2, 3,而D包含2, 3, 4。

交集是两个集合共有的元素,所以C∩D = {2, 3}。

练习题3:若集合E = {x | x^2 - 5x + 6 = 0},求E的元素。

讲解:首先解方程x^2 - 5x + 6 = 0。

这是一个二次方程,可以通过因式分解或求根公式来解。

因式分解得(x - 2)(x - 3) = 0,所以x = 2 或x = 3。

因此,集合E的元素是{2, 3}。

练习题4:集合F = {x | x ∈ Z, 0 ≤ x ≤ 10},求F的元素。

讲解:F是一个整数集合,包含所有在0到10之间的整数(包括0和10)。

因此,F的元素是{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

练习题5:设集合G = {x | x^2 - 4x + 3 = 0},求G的补集,其中U = {1, 2, 3, ..., 10}。

讲解:首先解方程x^2 - 4x + 3 = 0。

同样,这是一个二次方程,可以通过因式分解得到(x - 1)(x - 3) = 0,所以x = 1 或 x = 3。

因此,G = {1, 3}。

人教A版高中数学必修一第一章 集合间的基本关系练习题

人教A版高中数学必修一第一章 集合间的基本关系练习题

集合间的基本关系1.下列图形能表示A ⊇B 的是( ).A .B .C .D .2.已知集合A ={x|x =3k ,k ∈Z },B ={x |x =6k -3,k ∈Z },则A 与B 之间最适合的关系是( ) A .A ⊆B B .A ⊇B C .A B D .B A3.集合A ={-1,0,1}的子集中含有元素0的子集共有( ) A .2个 B .4个 C .6个 D .8个4.能正确表示集合M ={x ∈R|0≤x ≤2}和集合N ={x ∈R|x 2-x =0}关系的Ven n 图是( )A .B .C .D .5.有如下关系:①0∈{0};②Ø{0};③{0,1}⊆{(0,1)};④{(a ,b )}={(b ,a )}.上述关系中正确的个数为( )A .1B .2C .3D .46.已知集合A ={x |x 2-1=0},则有( ) A .1∉A B .0⊆A C .Ø⊆A D .{0}⊆A 7.已知集合N ={1,3,5},则集合N 的真子集个数为( ) A .5 B .6 C .7 D .8 8.下列四个集合中,是空集的为( )A .{0}B .{x|x >8,且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}9.已知集合M ={x |-5<x <3,x ∈Z},则下列集合是集合M 的子集的为( ) A .P ={-3,0,1} B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }10.已知集合M ={x|x =k 2+13,k ∈Z },N ={x|x =k +13,k ∈Z },则( )A .M =NB .M ⊆NC .N ⊆MD .M N11.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4 12. 下列结论正确的是( )A. ∅AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈ 13. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( ) A. 1a < B. 1a ≤ C. 1a > D. 1a ≥14.若集合{1,a }⊆{1,2,3},则a =________.15.设集合A ={x |1<x <2},B ={x |x<a },若A ⊆B ,则a 的取值范围是________.16.已知集合A ={0,1,2},B ={1,m }.若B ⊆A ,则实数m 的值是________. 17.已知集合A ={x|a +1<x <2a },若A =Ø,则实数a 的取值范围是___________. 18.已知集合A ={x ∈R|x <-1或x ≥2},B ={x |2x -a ≤1},若B ⊆A ,则实数a 的取值范围是__________.19.设A ={1,4,2x },若B ={1,x 2},若B ⊆A ,则x =________.20.已知集合P ={x |x 2=1},集合Q ={x|ax =1},若Q ⊆P ,那么a 的取值是________.21.已知集合A ={x |0≤x <4,x ∈N },则A 的子集共有 个, 其中含有元素0的子集共有 个.22.满足{1,2,3,4}⊆M {x ∈N|x -5<4}的集合M 有 个23.已知集合A ={0,1},集合B ={x |x ∈A },用列举法表示集合B =_____________. 24.已知集合A ={x ∈R |ax 2+2x +1=0}恰有两个子集,则实数a =________.25.集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间的关系 __ _.26.写出满足条件ØM ⊆{0,1,2}的所有集合M .27.已知集合{}12,3,1--=m A ,集合{}2,3m B =。

高中数学必修1练习题

高中数学必修1练习题

高中数学必修1练习题一、选择题1. 设函数 f(x) = 3x + 2,那么 f(2) 的值等于:A. 8B. 7C. 6D. 52. 若 2x + 3y = 7,4x + 6y = 14,则该方程组的解为:A. (x, y) = (2, 1)B. (x, y) = (-2, 3)C. (x, y) = (-2, -3)D. (x, y) = (3, 2)3. 设直线 L 的斜率为 2,过点 (1, 2),则直线 L 的方程为:A. y = 2xB. y = 2x + 1C. y = 2x - 2D. y = 2x + 24. 若 a < b,且 a^2 = 9,b^2 = 16,则 a 和 b 的值依次是:A. 3, 4B. 4, 3C. -3, -4D. -4, -35. 已知函数 f(x) = 2x^2 + 3x - 1,那么 f(0) 的值等于:A. -1B. 0C. 1D. -3二、填空题1. 若 2x - 3y = 7,3x + y = 1,则 x 的解为 ______,y 的解为 ______。

2. 若函数 f(x) = ax - b,当 x = 2 时,f(x) = -1,若a ≠ 0,则 a 的值为______,b 的值为 ______。

3. 若已知函数 f(x) = x^2 + 2x + 1,求 f(-1) 的值为 ______。

三、解答题1. 解一个二元一次方程组:2x - 3y = 7,5x + 2y = 3,并给出 x 和 y的解。

2. 一辆汽车沿直线公路行驶,起始时速度为 60 km/h,加速度为 2m/s^2。

求该车在 10 秒钟内行驶的距离。

3. 已知函数 f(x) = 2x^2 + 3x - 6,在直角坐标系内画出该函数的图像,并指出函数的顶点位置。

四、应用题1. 一根长 60 cm 的竹子,从第 1 小时起,每小时生长 5 cm。

问第10 小时时该竹子的长度是多少?2. 某商品原价为 500 元,现进行打折促销,打折力度为 8 折。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖❖补偿练习11.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•补偿练习21.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺补偿练习31.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围.☯☯补偿练习41.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()A.{5,7} B.{2,4} C.{2,4,8} D.{1,3,5,6,7}2.已知全集U={2,3,5},集合A={2,|a-5|},若∁U A={3},则a的值为() A.0 B.10 C.0或10 D.0或-103.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于()A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( ) A .A ∩B B .A ∪B C .B ∩(∁U A ) D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5}, B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 补偿练习51.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集 合N 的函数关系的是( ) 2.f (x )=2x -x的定义域是( )A .(-∞,1]B .(0,1)∪(1,+∞)C .(-∞,0)∪(0,1]D .(0,+∞)3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}4.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1B .0C .-1D .25.函数y =x 2x 2+1(x ∈R )的值域是________.6.设f (x )=11-x ,则f [f (x )]=________.7.求下列函数的定义域:(1) f (x )=2x -1-3-x +1; (2) f (x )=4-x 2x +1.8.已知函数f (x )=x 21+x 2, (1)求f (2)+f (12),f (3)+f (13)的值; (2)求证f (x )+f (1x )是定值。

 补偿练习61.已知函数f (x )由下表给出,则f (f (3))等于( ) A .1B .2C .3D .42.下列图形中,不可能作为函数y =f (x )图象的是( )3.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .-14.某航空公司规定,乘客所携带行李的重量(kg)与其运费(元)由右图 所示的函数图象确定,那么乘客免费可携带行李的最大重量为 A .50 kgB .30 kgC .19 kgD .40 kg5.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为 (0,0),(1,2),(3,1),则f (1f (3))的值等于________.6.已知函数f (x ),g (x )分别由下表给出:则f (g (1))=________;满足f (g (x ))>g (f (x ))的x 的值是________.7.2010年,广州成功举办了第17届亚运会,在全部可售票中,定价等于或低于100元的票 数占58%.同时为鼓励中国青少年到现场观看比赛,特殊定价门票最低则只需5元.有些 比赛项目则无需持票观看,如公路自行车、公路竞走和马拉松比赛均向观众免票开放.x 1 2 3 f (x )131x 1 2 3 g (x )321某同学打算购买x 张价格为20元的门票,(x ∈{1,2,3,4,5}),需要y 元.试用函数的 三种表示方法将y 表示成x 的函数.★★ 补偿练习71.设f :x →x 2是集合A 到集合B 的映射,如果B ={1,2},则A ∩B 一定是( ) A .∅B .∅或{1}C .{1}D .{1}2.已知映射f :A →B ,即对任意a ∈A ,f :a →|a |.其中集合A ={-3,-2,-1,2,3,4}, 集合B 中的元素都是A 中元素在映射f 下的对应元素,则集合B 中元素的个数是( ) A .4 B .5 C .6D .73.已知f (x )=⎩⎪⎨⎪⎧x -1(x >0),0(x =0),x +5(x <0),则f ( f (-2) ) = ( )A .-2B .0C .2D .-14.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6),则f (3) = ( )A .2B .3C .4D .55.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射, f :x →(x +1,x 2+1),求B 中元素(32,54)与A 中________对应.6.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f (x -2), x >0,则f (4)=________.7.如图所示,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0), (6,4). (1)求f (f (0))的值; (2)求函数f (x )的解析式.8.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(S 为常数).✌✌ 补偿练习81.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )A .(-∞,40)B .[40,64]C .(-∞,40]∪[64,+∞)D .[64,+∞) 2.已知函数f (x )是(-∞,+∞)上的增函数,若a ∈R ,则( ) A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a +3)>f (a -2)D .f (6)>f (a )3.函数y =x 2+x +1(x ∈R )的递减区间是( )A.⎣⎡⎭⎫-12,+∞ B .[-1,+∞) C.⎝⎛⎦⎤-∞,-12 D .(-∞,+∞) 4.函数f (x )在(a ,b )和(c ,d )都是增函数,若x 1∈(a ,b ),x 2∈(c ,d ),且x 1<x 2那么( ) A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .无法确定5.函数f (x )=⎩⎪⎨⎪⎧x 2+1 (x ≥0)-x 2+1 (x <0)的单调递增区间是________.6.若f (x )=2x 2-mx +3在(-∞,-2]上为减函数,在[-2,+∞)上为增函数,则f (1)= . 7.求证:函数f (x )=-1x -1在区间(0,+∞)上是单调增函数.8.定义在(-1,1)上的函数f (x )满足f (-x )=-f (x ),且f (1-a )+f (1-2a )<0.若f (x )是(-1,1)上的减函数,求实数a 的取值范围.❖❖ 补偿练习91.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .f (x )=xB .f (x )=|x |C .f (x )=-x 2D .f (x )=1x2.函数f (x )=x 2+x 的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 3.已知f (x )是偶函数,且f (4)=5,那么f (4)+f (-4)的值为( ) A .5B .10C .8D .不确定4.已知函数f (x )在[-5,5]上是偶函数,f (x )在[0,5]上是单调函数,且f (-3)<f (-1),则下列不等式一定成立的是( ) A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)5.函数y =ax 2+bx +c 为偶函数的条件是________. 6.函数f (x )=x 3+ax ,若f (1)=3,则f (-1)的值为________.7.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f (12)=25,求函数f (x )的解析式.8.设函数f (x )在R 上是偶函数,在区间(-∞,0)上递增,且f (2a 2+a +1)<f (2a 2-2a +3),求a 的取值范围.◆◆ 补偿练习101.函数y =1x 2在区间[12,2]上的最大值是( )A. 14B .-1C .4D .-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元B .60万元C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =____,b =________. 7.画出函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.☟ 补偿练习111.下列等式一定成立的是( ) A .a 13·a 32=aB .a12-·a 12=0C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( ) A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 2 5.计算:(π)0+2-2×⎝⎛⎭⎫21412=________. 6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12; (2)(a 23·b -1)12-·a 12-·b136a ·b 5.☪☪ 补偿练习121.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x 4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( )4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠1 5.函数y =(2m -1)x2m 是一个幂函数,则m 的值是________.6.下列六个函数①y =x 53,②y =x 34,③y =x -13,④y =x 23,⑤y =x -2,⑥y =x 2中,定义域为R 的函数有________(填序号). 7.比较下列各组数的大小:(1)352-和3.152-; (2)-878-和-(19)78; (3)(-23)23-和(-π6)23-.8.已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求该函数的解析式. 补偿练习131.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.✠✠ 补偿练习141.若2x +1<1,则x 的取值范围是( ) A .(-1,1) B .(-1,+∞) C .(0,1)∪(1,+∞) D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.❑❑ 补偿练习151.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值. 补偿练习161.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.☑☑ 补偿练习171.已知y =(14)x 的反函数为y =f (x ),若f (x 0)=-12,则x 0=( )A .-2B .-1C .2 D.122.下列四个数中最大的是( )A .(ln2)2B .ln(ln2)C .ln 2D .ln23.已知函数f (x )=2log 13x 的值域为[-1,1],则函数f (x )的定义域是( )A .[-1,1]B .[33,3] C .[33,3] D .[-3,3] 4.若log a -1(2x -1)>log a -1(x -1),则有( )A .a >1,x >0B .a >1,x >1C .a >2,x >0D .a >2,x >1 5.函数y =log 12(1-2x )的单调递增区间为________.6.函数f (x )=log a x (0<a <1)在区间[3,5]上的最大值比最小值大1,则a =________.7.已知集合A ={x |2≤x ≤π},定义在集合A 上的函数y =log a x 的最大值比最小值大1,求a 的值.8.已知函数f (x )=lg|x |. (1)判断函数f (x )的奇偶性; (2)画出函数f (x )的草图; (3)求函数f (x )的单调递减区间,并加以证明. 补偿练习181.函数f (x )=log 5(x -1)的零点是( ) A .0B .1C .2D .32.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2B .0,-12C .0,12D .2,123.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( ) A .一定有零点 B .一定没有零点 C .可能有两个零点 D .至少有一个零点 4.根据表格中的数据,可以判断方程e x -x -2=0必有一个根在区间( )A.(-1,0) B .(0,1) C .(1,2) D .(2,3)5.函数f (x )=(x 2-1)(x +2)2(x 2-2x -3)的零点个数是________. 6.方程ln x =8-2x 的零点x ∈(k ,k +1),k ∈Z ,则k =__________. 7.判断函数f (x )=e x -5零点的个数.8.已知二次函数y =f (x )的图象经过点(0,-8),(1,-5),(3,7)三点. (1)求f (x )的解析式; (2)求f (x )的零点;(3)比较f (2)f (4),f (-1)f (3),f (-5)f (1),f (3)f (-6)与0的大小关系. 补偿练习191.下列关于函数f (x ),x ∈[a ,b ]的命题中,正确的是( ) A .若x 0∈[a ,b ]且满足f (x 0)=0,则x 0是f (x )的一个零点 B .若x 0是f (x )在[a ,b ]上的零点,则可以用二分法求x 0的近似值C .函数f (x )的零点是方程f (x )=0的根,但f (x )=0的根不一定是函数f (x )的零点D .用二分法求方程的根时,得到的都是近似解2.已知函数f (x )的图象如图,其中零点的个数与可以用二分法求解的个数分别为( ) A .4,4B .3,4C .5,4D .4,33.用二分法判断方程⎝⎛⎭⎫12x=x 2的根的个数是( ) A .4个B .3个C .2个D .1个4.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0, f (1.5)>0,f (1.25)<0,则方程的根落在区间( ) A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定5.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经过计算f (0)<0,f (0.5)>0,可得其 中一个零点x 0∈________,第二次应计算________.6.用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:f (1.6000)=0.200 f (1.5875)=0.133 f (1.5750)=0.067 f (1.5625)=0.003f (1.5562)=-0.029f (1.5500)=-0.060根据此数据,可得方程3x -x -4=0的一个近似解(精确度0.1)为________. 7.方程x 2-1x =0在(-∞,0)内是否存在实数解?并说明理由.8.用二分法求方程x 2-5=0的一个近似正解(精确度为0.1).✶✶ 补偿练习201.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm , 燃烧时剩下的高度h (cm)与燃烧时间t (h)的函 数关系用图象表示为图中的( )2.“红豆生南国,春来发几枝?”如图给出了红豆生长时间t (月)与枝数 y (枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型 拟合最好( )A .y =t 3B .y =log 2tC .y =2tD .y =2t 23.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50 元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和 为100元.作为购买者,分析这三种债券的收益,从小到大排列为( ) A .B ,A ,C B .A ,C ,B C .A ,B ,CD .C ,A ,B 几类不同增长的函数模型1.某自行车存车处在某一天总共存放车辆4000辆次,存车费为:电动自行车0.3元/辆,普 通自行车0.2元/辆.若该天普通自行车存车x 辆次,存车费总收入为y 元,则y 与x 的函 数关系式为( )A .y =0.2x (0≤x ≤4000)B .y =0.5x (0≤x ≤4000)C.y=-0.1x+1200(0≤x≤4000) D.y=0.1x+1200(0≤x≤4000)2.某商品前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来的价格比较,变化情况是()A.减少7.84% B.增加7.84% C.减少9.5% D.不增不减3.某工厂在2002年底制订生产计划,要使2012年底的总产值在原有基础上翻两番,则总产值年平均增长率应为()A.5110-1 B.4110-1 C.3110-1 D.4111-16.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积最大,此时x=____,面积S=____.。

相关文档
最新文档