苏教版高一数学必修1综合复习试题

合集下载

新改版苏教版高中数学必修一第一二章综合题含答案

新改版苏教版高中数学必修一第一二章综合题含答案

新改版苏教版高中数学必修一第一二章综合题含答案一、单选题1.已知命题:,命题:,,则命题是命题为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题的否定为()A.B.C.D.3.已知集合,,,则()A .B.C.D.4.集合的子集中,含有元素0的子集共有()A.8个B.4个C.3个D.2个5.已知命题p:对任意x∈R,2x2+2x+<0,命题q:存在x∈R,sin x-cos x=,则下列判断正确的是( )A.p是真命题B.q是假命题C.p的否定是假命题D.q的否定是假命题6.已知集合,,那么等于()A.B.C.D.7.给出下列命题:其中正确命题的序号是()①已知,若,则="1,"=4①不存在实数,使①是函数的一个对称轴中心①已知函数.A.①①B.①①C.①①D.①8.若集合,则()A .B.C.D.9.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.下列关系中正确的是()A .B.C.D.11.已知集合,,则(). A.B.C.D.12.已知实数,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、多选题13.下列命题正确的是()A.“x<1,x2<1”的否定是“x≥1,x2≥1” B.“a>”是“<2”的充分不必要条件C.“a=0”是“ab=0”的充分不必要条件D.“x≥1且y≥1”是“x2+y2≥2”的必要不充分条件14.给出下列四个结论,其中结论错误的有()A.是空集B.若,则C.“,2x为偶数”是假命题D.集合是有限集15.下列表示正确的是()A .B.C.D.16.已知,则下列选项中是的充分不必要条件的是()A.B.C.D.17.下列说法中正确的是()A.“”是真命题是“”为真命题的必要不充分条件。

苏教版数学高一 必修1章末综合测评3

苏教版数学高一 必修1章末综合测评3

章末综合测评(三) 指数函数、对数函数和幂函数(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.设函数f (x )=⎩⎨⎧2x (x ≤0),log 2 x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12的值是________.【解析】 f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫log 2 12=f (-1)=2-1=12.【答案】 122.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是________.(填序号)①y =1x ;②y =e -x ;③y =-x 2+1;④y =lg|x |.【解析】 ①项,y =1x 是奇函数,故不正确;②项,y =e -x 为非奇非偶函数,故不正确;③④两项中的两个函数都是偶函数,且y =-x 2+1在(0,+∞)上是减函数,y =lg |x |在(0,+∞)上是增函数,故选③.【答案】 ③3.f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=2 016x +log 2 016 x ,则函数f (x )的零点的个数是________.【解析】 作出函数y 1=2 016x ,y 2=-log 2 016x 的图象,可知函数f (x )=2 016x +log 2 016 x 在x ∈(0,+∞)内存在一个零点,又因为f (x )是定义在R 上的奇函数,所以f (x )在x ∈(-∞,0)上也有一个零点,又f (0)=0,所以函数f (x )的零点的个数是3个.【答案】 34.把函数y =a x 向________平移________个单位得到函数y =⎝ ⎛⎭⎪⎫1a -x +2的图象,函数y =a 3x -2(a >0且a ≠1)的图象过定点________.【解析】 y =⎝ ⎛⎭⎪⎫1a -x +2=a x -2可由y =a x 右平移2个单位得到.令3x -2=0,即x =23,则y =1,∴y =a 3x -2的图象过定点⎝ ⎛⎭⎪⎫23,1.【答案】 右 2 ⎝ ⎛⎭⎪⎫23,15.设12 015<⎝ ⎛⎭⎪⎫12 015b <⎝ ⎛⎭⎪⎫12 015a <1,那么a b ,a a ,b a 的大小关系为________.【解析】 根据指数函数的性质,可知0<a <b <1,根据指数函数的单调性,可知a b <a a ,根据幂函数的单调性,可知a a <b a ,从而有a b <a a <b a .【答案】 a b <a a <b a 6.已知集合A ={y |y =log 2 x ,x >1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =⎝ ⎛⎭⎪⎫12x,x >1,则A ∩B =________.【解析】 ∵x >1,∴y =log 2 x >log 2 1=0, ∴A =(0,+∞), 又∵x >1,∴y =⎝ ⎛⎭⎪⎫12x <12,∴B =⎝ ⎛⎭⎪⎫0,12.∴A ∩B =⎝ ⎛⎭⎪⎫0,12.【答案】 ⎝ ⎛⎭⎪⎫0,127.已知y =f (2x )的定义域为-3,3],则f (x 3)的定义域为________. 【导学号:37590091】【解析】 由题知,x ∈-3,3]时,2x ∈⎣⎢⎡⎦⎥⎤18,8,∴x 3∈⎣⎢⎡⎦⎥⎤18,8,∴x ∈⎣⎢⎡⎦⎥⎤12,2.即f (x 3)的定义域为⎣⎢⎡⎦⎥⎤12,2.【答案】 ⎣⎢⎡⎦⎥⎤12,28.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,下一个有根区间是________.【解析】 设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).【答案】 (2,3)9.若f (x )为奇函数,且x 0是y =f (x )-e x 的一个零点,则-x 0一定是下列哪个函数的零点________.(填序号)(1)y =f (-x )e x +1;(2)y =f (x )e x +1; (3)y =f (-x )e -x -1;(4)y =f (x )e x -1.【解析】 f (x )为奇函数,∴f (-x )=-f (x ),x 0是y =f (x )-e x 的一个零点,∴f (x 0)=e x 0,将-x 0代入各函数式,代入(2)时,可得y =f (-x 0)e -x 0+1=-f (x 0)e -x 0+1=-e x 0e -x 0+1=0,因此-x 0是函数y =f (x )e x +1的零点.【答案】 (2)10.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为________.(参考数据:lg 2=0.301 0,lg 3=0.477 1)【解析】 操作次数为n 时的浓度为⎝ ⎛⎭⎪⎫910n +1,由⎝ ⎛⎭⎪⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,所以n ≥21. 【答案】 2111.下列说法中,正确的是________.(填序号) ①任取x >0,均有3x >2x ; ②当a >0,且a ≠1时,有a 3>a 2; ③y =(3)-x 是增函数;④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x 的图象关于y 轴对称; ⑥图象与y =3x 的图象关于y =x 对称的函数为y =log 3 x . 【解析】 对于①,可知任取x >0,3x >2x 一定成立. 对于②,当0<a <1时,a 3<a 2,故②不一定正确.对于③,y =(3)-x =⎝ ⎛⎭⎪⎫33x ,因为0<33<1,故y =(3)-x 是减函数,故③不正确.对于④,因为|x |≥0,∴y =2|x |的最小值为1,故正确. 对于⑤,y =2x 与y =2-x 的图象关于y 轴对称是正确的. 对于⑥,根据反函数的定义和性质知,⑥正确. 【答案】 ①④⑤⑥12.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________.【解析】 f (x )=a x -x -a (a >0)有两个零点,即a x -x -a =0有两个根, ∴a x =x +a 有两个根.∴y =a x 与y =x +a 有两个交点. 由图形知,a >1.【答案】 (1,+∞)13.若存在x ∈2,3],使不等式1+axx ·2x ≥1成立,则实数a 的最小值为________.【解析】 因为x ∈2,3],所以不等式可化为a ≥2x -1x ,设y =2x -1x ,因为y =2x 和y =-1x 在区间2,3]上为增函数,所以函数y =2x -1x 在区间2,3]上为增函数,则其值域为⎣⎢⎡⎦⎥⎤72,233,由题意得a ≥72,所以实数a 的最小值为72.【答案】 7214.已知函数f (x )=log 3 x +2,x ∈1,9],则函数y =f 2(x )+2f (x 2)的最大值为________.【解析】 由题知⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3,故y =f 2(x )+2f (x 2)的定义域为1,3],y =(log 3 x +2)2+2(log 3 x 2+2)=(log 3 x )2+8log 3 x +8=(log 3 x +4)2-8, 当x ∈1,3] 时,log 3 x ∈0,1],∴y ∈8,17]. 【答案】 17二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)计算下列各式的值: (1)3(3-π)3+4(2-π)4; (2)2log 5 10+log 5 0.25;-10(5-2)-1+(2-3)0;(4)log2.5 6.25+lg1100+ln e+21+log23.【解】(1)原式=(3-π)+(π-2)=1.(2)原式=2log5 (2×5)+log5 0.52=2(log5 2+log5 5)+2log512=2(log5 2+1-log5 2)=2.16.(本小题满分14分)已知幂函数y=f (x)=其中m∈{x|-2<x<2,x∈Z},满足:(1)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f (-x)+f (x)=0.求同时满足(1),(2)的幂函数f (x)的解析式,并求x∈0,3]时f (x)的值域.【解】因为m∈{x|-2<x<2,x∈Z},所以m=-1,0,1.因为对任意x∈R,都有f (-x)+f (x)=0,即f (-x)=-f (x),所以f (x)是奇函数.当m=-1时,f (x)=x2只满足条件(1)而不满足条件(2);当m=1时,f (x)=x0条件(1)、(2)都不满足;当m =0时,f (x )=x 3条件(1)、(2)都满足,且在区间0,3]上是增函数. 所以x ∈0,3]时,函数f (x )的值域为0,27].17.(本小题满分14分)(1)已知-1≤x ≤2,求函数f (x )=3+2·3x +1-9x 的值域;(2)已知-3≤log 12x ≤-32,求函数f (x )=log 2 x 2·log 2 x 4的值域.【解】 (1)f (x )=3+2·3x +1-9x =-(3x )2+6·3x +3,令3x =t ,则y =-t 2+6t +3=-(t -3)2+12,∵-1≤x ≤2,∴13≤t ≤9,∴当t =3,即x =1时,y 取得最大值12;当t =9,即x =2时,y 取得最小值-24,即f (x )的最大值为12,最小值为-24,所以函数f (x )的值域为-24,12].∴-3≤log 2x log 212≤-32, 即-3≤log 2x -1≤-32, ∴32≤log 2x ≤3. ∵f (x )=log 2x 2·log 2x4=(log 2x -log 2 2)·(log 2x -log 24) =(log 2x -1)·(log 2x -2). 令t =log 2x ,则32≤t ≤3, f (x )=g (t )=(t -1)(t -2) =⎝ ⎛⎭⎪⎫t -322-14. ∵32≤t ≤3,∴f (x )max =g (3)=2,f (x )min =g ⎝ ⎛⎭⎪⎫32=-14.∴函数f (x )=log 2x 2·log 2x 4的值域为⎣⎢⎡⎦⎥⎤-14,2.18.(本小题满分16分)已知函数f (x )=log 131+x1+ax(a ≠1)是奇函数, (1)求a 的值; (2)若g (x )=f (x )+21+2x,x ∈(-1,1),求g ⎝ ⎛⎭⎪⎫12+g ⎝ ⎛⎭⎪⎫-12的值; (3)若g (m )>g (n )(m ,n ∈(-1,1)),比较m ,n 的大小. 【导学号:37590092】 【解】 (1)因为f (x )为奇函数,所以对定义域内任意x ,都有f (-x )+f (x )=0,即log 131-x 1-ax+log 13 1+x1+ax =log 13 1-x 21-a 2x 2=0,所以a =±1,由条件知a ≠1,所以a =-1.(2)因为f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫-12+f ⎝ ⎛⎭⎪⎫12=0,令h (x )=21+2x , 则h ⎝ ⎛⎭⎪⎫12+h ⎝ ⎛⎭⎪⎫-12=21+2+11+12=2,所以g⎝ ⎛⎭⎪⎫-12+g ⎝ ⎛⎭⎪⎫12=2. (3)f (x )=log 13 1+x 1-x =log 13⎝ ⎛⎭⎪⎫-1+21-x 随x 增大,1-x 减小,∴21-x 增大,∴1+x 1-x增大,∴f (x )单调递减, 又h (x )=21+2x也随x 增大而减小,∴g (x )单调递减, ∵g (m )>g (n ),∴m <n .19.(本小题满分16分)经市场调查,某种商品在过去50天的销售价格(单位:元)均为销售时间t (天)的函数,且销售量(单位:件)近似地满足 f (t )=-2t +200(1≤t ≤50,t ∈N ),前30天价格(单位:元)为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格(单位:元)为g (t )=45(31≤t ≤50,t ∈N ).(1)写出该种商品的日销售额S (元)与时间t (天)的函数关系式; (2)求日销售额S 的最大值. 【解】 (1)根据题意,得S =⎩⎨⎧(-2t +200)⎝ ⎛⎭⎪⎫12t +30,1≤t ≤30,t ∈N ,45(-2t +200),31≤t ≤50,t ∈N ,=⎩⎪⎨⎪⎧-t 2+40t +6 000,1≤t ≤30,t ∈N ,-90t +9 000,31≤t ≤50,t ∈N .(2)当1≤t ≤30,t ∈N 时, S =-(t -20)2+6 400,当t =20时,S 的最大值为6 400; 当31≤t ≤50,t ∈N 时, S =-90t +9 000为减函数, 当t =31时,S 的最大值是6 210.∵6 210<6 400,∴当销售时间为20天时,日销售额S 取最大值6 400元. 20.(本小题满分16分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.图1(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫? 【解】 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎨⎧-2P +50(14≤P ≤20),-32P +40(20<P ≤26),代入①式得L =⎩⎨⎧(-2P +50)(P -14)×100-5 600(14≤P ≤20),⎝ ⎛⎭⎪⎫-32P +40(P -14)×100-5 600(20<P ≤26),(1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.。

苏教版必修一数学复习题.doc

苏教版必修一数学复习题.doc

必修一复习题、填空题1.设集合^ = {x|3T<35}, 3={x|x2—4x+3N0},则集合P= {x\x^A且心*}=. (1, 3)2.集合{x|.S+x—2W0, xGZ}中所有元素的乘积为. 03.已知偶函数/(X)在[1, 4]上是单调增函数,则/( 一7T) ___ (log?]).(填或或"=")84.方程log3(.r-10) = l+log3x 的解为. 55.下列说法正确的是.(只填正确说法序号) ③④若集合A = {y\y = x-1], 3 = {y|y = x2—1"则刀口3 = {(0,—1),(1,0)};_____ _____ AT2_2"v = Jx —3+j2-x是函数解析式;③v =—是非奇非偶函数;若函数/'(%)在(-8,0], [0, +co)都是单调增函数,则/'(%)在(-8,+00)上也是增函数;函数j = lo gl(x2-2x-3)的单调增区间是(-8,1).26.已知函数= log a(x + 3)-l ( a > 1 )的图像恒过定点A,若点A也在函数/(x) = 3X +b的图像上,则/(log32)=|k-T7.若函数fix)= 工(k为常数)在定义域上为奇函数,则左= _____________ ・±11 + k • 28.设Rx)是定义在R上的偶函数,且在[0, +8)上是增函数,人:)=0,则不等式/(logo. 125^) >0 的解集为.9.已知一次函数/(x)满足了⑴=3, /(2) = 5 ,则函数y = 2/o)的图像是由函数 > =平的图像向平移单位得到的.左-2J Q-X210.函数V =—也里--------- 的图象关于 ____________ 对称.V轴| x + 4 | + | x-3 |11.方程lg2 x + (lg2 + lg3)lgx + lg21g3 = 0 的两根积为w,等于 ___________________ -612.已知./(对=扣’则方程./(对=2的实数根的个数是. 3x + 4x + 3, x < 0,(2)方程gL/(x)] = 0有且仅有3个根 (4)方程g[g(x)] = O 有且仅有4给出下列四个命题:(1)方程/[g(x)] = 0有且仅有6个根(3)方程_/V(x)] = 0有且仅有5个根13.已知l)x + 4" (x<l)是(_8,十8)上的减函数,那么a 的取值范围是 ______________________ .[-,-)[log“x (x > 1) 7 314.已知函数y = /'(X )和y = g(x)在[-2,2]的图象如下所示:其中正确的命题是 (1)、( 4 )二、解答题 15. 设集合 A={x|l Vx<2}, B=|x|x<,若 Ar\B = A ,求Q 的取值范围.国。

高一数学第一学期期末综合练习苏教版必修1

高一数学第一学期期末综合练习苏教版必修1

高一数学第一学期期末综合练习一、填空题。

1、若函数()y f x =的定义域是[0,2],则函数(2)()1f x g x x =-的定义域是 2、已知集合A={x|20x x m ++=}, 若A∩R=∅,则实数m 的取值范围是3、函数)34(log 1)(22-+-=x x x f 的定义域为 4、若扇形的周长是16cm ,圆心角是2弧度,则扇形的面积是 ;5、已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.6已知向量.a 是以A (3,-1)为始点,且与向量{}4,3-=b ,垂直的单位向量,求的终点坐标a7、 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于8.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于9、函数)23sin(2x y -=π的单调递减区间是 ;10、与向量)2,3(-=平行的单位向量是 ;11、已知41)6sin(=+πx ,则=-+-)3(cos )65sin(2x x ππ ; 12、已知|a |=1,|b |=2,a 、b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为 。

13、已知a =(λ,2),b =(-3,5),且a 与b 的夹角为钝角,则λ的取值范围是14、函数1()3x f x a -=+的图象一定过定点P ,则P 点的坐标是 ;15、如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,那么实数a 的取值范围是____________.16、设函数)32sin(3)(π+=x x f ,给出四个命题:①它的周期是π;②它的图象关于直线12π=x 成轴对称;③它的图象关于点(3π,0)成中心对称;④它在区间[125π-,12π]上是增函数.其中正确命题的序号是 。

苏教版数学必修1复习试题.doc

苏教版数学必修1复习试题.doc

2,, 8.设函数/(%) = < 1 扬大附中东部分校高一数学期中考试试卷班级 姓名一、填空题:本大题共14小题,每小题5分,共70分。

1. 设集合 S = {yly=3,,xeA}0 = {yly = x2—l,xeA},则SW 是2. 若。

<0,贝U 函数y = (!-<-!的图象必过点23. 已知函数y =『,则其值域为3x 2 4. 函数/(x) = -^= + lg(2x + l)的定义域是 ___________________A /1 — Xz 1、/一3工+25. 函数y= | 的增区间是6. 已知函数人X )是定义在R 上奇函数,当x>0时,f(x) = 2x +x,那么/'⑴的解析 式是 ________________7. 将函数y = (|)x+1的图象向右平移2个单位且向上平移1个单位得函数y = g(x)的图象, 则 g(x)= -------------------XG (-OO,1]则满足fM = -的X 值为__________________________ X G (1, +00) 49.已知a = log 2 0.3 , b = 203 , c = O.302,则Q,b,c 三者从大到小的关系是 10.若f(x)为偶函数,在(-8,0]上是减函数,又f(-2) = 0,则xf(x)< 0的解集是. 11. 若函数f(x) = aLxe [-1,1]的最大值是最小值的的3倍,则。

=12. 设奇函数/'(X )的定义域为[—5,5],若当xe [0,5]时,/(%)的图象如右图,则不等式/'(x) W0的解是13 .定义集合 A 、 B 的一种运算:= (x|x = x, + X 2,M 中若 A = {1,2,3}, B = {1,2),则 A*B 中的所有元素数字之和为 14. 已知函数f(x) = x 2-4x + 5在区间[a,+ 8)上单调递增,则实数a 的取值范围是。

高一数学苏教版必修1总复习卷

高一数学苏教版必修1总复习卷

高一数学苏教版必修1总复习卷一.选择题:(每题5 分共60分)1.下列四个关系式中,正确的是 ( )A. {}a ∅∈B.{}a a ∉C.{}{,}a a b ∈D.{,}a a b ∈2. 若集合{2},{x M y y N y y -====则M N ⋂等于 ( )A. {1}y y >B. {1}y y ≥C. {0}y y >D.{0}y y ≥ 3. 定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( )A .9 B. 14 C.18 D.214. 已知753()2f x ax bx cx =-++且(5)17,f -=则(5)f 的值为 ( )A.19B.13C. 13-D.19-5. 函数()y f x =的值域是[2,2]-,则函数(1)y f x =+的值域为 ( )A.[1,3]-B.[3,1]-C.[2,2]-D.[1,1]-6. 函数f(x) = log 2a (a>0,a ≠1),若f(x 1)-f(x 2) =1,则)()(2221x f x f -等于 ( )A.2B.1C.1/2D.log 2a7. 若函数f(x)为偶函数,且在(0,)∞内是增函数,又f(-2005)=0,则不等式x ()0f x ⋅<的解集是 ( ) A.{200502005}x x x <-<<或 B.{200502005}x x x -<<>或C.{20052005}x x x <->或D.{20050x x -<<或0<x<2005}8. 定义在区间(,)-∞+∞上的奇函数()f x 为增函数;偶函数()g x 在区间[0,)+∞上的图象与()f x 的图象重合,则在0a b >>时,给出下列不等式:A.()()()()f b f a g a g b -<--B.()()()()f b f a g a g b --<--C.()()()()f a f b g b g a -->--D.()()()()f a f b g b g a --<--其中成立的是 ( ) A.①与④ B. ②与③ C. ①与③ D.②与④ 9. 如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=.其中正确的是 ( ) A. ①② B.①②③④ C.②③④⑤ D. ①②⑤10. 函数2()log ()a f x ax x =-在区间[2,4]上是增函数,则实数a 的取值范围是 ( ) A.1112a a <<>或 B. 1a > C.114a << D.108a << 11. 已知()32f x x =-,2()2g x x x =-,构造函数()F x ,定义如下:当()()f x g x ≥时,()()F x g x =;当()()f x g x <时,()()F x f x =,那么F(x ) ( ) A.有最大值3,最小值1- B.有最大值7-无最小值 C.有最大值3,无最小值 D.无最大值,也无最小值12. 已知a N +∈,且关于x 的方程2lg(42)lg()1x a x -=-+有实根,则a 等于 ( ) A. 0 B . 1 C. 2 D.3二.填空题: (每题4分共24分)13. 当0a >且1a ≠时,指数函数2()3x f x a -=-必过定点 .14. 若函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则实数a 的取值范围是 . 15. 对于函数()f x ,定义域为D,若存在0x D ∈使00()f x x =,则称00(,)x x 为不动点,若3()x af x x b+=+(()f x 不为常数)的图象上有两个不动点关于原点对称,则,a b应满足的条件t/月是 .16. 函数()(01)x f x a a a =>≠且在[1,2]上最大值比最小值大2a,则a 的值为 . 17. 若函数12(log )x y a =为减函数,则a 的取值范围为 .18. 关于函数22log (23)y x x =-+有以下4个结论:① 定义域为(,3](1,);-∞-⋃+∞ ② 递增区间为[1,);+∞③ 最小值为1;④ 图象恒在x 轴的上方.其中正确的是________________________ .三.解答题:( 19-20题每题12分,21-23题14分共66分)19. 设集合A={1,1},-B=2{20}x x ax b -+=,若B ≠∅且B A ⊆,求,a b 的值.20. 定义在区间(1,1)-上的函数()f x 是单调减函数,且满足()()0,f x f x +-=如果有 2(1)(1)0,f a f a -+-<求a 的取值范围.21. 已知函数()f x ,当,x y R ∈时,恒有()()()f x y f x f y +=+. (1). 求证: ()()0;f x f x +-= (2). 若(3),f a -=试用a 表示(24);f (3). 如果x R ∈时,()0,f x <且1(1)2f =-,试求()f x 在区间[2,6]-上的最大值和最小值.22. 设函数2()21x f x a =-+, (1) 求证:不论a 为何实数()f x 总为增函数; (2) 确定a 的值,使()f x 为奇函数; (3) 当()f x 为奇函数时,求()f x 的值域.23. 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y .(1) 写出y 关于x 的函数关系式;(2) 通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)=24. 已知函数22log (2)y x =-的定义域是[,]a b ,值域是2[1,log 14],求实数,a b 的值.参考答案:1.D 考查元素与集合,集与集合之间关系.2.C M {}{}{{}200xy y y y N y y y y -===>===≥则{}0M N y y => , 故选C.3.B {2A B *=,3,4,5}, 所有元素之和为:2+3+4+5=14, 故选B.4.C 由753()2,(5)17f x ax bx cx f =-++-=且得25355515,a b c ⋅-⋅+⋅=- 则753(5)555215213f a b c =⋅-⋅+⋅+=-+=-, 故选C.5.C 由y=f(x)到y=f(x+1)只是图象向左平移一个单位,所以值域不变, 故选C.6.A )()(2221x f x f -=12122(log log )2[()()]2,a a x x f x f x -=-=故选A.7.A 由题意结合图象分析知()0x f x ⋅<的解集为{}200502005x x x <-<<或,故选A. 8.C 由题意结合图象分析知:(1)()()()()f b f a g a g b -<--正确. (2) ()()()()f b f a g a g b --<--错. (3) ()()()()f a f b g b g a -->--正确. (4) ()()()()f a f b g b g a --<--错. 综上所述(1)与(3)正确 , 故选C.9.D 由题意得2(1)ty =则正确; (2)523230y ==>正确;(3)121222212242,212,log 122og 3,log 3 1.5ttt t l t t =====+-=<则错; (4)错; (5)3121223222,1,23,log 3,26,log 6tttt t t ====== 则有t 1+t 2=t 3正确.综上所述(1)(2)(5)正确, 故选D.10.B 设2()log ,a f x u u ax x ==-(1) 当0<a<1时,[]()log 2,4a f x =u 在上是减函数,与题意不符舍去.(2) 当a>1时,()log a f x u =在[2,4]上是增函数,而2)u ax x =-1过点(0,0),(0,a在[2,4]上是增函数,即在1(,)()f x a+∞上为增函数,综合得a.>1. 故选B.11.B 如图F(x)在点P 处取最大值由: 23222x x x x +=-=求得,代入32327()x x F x -=+=-无最小值.综合得F(x)最大值为7-无最小值. 故选12.B 由222lg(42)lg()1421010,5520x a x x a x x x a -=-+-=--+-=得即,关于x 的的方程有实根,则254(52)03320.a a ∆=--≥≥∈ 即又N +,1a ∴= ,故选B.13.(2,2)- 由图象平移规律得知: 函数2()3x f x a -=-,过点 (2,2)-.14.3a ≥- 2()2(1)2f x x a x =+-+的对称轴2(1)12a x a -==- 要使()[4,)f x +∞在上是增函数,则14a -≤,即 3.a ≥-15.b=0,a>0且9a ≠若点(x 0,y 0)是不动点,则有00003(),x af x x x b+==+整理得200(3)0,x b x a +--=根据题意可知上面方程有两个根,且两个根互为相反数.由韦达定理得3090,b a a -=⎧≠⎨-<⎩a-9故b=3,a>0,而f(x)=3+所以x+3,故a,b 应满足b=3,a>0且9a ≠. 16.3122或 (1)当2101,.22a a a a a <<-==时由,求得 (2) 当a>1时,由23..22a a a a -==求得17.1(,1)212(l o g )x y a = 为减函数,1210log 1,(,1).2a a ∴<<∴∈ 18.②③④ 设222log ,23(1)2 2.y u u x x x ==-+=-+≥则2log 1,y u =≥且在[1,)+∞上为增函数,最小值为1,图象恒在x 轴的上方. 综上所述,知②③④正确.17.解析:B B A φ≠⊆且{}{}{}1,1,1,1B ∴=--若{}1,22, 1.1,1B a b a b =-=-=∴=-=则; 若{}1,22,11B a b a b ===∴==则; 若B={}1,1,1,0b a -=-=则.18.解析: ()()0,()f x f x f x +-=∴ 为奇函数. 又22(1)(1)0.(1)(1)f a f a f a f a -+-<-<-得又()(1,1)f x -在上的的单调减函数,2202111111002111a a a a a a a a <<⎧-<-<⎧⎪⎪∴-<-<⇒<<<⎨⎨⎪⎪-<<->-⎩⎩或 01a ∴<<.19.解析: (1)令0x y ==得(0)0f =,再令y x =-得()(),f x f x -=-()()0.f x f x ∴-+=(2)由(3)f a -=得(3),f a =-(24)(333)8(3)8f f f a ∴=++⋅⋅⋅+==-. (3)设12x x <,则2121()[()]f x f x x x =+-=121()()f x f x x +-21210,()0x x f x x ->∴-< 又,1211()()()f x f x x f x ∴+-<,21()()f x f x ∴<()f x ∴在R 上是减函数,max ()(2)(2)(1)1f x f f f ∴=-=-=-=,min 1()(6)6(1)6()32f x f f ===⨯-=-.20. 解析: (1) ()f x 的定义域为R, 12x x ∴<,则121222()()2121x x f x f x a a -=--+++=12122(22)(12)(12)x x x x ⋅-++, 12x x < , 1212220,(12)(12)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <,所以不论a 为何实数()f x 总为增函数.(2) ()f x 为奇函数, ()()f x f x ∴-=-,即222121x xa a --=-+++, 解得: 1.a = 2()1.21x f x ∴=-+ (3) 由(2)知2()121x f x =-+, 211x+> ,20221x ∴<<+, 220,1()121xf x ∴-<-<∴-<<+ 所以()f x 的值域为(1,1).-21. 解析: (1) (110%)().xy a x N *=-∈ (2) 111,(110%),0.9,333x x y a a a ≤∴-≤∴≤ 0.91lg3log 10.4,11.32lg31x x -≥=≈∴=-22.解析: 由220x ->得x <x >而函数的定义域为[,]a b ,∴必有[,]{a b x x ⊆<x >},当b <,22()log (2)y f x x ==-在[,]a b 上单调递减,()f x ∴的值域是[(),()],f b f a2()1()log 14f b f a =⎧∴⎨=⎩ 解得42a b =-⎧⎨=-⎩ ;当a >, 22()log (2)y f x x ==-在[,]a b 上单调递增,()f x ∴的值域为[(),()],f a f b2()1()log 14f a f b =⎧∴⎨=⎩ 解得214a b =⎧⎨=⎩ 综上所述,知42a b =-⎧⎨=-⎩或24a b =⎧⎨=⎩.。

(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习汇总第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、第四象限内的点集解析:集合M 为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a=-1或a=2.当a=-1时,A={2,2,4},不满足互异性;当a=2时,A={2,4,-1}.所以a=-3或a=2.答案:C8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B 级 能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B 的包含关系是________.解析:因为∁U A={x|x<0},∁U B={y|y<1}={x|x<1},所以∁U A∁U B.答案:∁U A∁U B10.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B=∅和B≠∅两种情况.答案:{a|a≤1}11.已知∅{x|x2-x+a=0},则实数a的取值范围是________.解析:因为∅{x|x2-x+a=0},所以方程x2-x+a=0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B⊆∁R A,求a的取值范围.解:由题意得∁R A={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁R A.(2)若B≠∅,则由B⊆∁R A,得2a≥-1且2a<a+3,即-12≤a<3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B=________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A={x|x>1}.答案:{x|1<x≤5}9.设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},则a的取值范围为________.解析:如下图所示,由A∪B={x|-1<x<3}知,1<a≤3.答案:{a|1<a≤3}10.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且M∩S={3},则pq=________.解析:因为M∩S={3},所以3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p=8,q=6.则pq=4 3.答案:4 311.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是________.解析:A可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C , 所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x<k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <216.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解:假设存在x ,使B ∪(∁U B )=A .所以B A .(1)若x +2=3,则x =1符合题意.(2)若x +2=-x 3,则x =-1不符合题意.所以存在x =1,使B ∪(∁U B )=A ,此时A ={1,3,-1},B ={1,3}.17.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解:因为A ∪B =A ,所以B ⊆A .若B =∅时,2a >a +3,则a >3;若B ≠∅时,⎩⎪⎨⎪⎧2a ≥-2,a +3≤5,2a ≤a +3,解得-1≤a ≤2. 综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.18.设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解:(1)A ={x |x ≤-1或x ≥4}.因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧2a ≤a +2,2a ≤-1. 所以a =2或a ≤-12. 所以实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a =2. (2)因为A ∩B =B ,所以B ⊆A .①B =∅时,满足B ⊆A ,则2a >a +2⇒a >2.②B ≠∅时,则⎩⎪⎨⎪⎧2a ≤a +2,a +2≤-1或⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4. 解之得a ≤-3或 a =2.综上所述,实数a 的取值范围为{a |a ≤-3或a ≥2}.章末知识整合一、元素与集合的关系[例1] 设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N . (1)试判断1和2与集合B 的关系;(2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ,所以1∈B . 当x =2时,62+2=32∉N ,2∉B . (2)令x =0,1,2,3,4,代入62+x ,检验62+x∈N 是否成立,可得B ={0,1,4}.规律方法1.判断所给元素a 是否属于给定集合时,若a 在集合内,用符号“∈”;若a 不在集合内,用符号“∉”.2.当所给的集合是常见数集时,要注意符号的书写规范.[即时演练] 1.已知集合A ={x |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来. 解:(1)A =∅,则方程ax 2-3x +2=0无实根,即Δ=9-8a <0,所以a >98. 所以a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a >98. (2)因为A 中只有一个元素,所以①a =0时,A =⎩⎨⎧⎭⎬⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.故Δ=9-8a =0,所以a =98,此时A =⎩⎨⎧⎭⎬⎫43满足要求. 综上可知:a =0或a =98. 二、集合与集合的关系[例2] A ={x |x <-1或x >2},B ={x |4x +p <0},当B ⊆A 时,求实数p 的取值范围.分析:首先求出含字母的不等式,其次利用数轴解决.解:由已知解得,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-p 4.又因为因为A={x|x<-1或x>2},且B⊆A,利用数轴所以-p4≤-1.所以p≥4,故实数p的取值范围为{p|p≥4}.规律方法1.在解决两个数集的包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.2.注意端点值的取舍,这是同学易忽视失误的地方.[即时演练] 2.设集合P={(x,y)|x+y<4,x,y∈N*},则集合P 的非空子集的个数是()A.2 B.3 C.7 D.8解析:当x=1时,y<3,又y∈N*,因此y=1或y=2;当x=2时,y<2,又y∈N*,因此y=1;当x=3时,y<1,又y∈N*,因此这样的y不存在;当x≥4时,y<0,也不满足y∈N*.综上所述,集合P中的元素有(1,1),(1,2),(2,1),所以P 的非空子集的个数是23-1=7.故选C.答案:C三、集合的运算[例3]已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B,分析:先确定集合A,B,然后讨论a的范围对结果的影响.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴表示如图所示.(1)当a -3≤5,即a ≤8时,A ∪B ={x |x <a -3或x >5}.(2)当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R}=R.综上可知,当a ≤8时,A ∪B ={x |x <a -3或x >5};当a >8时,A ∪B =R.规律方法解集合问题关键是读懂集合语言,明确意义,用相关的代数或几何知识进行解决.[即时演练] 3.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.解析:因为A ={x |-4<x <4},B ={x |x <1或x >3},所以A ∩B ={x |-4<x <1或3<x <4}.所以∁A (A ∩B )={x |1≤x ≤3}.答案:{x |1≤x ≤3}四、利用集合的运算求参数[例4] 设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R},若M ∪N =M ,求实数t 的取值范围.分析:由M ∪N =M ,知N ⊆M .根据子集的意义,建立关于t 的不等式关系来求解.解:由M ∪N =M 得N ⊆M ,故当N =∅,即2t +1≤2-t ,t ≤13时,M ∪N =M 成立. 当N ≠∅时,由数轴图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,所求实数t 的取值范围是{t |t ≤2}.规律方法1.用数轴表示法辅助理解,若右端点小于等于左端点,则不等式无解, N =∅.2.列不等式组的依据是左端点小于右端点,即2t +1在5的左侧(相等时也符合题意),2-t 在-2的右侧(相等时也符合题意).[即时演练] 4.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.解:(1)A ∩B =B ⇔B ⊆A ,当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m -1时,要使B ⊆A .则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,m +1≤2m -1⇒2≤m ≤3. 综上,m 的取值范围为{m |m ≤3}.(2)当m +1>2m -1,即m <2时,B =∅,满足A ∩B =∅; 当B ≠∅时,要使A ∩B =∅,则必须⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2⇒m >4. 综上,m 的取值范围是{m |m <2或m >4}.五、集合的实际应用[例5] 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.分析:每名同学至多参加两个小组―→画出相应的Venn图―→根据全班有36名同学列等式―→得答案解析:设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,故同时参加数学和化学小组的有8人.答案:8规律方法解决有关集合的实际应用题时,首先要将文字语言转化为集合语言,然后结合集合的交、并、补运算来处理.此外,由于Venn图简明、直观,因此很多集合问题往往借助Venn图来分析.[即时演练] 5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜欢,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设A,B分别表示喜爱篮球运动、乒乓球运动的人数构成的集合,集合U表示全班人数构成的集合.设同时喜爱乒乓球和篮球运动的有x人.依题意,画出如图所示的Venn图.根据Venn图,得8+x+(15-x)+(10-x)=30.解得x=3.故喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.答案:12章末过关检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P解析:因为Q={x|-2<x<2},所以Q⊆P.答案:B2.已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()解析:由于A是数集,B是点集,故A∩B=∅.答案:D3.已知集合A={x|x(x-1)=0},那么下列结论正确的是() A.0∈A B.1∉AC.-1∈A D.0∉A解析:由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.答案:A4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=() A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A∩B ={0,2}.答案:C5.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1 B.0C.0或1 D.以上答案都不对解析:当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.答案:C6.下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()解析:空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.答案:B7.(2015·山东卷)已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0}.则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:易知B ={x |1<x <3},又A ={x |2<x <4},所以A ∩B ={x |2<x <3}=(2,3).答案:C8.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅解析:⎩⎪⎨⎪⎧a -1≤3,5≤a +2⇒3≤a ≤4. 答案:B9.已知全集U =R ,集合A ={x |x >1或x <-2},B ={x |-1≤x ≤0},则A ∪∁U B 等于( )A .{x |x <-1或x >0}B .{x |x <-1或x >1}C .{x |x <-2或x >1}D .{x |x <-2或x ≥0}解析:∁U B ={x |x <-1或x >0},所以A ∪∁U B ={x |x <-1或x >0}.答案:A10.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅解析:由题意A ∪B ={1,2,3},又B ={1,2}.所以∁U B ={3,4},故A ∩∁U B ={3}.答案:A11.已知全集U =R ,集合A ={x |y =1-x },集合B ={x |0<x <2},则(∁U A )∪B 等于( )A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)解析:因为A ={x |x ≤1},所以∁U A ={x |x >1}.所以(∁U A )∪B ={x |x >0}.答案:D12.设全集U ={(x ,y )|x ∈R ,y ∈R},集合A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},若点P (2,3)∈A ∩(∁U B ),则下列选项正确的是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5解析:由P (2,3)∈A ∩(∁U B )得P ∈A 且P ∉B ,故⎩⎪⎨⎪⎧2×2-3+m >0,2+3-n >0,解得⎩⎪⎨⎪⎧m >-1,n <5. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =________.答案:{1,3,5}14.已知集合A ={(x ,y )|ax -y 2+b =0},B ={(x ,y )|x 2-ay +b =0},且(1,2)∈A ∩B ,则a +b =________.解析:因为(1,2)∈A ∩B ,所以⎩⎪⎨⎪⎧a -4+b =0,1-2a +b =0⇒a =53,b =73. 故a +b =4.答案:415.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合{x |x ∈A ,且x ∉A ∩B }=________.解析:A ={x |-4<x <4},B ={x |x >3或x <1},A ∩B ={x |3<x <4或-4<x <1},所以{x |x ∈A 且x ∉A ∩B }={x |1≤x ≤3}.答案:{x |1≤x ≤3}16.设集合M ={x |2x 2-5x -3=0},N ={x |mx =1},若N ⊆M ,则实数m 的取值集合为________.解析:集合M =⎩⎨⎧⎭⎬⎫3,-12.若N ⊆M ,则N ={3}或⎝ ⎛⎭⎬⎫-12或∅.于是当N ={3}时,m =13;当N =⎩⎨⎧⎭⎬⎫-12时,m =-2;当N =∅时,m =0.所以m 的取值集合为⎩⎨⎧⎭⎬⎫-2,0,13. 答案:⎩⎨⎧⎭⎬⎫-2.0,13 三、解答题(本大题共6小题,共70分.解答时写出必要文字说明、计算或证明推理过程)17.(本小题满分10分)A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .解:因为A ∪B =A ,所以B ⊆A .当B =∅时,即a =0时,显然满足条件.当B ≠∅时,则B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2a ,A ={1,2}, 所以2a =1或2a=2,从而a =1或a =2. 故集合C ={0,1,2}.18.(本小题满分12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.(1)求A ∪B ,(∁R A )∩B ;(2)如果A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |1≤x <10},(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}={x |7≤x <10}.(2)当a >1时,满足A ∩C ≠∅.因此a 的取值范围是{a |a >1}.19.(本小题满分12分)已知A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求a 的取值范围.解:集合A ={0,-4},由于B ⊆A ,则:(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1.(2)当B ≠A 时:①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两个相等的实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件.综上可知a =1或a ≤-1.20.(本小题满分12分)已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.解:(1)当a =1时,A ={x |-3<x <5},B ={x |x <-1或x >5}. 所以A ∩B ={x |-3<x <-1}.(2)因为A ={x |a -4<x <a +4},B ={x |x <-1或x >5},又A ∪B =R ,所以⎩⎪⎨⎪⎧a -4<-1,a +4>5⇒1<a <3. 所以所求实数a 的取值范围是{a |1<a <3}.21.(本小题满分12分)已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},求a 取何值时,A ∩B ≠∅与A ∩C =∅同时成立.解:因为B ={2,3},C ={2,-4},由A ∩B ≠∅且A ∩C =∅知,3是方程x 2-ax +a 2-19=0的解, 所以a 2-3a -10=0.解得a =-2或a =5.当a =-2时,A ={3,-5},适合A ∩B ≠∅与A ∩C =∅同时成立;当a =5时,A ={2,3},A ∩C ={2}≠∅,故舍去.所求a 的值为-2.22.(本小题满分12分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |1≤2x +5≤15}.(1)已知a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.解:(1)因为a =3,所以集合P ={x |4≤x ≤7}.所以∁R P ={x |x <4或x >7},Q ={x |1≤2x +5≤15}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)因为P ∪Q =Q ,所以P ⊆Q .①当a +1>2a +1,即a <0时,P =∅,所以P ⊆Q ;②当a ≥0时,因为P ⊆Q ,所以⎩⎪⎨⎪⎧a ≥0,a +1≥-2,2a +1≤5.所以0≤a ≤2. 综上所述,实数a 的取值范围为(-∞,2].第2章 函数2.1 函数的概念2.1.1 函数的概念和图象A 级 基础巩固1.下列各图中,不可能表示函数y =f (x )的图象的是( )答案:B2.函数y =1-x +x 的定义域是( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1}解析:由⎩⎪⎨⎪⎧1-x ≥0,x ≥0,得0≤x ≤1. 答案:D3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a =( ) A .-3 B .-1 C .1 D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,适合题意.答案:A4.定义域在R 上的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为( )A .[2a ,a +b ]B .[0,b -a ]C .[a ,b ]D .[-a ,a +b ] 答案:C5.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:A 、C 、D 的定义域均不同. 答案:B6.二次函数y =x 2-4x +3在区间(1,4]上的值域是( ) A .[-1,+∞) B .(0,3] C .[-1,3] D .(-1,3)解析:y =x 2-4x +3=(x -2)2-1≥-1,再结合二次函数的图象(如右图所示)可知,-1≤y ≤3.答案:C7.已知函数f (x )的定义域为(-3,0),则函数y =f (2x -1)的定义域是( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析:由于f (x )的定义域为(-3,0) 所以-3<2x -1<0,解得-1<x <12.故y =f (2x -1)的定义域为⎝ ⎛⎭⎪⎫-1,12.答案:B8.函数f (x )=⎝ ⎛⎭⎪⎫x -120+x 2-1x +2的定义域是__________________.解析:要使f (x )有意义,必有⎩⎨⎧x -12≠0,x +2>0,解得x >-2且x ≠12. 答案:⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞9.已知函数f (x )的定义域为[0,1],值域为[1,2],则f (x +2)的定义域是________,值域是________.解析:因为f (x )的定义域为[0,1],所以0≤x +2≤1.所以-2≤x ≤-1,即f (x +2)的定义域为[-2,-1],值域仍然为[1,2].答案:[-2,-1] [1,2]10.(2015·课标全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.解析:因为点(-1,4)在y =f (x )的图象上, 所以4=-a +2.所以a =-2. 答案:-211.若f (x )=ax 2-2,a 为正常数,且f [f (2)]=-2,则a =________.解析:因为f (2)=a ·(2)2-2=2a -2, 所以f ()f (2)=a ·(2a -2)2-2=- 2. 所以a ·(2a -2)2=0.又因为a 为正常数,所以2a -2=0.所以a =22.答案:2212.已知函数f (x )=x +1x .(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.解:(1)要使函数f (x )有意义,必须使x ≠0, 所以f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0. 所以f (a +1)=a +1+1a +1. B 级 能力提升13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域为( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以g (x )=f (2x )x -1需满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域为[0,1). 答案:B14.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )解析:因为汽车先启动,再加速、匀速,最后减速,s 随t 的变化是先慢,再快、匀速,最后慢,故A 图比较适合题意.答案:A15.已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=______. 解析:因为f (x )=x 21+x 2,f ⎝ ⎛⎭⎪⎫1x =1x 2+1,所以f (x )+f ⎝ ⎛⎭⎪⎫1x =1.所以f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=12+1+1+1=72.答案:7216.已知函数f (x )=2x -1-7x .(1)求f (0),f ⎝ ⎛⎭⎪⎫17,f ⎝ ⎛⎭⎪⎫111; (2)求函数的定义域.解:(1)f (0)=-1,f ⎝ ⎛⎭⎪⎫17=217=277, f ⎝ ⎛⎭⎪⎫111=2111-1-711=411-411=0. (2)要使函数有意义,则⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,解得⎩⎨⎧x ≥0,x ≤17,所以0≤x ≤17. 所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤17.17.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.解:已知函数y =1ax +1(a <0且a 为常数), 因为1ax +1≥0,a <0,所以x ≤-a ,即函数的定义域为(-∞,-a ]. 因为函数在区间(-∞,1]上有意义, 所以(-∞,1]⊆(-∞,-a ]. 所以-a ≥1,即a ≤-1.所以a 的取值范围是(-∞,-1].18.试画出函数f (x )=(x -2)2+1的图象,并回答下列问题: (1)求函数f (x )在x ∈[1,4]上的值域; (2)若x 1<x 2<2,试比较f (x 1)与f (x 2)的大小. 解:由描点法作出函数的图象如图所示.(1)由图象知,f (x )在x =2时有最小值为f (2)=1, 又f (1)=2,f (4)=5.所以函数f (x )在[1,4]上的值域为[1,5]. (2)根据图象易知,当x 1<x 2<2时,f (x 1)>f (x 2).第2章 函数 2.1 函数的概念 2.1.2 函数的表示方法A 级 基础巩固1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:因为f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,所以f (-7)=10.f (f (-7))=f (10)=10×10=100. 答案:A2.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-3解析:f (f (x ))=c ⎝ ⎛⎭⎪⎫cx 2x +32⎝ ⎛⎭⎪⎫cx 2x +3+3=c 2x 2cx +6x +9=x ,即x [(2c +6)x +9-c 2]=0,所以⎩⎪⎨⎪⎧2c +6=0,9-c 2=0,解得c =-3. 答案:B3.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:由题意设f (x )=a (x -1)2+b (a >0),由于点(0,0)在图象上,所以a +b =0,a =-b ,故符合条件的是D.答案:D4.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图形纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的是( )解析:依题意:s 表示该同学与学校的距离,t 表示该同学出发后的时间,当t =0时,s 最远,排除A 、B ,由于汽车速度比步行快,因此前段迅速靠近学校,后段较慢.故选D.答案:D5.g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=( )A .1B .3C .15D .30解析:由g (x )=12得:1-2x =12⇒x =14,代入1-x 2x 2得:1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15. 答案:C6.(2015·陕西卷)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,x 2,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32解析:f (-2)=(-2)2=4. 所以f (f (-2))=f (4)=1-4=-1. 答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x ,x ≤0,2,x >0,则方程f (x )=x 的解的个数为________.解析:x >0时,x =f (x )=2;x ≤0时,x 2+3x =x ⇒x =0或-2. 答案:38.如图所示,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2))=________.解析:由图象及已知条件知f (2)=0,即f (f (f (2)))=f (f (0)), 又f (0)=4,所以f (f (0))=f (4)=2. 答案:29.若某汽车以52 km/h 的速度从A 地驶向260 km 远处的B 地,在B 地停留32h 后,再以65 km/h 的速度返回A 地.则汽车离开A 地后行走的路程s 关于时间t 的函数解析式为________________.解析:因为260÷52=5(h),260÷65=4(h),所以s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝ ⎛⎭⎪⎫t -132,132<t ≤212. 答案:s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤212 10.设f (x )=⎩⎨⎧x +1,x ≥0,1x ,x <0.若f (a )>a ,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=a +1>a 恒成立. 当a <0时,f (a )=1a >a ,所以a <-1.综上a 的取值范围是a ≥0或a <-1. 答案:{a |a ≥0或a <-1}11.已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ). 解:设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c =9ax 2+(6a +3b )x +a +b +c .因为f (3x +1)=9x 2-6x +5,所以9ax 2+(6a +3b )x +a +b +c =9x 2-6x +5. 比较两端系数,得⎩⎪⎨⎪⎧9a =9,6a +3b =-6,a +b +c =5⇒⎩⎪⎨⎪⎧a =1,b =-4,c =8.所以f (x )=x 2-4x +8.12.已知f (x )=⎩⎪⎨⎪⎧x 2(-1≤x ≤1),1(x >1或x <-1).(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].B 级 能力提升13.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a 的值为( )A .2B .1C .3D .4解析:易知f (0)=2,所以f (f (0))=f (2)=4+2a =4a ,所以a =2. 答案:A14.任取x 1,x 2∈[a ,b ]且x 1≠x 2,若f ⎝⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则f (x )在[a ,b ]上是凸函数,在以下图象中,是凸函数的图象是( )解析:只需在图形中任取自变量x 1,x 2,分别标出它们对应的函数值及x 1+x 22对应的函数值,并观察它们的大小关系即可. 答案:D15.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A ,A ,C 为常数.已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( ) A .75,25B .75.16C .60,25D .60,16解析:由条件可知,x ≥A 时所用时间为常数,所以组装第4件产品用时必须满足第一段分段函数,即f (4)=C 4=30⇒C =60, f (A )=60A=15⇒A =16. 答案:D16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值;(2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4,所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23∉[0,2],故无解. 当x 0>2时,由2x 0=8,得x 0=4.因此f (x 0)=8时,x 0的值为4.17.某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2 元/km ,超过18 km 的部分1.8 元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式;(2)如果某人乘车行驶了20 km ,他要付多少车费?解:(1)设车费为y 元,出租车行驶里程为x km.由题意知,当0<x ≤4时,y =10;当4<x ≤18时,y =10+1.2(x -4)=1.2x +5.2;当x >18时,y =10+1.2×14+1.8(x -18)=1.8x -5.6.所以,所求函数关系式为y =⎩⎪⎨⎪⎧10,0<x ≤4,1.2x +5.2,4<x ≤18,1.8x -5.6,x >18.(2)当x =20时,y =1.8×20-5.6=30.4.所以乘车行驶了20 km 要付30.4元的车费.18.某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系用图①表示,该商品在30天内日销售量Q (件)与时间t (天)之间的关系如下表所示:t /天 5 15 20 30Q /件 35 25 20 10(1)根据提供的图象(图①),写出该商品每件的销售价格P 与时间t 的函数解析式;(2)在所给平面直角坐标系(图②)中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定一个日销售量Q 与时间t 的函数解析式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).解:(1)根据图象,每件的销售价格P 与时间t 的函数解析式为:P =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N.(2)描出实数对(t ,Q )的对应点,如下图所示.从图象发现:点(5,35),(15,25),(20,20),(30,10)似乎在同一条直线上,为此假设它们共线于直线l :Q =kt +b .由点(5,35),(30,10)确定出l 的解析式为Q =-t +40,通过检验可知,点(15,25),(20,20)也在直线l 上.所以日销售量Q 与时间t 的一个函数解析式为Q =-t +40(0<t ≤30,t ∈N).(3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N. 因此y =⎩⎪⎨⎪⎧-(t -10)2+900,0<t <25,t ∈N ,(t -70)2-900,25≤t ≤30,t ∈N. 若0<t <25(t ∈N),则当t =10时,y max =900;若25≤t ≤30(t ∈N),则当t =25时,y max =1 125.因此第25天时销售金额最大,最大值为1 125元.第2章 函数2.2 函数的简单性质2.2.1 函数的单调性A 级 基础巩固1.函数f (x )的图象如图所示,则( )A .函数f (x )在[-1,2]上是增函数B .函数f (x )在[-1,2]上是减函数C .函数f (x )在[-1,4]上是减函数D .函数f (x )在[2,4]上是增函数解析:增函数具有“上升”趋势;减函数具有“下降”趋势,故A正确.答案:A2.已知函数f(x)是(-∞,+∞)上的增函数,若a∈R,则() A.f(a)>f(2a) B.f(a2)<f(a)C.f(a+3)>f(a-2) D.f(6)>f(a)解析:因为a+3>a-2,且f(x)在(-∞,+∞)上是增函数,所以f(a+3)>f(a-2).答案:C3.y=2x在区间[2,4]上的最大值、最小值分别是()A.1,12 B.12,1 C.12,14 D.14,12解析:因为函数y=2x在[2,4]上是单调递减函数,所以y max=22=1,y min=24=12.答案:A4.函数y=x2-6x的减区间是() A.(-∞.2] B.[2,+∞) C.[3,+∞) D.(-∞,3] 解析:y=x2-6x=(x-3)2-9,故函数的单调减区间是(-∞,3].答案:D5.下列说法中,正确的有()①若任意x1,x2∈I,当x1<x2时,f(x1)-f(x2)x1-x2>0,则y=f(x)在I上是增函数;②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数; ④函数y =1x的单调区间是(-∞,0)∪(0,+∞). A .0个 B .1个 C .2个 D .3个解析:当x 1<x 2时,x 1-x 2<0,由f (x 1)-f (x 2)x 1-x 2>0知f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),①正确;②③④均不正确.答案:B6.已知函数f (x )=4x -3+x ,则它的最小值是( )A .0B .1 C.34 D .无最小值解析:因为函数f (x )=4x -3+x 的定义域是⎣⎢⎡⎭⎪⎫34,+∞,且是增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫34=34. 答案:C7.函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是________________.解析:由图象可知函数f (x )的单调递增区间是(-∞,1]和(1,+∞).答案:(-∞,1]和(1,+∞)8.已知f (x )是R 上的减函数,则满足f (2x -1)>f (1)的实数x 的取值范围是________.解析:因为f (x )在R 上是减函数,且f (2x -1)>f (1),所以2x -1<1,即x <1.答案:(-∞,1)9.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围是________.解析:因为f (x )=(x -1)2+2,其对称轴为直线x =1,所以当x =1时,f (x )min =2,故m ≥1.又因为f (0)=3,所以f (2)=3.所以m ≤2.故1≤m ≤2.答案:[1,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为________万元.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝ ⎛⎭⎪⎫x -1922+30+1924, 所以当x =9或10时,L 最大为120万元.答案:12011.讨论函数y =x 2-2(2a +1)x +3在[-2,2]上的单调性.解:因为函数图象的对称轴x =2a +1,所以当2a +1≤-2,即a ≤-32时,函数在[-2.2]上为增函数.当-2<2a +1<2,即-32<a <12时, 函数在[-2,2a +1]上是减函数,在[2a +1,2]上是增函数.当2a +1≥2,即a ≥12时,函数在[-2,2]上是减函数. 12.已知f (x )=x +12-x,x ∈[3,5]. (1)利用定义证明函数f (x )在[3,5]上是增函数;(2)求函数f (x )的最大值和最小值.解:(1)f (x )在区间[3,5]上是增函数,证明如下:设x 1,x 2是区间[3,5]上的两个任意实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+12-x 1-x 2+12-x 2=3(x 1-x 2)(2-x 1)(2-x 2). 因为3≤x 1<x 2≤5,所以x 1-x 2<0,2-x 1<0,2-x 2<0.所以f (x 1)<f (x 2).所以f (x )在区间[3,5]上是增函数.(2)因为f (x )在区间[3,5]上是增函数,所以当x =3时,f (x )取得最小值为-4,当x =5时,f (x )取得最大值为-2.B 级 能力提升13.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )A .(-∞,40)B .[40,64]C .(-∞,40]∪[64,+∞)D .[64,+∞)。

苏教版数学必修1期中系列复习试卷一.苏教版必修1—集合测试卷.doc

苏教版数学必修1期中系列复习试卷一.苏教版必修1—集合测试卷.doc

已知a ,b,c 为非零实数,代数式吝 |a|6. g +咎的值所组成的集合为M,则下列判断正确 |c| \abc\期中复习一一集合测试卷. 选择题: 1. 下面四个命题:集合N 中最小的数是1;②0是自然数;③(1,2,3)是不大于3的自然数组成的集合;④aeN,bcN ,则a + bN2.其中正确命题的个数是()A. 0B. 1C. 2D. 32. 若集合A = {x\kx 2+ Ax + 4 = 0,xeR}中只有一个元素,则实数上的值为 () A. 0B. 1C. 0 或 1D. * < 13. 集合A = (y| y = -x 2+4,xeN,yeN }的真子集的个数为()A. 9B. 8C. 7D. 64. 符号(a}P c {a,b,c }的集合P 的个数是( )A. 2B. 3C. 4D. 55. 已知M = {y\y = x 2- l,x e R},P = {x\x = a e R},则集合 M 与 P 的关系是( )A. M=PB. PeRC. MD. Mb+ 77 +网的是 ( )A. 0弟B.C. 2eMD. 4eM7. 设全集 I = {(x, y)|x,y e R},集合 M = {(.r, y)| -~| = 1}, N = {(.r, y)|y ? x +1},那么 x —2(GM)C (GN )等于()A. 0B.{(2,3)}C. (2,3)D. {(x,y)|y ?x + l}8. 经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车 的家庭有20家,则电话和农用二轮车至少和一种的家庭数为 ( )A. 60B. 80C. 100D. 1209. 设U 为全集,集合A 、B 、C 满足条件AoB = AoC,那么下列各式中一定成立的是( )A.Ac3 = AcCB.B = CC. Ac(C 〃8) = Ac(CuC)D. (CuA)c8 = (CuA)cC10. A = {x|x 2+ x-6 = 0),B = {x|mx + 1 = 0),且 Au3 = A ,则 m 的取值范围是()A L 小 11、 小1 L A LA-B. {0,C. {0,-,--} D. •J匕J 匕J 匕J 匕11. A = {—4,2。

高中数学综合测评苏教版选择性必修第一册

高中数学综合测评苏教版选择性必修第一册

综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-√3y-3=0的倾斜角为()A.π6B.π3C.2π3D.5π62.函数f(x)=1+1x 的图象在点(12, x(12))处的切线的斜率为 ()A.2B.-2C.4D.-43.已知F1,F2为定点,F1F2=4,在同一平面内的动点M满足MF1+MF2=t(t为常数),且t≥4,则动点M的轨迹是()A.椭圆B.线段C.圆D.线段或椭圆4.在等比数列{a n}中,a2+a3=1,a4+a5=2,则a6+a7= ()A.2B.2√2C.4D.4√25.已知两圆的方程分别是C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则这两圆的位置关系是()A.内含B.内切C.相交D.外切6.我国古代数学名著《增删算法统宗》中有如下问题:“一个公公有九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期,借问长儿多少岁,各儿岁数要详推.”其大致意思是:一个公公有九个儿子,若问他们的生年是不知道的,但从老大的生年开始排列,后面每个儿子都比前面一个儿子小3岁,九个儿子共207岁,则老大的岁数是 ()A.38B.35C.32D.297.已知在平面直角坐标系xOy中,双曲线C:x2x2-x2x2=1(a>0,b>0)的左焦点为F,点M,N在双曲线C上,若四边形OFMN为菱形,则双曲线C的离心率为 ()A.√3-1B.√5-1C.√3+1D.√5+18.已知函数f(x)=ln x+ax2+(2+a)x(a<0),g(x)=xe x-2,对任意的x0∈(0,2],关于x的方程f(x)=g(x0)在(0,e]上都有实数根,则实数a的取值范围为()(其中e=2.718 28…为自然对数的底数)A.[-1e ,0) B.(-∞,-1e]C.[-e,0)D.(-∞,-e]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知方程mx2+ny2=1(m,n∈R),则()A.当mn>0时,方程表示椭圆B.当mn<0时,方程表示双曲线C.当m=0时,方程表示两条直线D.此方程表示的曲线不可能为抛物线10.设等差数列{a n}的首项为a1,公差为d,其前n项和为S n,已知S16>0,S17<0,则下列结论正确的是()A.a1>0,d<0B.a8+a9>0C.S8与S9均为S n的最大值D.a9<011.已知抛物线C:y2=2px(p>0)的焦点F到其准线的距离为2,过点F的直线与抛物线交于P,Q 两点,M为线段PQ的中点,O为坐标原点,则()A.抛物线C的准线方程为y=-1B.线段PQ的长度的最小值为4C.S△OPQ≥2D.xx⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-312.已知f(x)=e x·x3,则下列结论正确的是()A. f(x)在R上单调递增B. f(log52)<f(e-12)<f(ln π)C.方程f(x)=-1有实数根D.存在实数k,使得方程f(x)=kx有4个实数根三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.在平面直角坐标系xOy中,已知直线l1:x+ay=0和直线l2:2x-(a-3)y-4=0,a∈R,若l1与l2平行,则l1与l2之间的距离为.14.已知数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n∈N*),则a6=.15.已知函数f(x)=x3+ax2+x+1在区间(-23,-13)内是减函数,则实数a的取值范围是.16.已知椭圆x2x2+x2x2=1(a>b>0)的短轴长为2,上顶点为A,左顶点为B,左、右焦点分别是F1、F2,且△F1AB的面积为2-√32,则椭圆的标准方程为;若点P为椭圆上的任意一点,则1xx1+1xx2的取值范围是.(第一个空2分,第二个空3分)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在①S4-a3=a6;②S3是a1与a9的等差中项;③a1+a3+a5+a7+a9=5S3这三个条件中任选一个,补充在下面的问题中,并解答.记S n为等差数列{a n}的前n项和,已知a3=5,且.(1)求{a n}的通项公式;(2)在(1)的条件下,记b n=1x x·x x+1,求数列{b n}的前n项和T n.注:选择多个条件分别解答时,按第一个解答计分.18.(本小题满分12分)已知某曲线C:x2+y2+2x-4y+a=0.(1)若此曲线是圆,求a的取值范围,并求出其圆心和半径;(2)若a=1,且此曲线与直线l:x-y+1=0相交于M,N两点,求弦长MN.19.(本小题满分12分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1(n∈N*).数列{b n}是首项为a1,公差不为零的等差数列,且b1,b2,b7成等比数列.(1)求数列{a n}和{b n}的通项公式;(2)若c n=x xx x,数列{c n}的前n项和为T n,且T n<m恒成立,求m的取值范围.20.(本小题满分12分)新冠肺炎疫情发生后,某地政府为了支持企业复工复产,决定向当地企业发放补助款,其中对纳税额x(万元)在[4,8]之间的小微企业做统一方案,方案要求同时具备下列两个条件:①补助款f(x)(万元)随企业原纳税额x(万元)的增加而增加;②补助款不低于原纳税额的50%.经测算,政府决定采用f(x)=x4-xx+4(其中m为参数)作为补助款发放的函数模型.(1)当参数m=13时是否满足条件,并说明理由;(2)求同时满足条件①②的参数m的取值范围.21.(本小题满分12分)已知抛物线C:x2=2py(p>0)的准线方程为y=-1,直线l过点P(0,-1),且与抛物线C交于A,B两点.点A关于y轴的对称点为A',连接A'B.(1)求抛物线C的标准方程;(2)问直线A'B是否过定点?若是,求出定点坐标;若不是,请说明理由.22.(本小题满分12分)已知函数f(x)=e x-1-x-ax2,g(x)=bx-b ln x,其中e为自然对数的底数.(1)若当x≥0时,不等式f(x)≥0恒成立,求实数a的取值范围;(2)若x>0,证明:(e x-1)ln(x+1)>x2.答案全解全析一、单项选择题1.A 直线x -√3y -3=0可化为y =√33x -√3,斜率k =tan α=√33,又α∈[0,π),∴α=π6.故选A .2.D 因为f (x )=1+1x ,所以f'(x )=-1x 2, 所以 f'(12)=-4.故选D .3.D 当t =4时,点M 的轨迹是线段F 1F 2;当t >4时,点M 的轨迹是椭圆.故选D .4.C 设等比数列{a n }的公比为q ,则x 4+x 5x 2+x 3=x 2x 2+x 3x 2x 2+x 3=q 2=2,∴a 6+a 7=a 4q 2+a 5q 2=(a 4+a 5)q 2=2×2=4.故选C .5.B 根据两圆的方程得到两圆的圆心间的距离d =√(7-3)2+(1+2)2=5,又圆C 1的半径r 1=1,圆C 2的半径r 2=6,且d ,r 1,r 2满足r 2-r 1=d ,所以两圆内切.6.B 由题意可知,九个儿子的年龄可以看成以老大的年龄为首项,公差为-3的等差数列,记此等差数列为{a n },则9a 1+9×82×(-3)=207,解得a 1=35,故选B .7.C 由题意可知OF =c ,由四边形OFMN 为菱形,可得MN =OF =c ,设点M 在F 的上方,可知M 、N 关于y 轴对称,可设M (-x 2,√3x2),代入双曲线方程可得 (-x 2)2x 2-(√3x2)2x 2=1,结合a 2+b 2=c 2,可得c 4+4a 4-8a 2c 2=0,两边同除以a 4,可得e 4+4-8e 2=0,解得e 2=4+2√3或e 2=4-2√3,因为e >1,所以e =√4+2√3=√(1+√3)2=√3+1,故选C .8.C 由题意,g (x )=xe x -2,x ∈(0,2],g'(x )=e x -x e x (e x )2=1-x e x ,令g'(x )=0,得x =1,当0<x <1时,g'(x )>0;当1<x ≤2时,g'(x )<0,故当x =1时,g (x )取得极大值,也是最大值,为1e -2,且g (0)=-2,g (2)=2e 2-2>-2,设g (x )=x ex -2,x ∈(0,2]的值域为A ,则A =(-2,1e-2].设f (x )=ln x +ax 2+(2+a )x ,x ∈(0,e]的值域为B ,因为对任意的x 0∈(0,2],关于x 的方程f (x )=g (x 0)在(0,e]上都有实数根, 所以A ⊆B.因为当x →0+,f (x )→-∞,所以只需f (x )max ≥1e -2. 易得f'(x )=1x +2ax +2+a =(2x +1)(xx +1)x ,令f'(x )=0,得x =-1x 或x =-12(舍去),当-1x ≥e,即-1e ≤a <0时,f (x )在(0,e]上是增函数, 则f (x )max =f (e)=1+a e 2+2e+a e ≥1e -2, 解得a ≥-(2e +e -1e 3+e 2),∴-1e ≤a <0.当-1x <e,即a <-1e 时,f (x )在(0,-1x )上单调递增,在(-1x ,e ]上单调递减,则f (x )max =f (-1x )=ln (-1x )+1x -2x -1≥1e -2,即ln (-1x )-1x ≥1e -1,令h (x )=ln x +x ,易知h (x )在(0,+∞)上单调递增, 而h (1e )=1e -1, 于是-1x ≥1e ,解得-e ≤a <-1e . 综上,实数a 的取值范围为-e ≤a <0. 二、多项选择题9.BD 当mn >0时,将原方程整理,得x 21x +x 21x=1,若m ,n 同负或1x =1x,则方程不表示椭圆,A 错误;当mn <0时,1x 与1x 异号,方程表示双曲线,B 正确;当m =0时,方程为ny 2=1,当n ≤0时,方程无解,故C 错误;无论m 、n 为何值,此方程都不可能表示抛物线,D 正确.故选BD . 10.ABD ∵S 16=16(x 1+x 16)2>0,∴a 8+a 9=a 1+a 16>0,∴B 正确. 又S 17=17(x 1+x 17)2=17a 9<0,∴a 9<0,∴a 8>0,∴d =a 9-a 8<0,∴a 1>0,∴A、D 正确.易知S 8是S n 的最大值,S 9不是S n 的最大值,∴C 错误.故选ABD .11.BCD 因为抛物线的焦点F 到其准线的距离为2,所以p =2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,故选项A 错误;当直线PQ 垂直于x 轴时,线段PQ 的长度最小,此时不妨设P (1,2),Q (1,-2),所以PQ min =4,故选项B 正确;设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,联立{x =xx +1,x 2=2xx ,消去x ,将p =2代入可得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,S△OPQ=12×OF ×|y 1-y 2|=12×1×√(x 1+x 2)2-4x 1x 2=12×√16x 2+16≥2,当且仅当m =0时“=”成立,故选项C 正确;x 1x 2=(my 1+1)(my 2+1)=m (y 1+y 2)+m 2y 1y 2+1=1,y 1y 2=-4,所以xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=-3,故选项D 正确.故选BCD .12.BCD ∵f (x )=e x ·x 3, ∴f'(x )=e x(x 3+3x 2). 令f'(x )=0,得x =0或x =-3. 当x <-3时,f'(x )<0,f (x )单调递减, 当x >-3时,f'(x )≥0,f (x )单调递增,A 错误. 又0<log 52<12<e -12<1<lnπ,∴f (log 52)<f (e -12)<f (lnπ),B 正确. ∵f (0)=0,f (-3)=e -3·(-3)3=-(3e )3<-1,∴f (x )=-1有实数根,C 正确. 显然x =0是方程f (x )=kx 的根, 当x ≠0时,k =x (x )x=e x ·x 2,设g (x )=e x ·x 2(x ≠0),则g'(x )=x (x +2)e x ,令g'(x )=0,得x =0或x =-2.当x 发生变化时,g'(x ),g (x )的变化情况如下表:x (-∞,-2)-2 (-2,0) 0 (0,+∞) g'(x ) + 0 - 0 + g (x )↗4x 2↘↗画出函数g (x )的大致图象,如图所示,∴当0<k <4e 2时,g (x )=k 有3个实数根,∴D 正确.故选BCD . 三、填空题 13.答案 √2解析 由于直线l 1与l 2平行,则2a =-(a -3)且0≠-4a ,解得a =1,所以直线l 1的方程为x +y =0,直线l 2的方程为x +y -2=0,因此,直线l 1与l 2之间的距离为√22=√2.14.答案 768解析 由a n +1=3S n ,得S n +1-S n =3S n ,即S n +1=4S n ,又S 1=a 1=1,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768. 15.答案 [2,+∞)解析 ∵f (x )=x 3+ax 2+x +1,∴f'(x )=3x 2+2ax +1,∵函数f (x )在区间-23,-13内是减函数,∴f'(x )≤0在区间(-23,-13)内恒成立,即a ≥-3x 2-12x 在区间(-23,-13)内恒成立,令g (x )=-3x 2-12x (-23<x <-13),则g'(x )=-32+12x 2=-3x 2+12x 2,∴当x ∈(-23,-√33)时,g'(x )<0,g (x )单调递减;当x ∈(-√33,-13)时,g'(x )>0,g (x )单调递增, 又g (-23)=74,g (-13)=2,∴g (x )<2,∴a ≥2.16.答案x 24+y 2=1;[1,4]解析 由题意可知2b =2,则b =1,x △x 1xx =12(a -c )b =x -x 2=2-√32,故有{x -x =2-√3,x 2=x 2-x 2=1,x >0,x >0,解得{x =2,x =√3,所以椭圆的标准方程为x 24+y 2=1.由题意可得2-√3≤PF 1≤2+√3,PF 1+PF 2=2a =4,所以1xx 1+1xx 2=xx 1+xx 2xx 1·xx 2=4xx 1·(4-xx 1),因为PF 1·(4-PF 1)=-(xx 1-2)2+4∈[1,4],所以1xx 1+1xx 2=4xx1·(4-xx 1)∈[1,4].四、解答题17.解析 (1)选择条件①: 设等差数列{a n }的公差为d ,则{x 1+2x =5,4x 1+4×32x -x 1-2x =x 1+5x ,(2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分) 选择条件②:设等差数列{a n }的公差为d ,则{x 1+2x =5,2(3x 1+3×22x )=x 1+x 1+8x , (2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分)选择条件③:设等差数列{a n }的公差为d ,则{x 1+2x =5,5x 5=5(x 1+4x )=5(3x 1+3×22x ),(2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分) (2)由(1)可得b n =1x x ·x x +1=1(2x -1)(2x +1)=12(12x -1-12x +1),(7分)∴T n =b 1+b 2+…+b n=12(11-13+13-15+…+12x -1-12x +1) =12(1-12x +1)=x2x +1.(10分)18.解析 (1)方程x 2+y 2+2x -4y +a =0可化为(x +1)2+(y -2)2=5-a. (2分) 若其曲线是圆,则5-a >0,得a <5.(4分)其圆心坐标为C (-1,2),半径r =√5-x . (6分) (2)当a =1时,曲线的方程为(x +1)2+(y -2)2=4, (7分) 它表示的是圆,圆心为C (-1,2),半径r =2. (8分)圆心到直线l 的距离d =√2=√2. (10分)∴弦长MN =2√x 2-x 2=2√4-2=2√2. (12分) 19.解析 (1)∵a n +1=2S n +1(n ∈N *),① ∴当n ≥2时,a n =2S n -1+1,② ①-②,化简可得a n +1=3a n , (1分) 即数列{a n }是以3为公比的等比数列, (2分)又∵S 2=4, ∴a 1+3a 1=4,解得a 1=1,即a n =3n -1. (3分) 设数列{b n }的公差为d (d ≠0),b 1=a 1=1, ∵b 1,b 2,b 7成等比数列, ∴1×(1+6d )=(1+d )2, (4分) 解得d =4或d =0(舍去),即b n =4n -3,∴数列{a n }和{b n }的通项公式分别为a n =3n -1,b n =4n -3. (6分) (2)由(1)得c n =x x x x =4x -33x -1, (7分)∴T n =(13)0+5×(13)1+9×(13)2+…+(4n -3)(13)x -1,③13T n =(13)1+5×(13)2+9×(13)3+…+(4n -7)×(13)x -1+(4n -3)(13)x,④ ③-④,得23T n =1+4×(13)1+4×(13)2+…+4×(13)x -1-(4n -3)(13)x=3-(4n +3)(13)x. (10分) ∴T n =92-3(4x +3)2(13)x,即有T n <92恒成立,由T n <m 恒成立, 可得m ≥92,即m 的取值范围是[92,+∞). (12分)易错警示 (1)利用a n =S n -S n -1(n ≥2)求a n 时,要注意n ≥2这一限制条件;(2)当数列{a n }、{b n }分别为等差数列、等比数列时,数列{a n ·b n }或{xx x x}的前n 项和一般用错位相减法求解,但在求和时要特别注意两式相减后抵消了哪些项、各项的符号有没有发生变化等. 20.解析 (1)当m =13时,函数f (x )=x 4-13x +4(x ∈[4,8]),可得f'(x )=14+13x 2>0, 所以f (x )在区间[4,8]上为增函数,满足条件①; (2分) 又因为f (4)=74<2=12×4,所以当m =13时不满足条件②. (3分)综上可得,当参数m =13时不满足条件. (5分) (2)由函数f (x )=x 4-xx+4,可得f'(x )=14+x x 2=x 2+4x 4x 2,x ∈[4,8], (6分)所以当m ≥0时,f'(x )≥0,满足条件①; (8分) 当m <0时,令f'(x )=0,可得x =2√-x (负值舍去), 当x ∈[2√-x ,+∞)时,f'(x )≥0,f (x )单调递增, 所以此时若要满足条件①,应有2√-x ≤4,解得-4≤m <0. 综上可得,m ≥-4. (10分)由条件②可知,f (x )≥x2,即不等式x 4+xx ≤4在[4,8]上恒成立,等价于m ≤-14x 2+4x =-14(x -8)2+16在[4,8]上恒成立. 当x =4时,y =-14(x -8)2+16取得最小值,最小值为12, 所以m ≤12. (11分)综上,参数m 的取值范围是[-4,12]. (12分)21.解析 (1)因为抛物线C :x 2=2py (p >0)的准线方程为y =-1, 所以x2=1,即p =2, (3分)所以抛物线C 的标准方程为x 2=4y. (4分)(2)由题意知直线l 的斜率存在,故可设直线l 的方程为y =kx -1,A (x 1,y 1),B (x 2,y 2),则A'(-x 1,y 1),联立{x 2=4x ,x =xx -1,得x 2-4kx +4=0.则Δ=16k 2-16>0,x 1x 2=4,x 1+x 2=4k , (6分) 所以k A'B =x 2-x 1x 2+x 1=x 224-x 124x 1+x 2=x 2-x 14. (7分)于是直线A'B 的方程为y -x 224=x 2-x 14(x -x 2),所以y =x 2-x 14x +x 224-(x 2-x 1)x 24,即y =x 2-x 14x +1, (10分)当x =0时,y =1.即直线A'B 过定点(0,1). (12分)22.解析 (1)由已知得f'(x )=e x-1-2ax , (1分) 令h (x )=e x-1-2ax ,则h'(x )=e x-2a , 当x ≥0时,e x ≥1.故当2a ≤1时,h'(x )=e x-2a ≥0恒成立, ∴h (x )在[0,+∞)上单调递增,∴h (x )≥h (0)=0,即f'(x )≥0,∴f (x )在[0,+∞)上为增函数, ∴f (x )≥f (0)=0恒成立,∴a ≤12时满足条件. (3分)当2a >1时,令h'(x )=0,解得x =ln2a ,在[0,ln2a )上,h'(x )<0,h (x )在[0,ln2a )上单调递减, ∴当x ∈[0,ln2a )时,有h (x )≤h (0)=0,即f'(x )≤0,当且仅当x =0时,f'(x )=0,故f (x )在[0,ln2a )上为减函数,∴f (x )<f (0)=0,不符合题意. (5分)综上,实数a 的取值范围为(-∞,12]. (6分) (2)证明:由(1)得,当a =12,x >0时,e x>1+x +x 22成立,即e x-1>x +x 22=x 2+2x 2成立, (7分)∵x >0, ∴ln(x +1)>0,要证不等式(e x-1)ln(x +1)>x 2, 只需证e x-1>x 2ln(x +1), (8分) 只需证x 2+2x 2>x 2ln(x +1),只需证ln(x +1)>2x2+x 成立, (9分) 设F (x )=ln(x +1)-2xx +2(x >0), (10分) 则F'(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2,∴当x >0时,F'(x )>0恒成立,故F (x )在(0,+∞)上单调递增, 又F (0)=0, ∴F (x )>0恒成立, ∴原不等式成立. (12分)。

苏教版数学高一 必修1模块综合测评

苏教版数学高一 必修1模块综合测评

模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)} 4.若函数f (x )=log 2 (x -1)2-x的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎪⎨⎪⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎪⎨⎪⎧1-x >0,ln (1-x )≥0⇒x ≤0.∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪2,+∞). 【答案】 (0,1]∪2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________. 【导学号:37590093】【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1, 故f (log 2 3)=2log 2 3+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 2 13=-4. 【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________. 【导学号:37590094】【解析】∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 -1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a ,当a ≤-1,x ∈-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3. 所以-3≤a ≤-1. 【答案】 -3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分) 的值;(2)求(log 2 3+log 8 9)(log 3 4+log 9 8+log 3 2)+(lg 2)2+lg 20×lg 5的值.【解】(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,x ∈0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1), ∴⎩⎪⎨⎪⎧0=0+c ,1=4b +c ,∴⎩⎨⎧c =0,b =14,∴y 2=14x ,x ∈0,+∞).(2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1(x ≥0),-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧ x -1<0,-1<-a-x +1+1<4,或⎩⎪⎨⎪⎧x -1≥0,-1<a x -1-1<4,即⎩⎪⎨⎪⎧ x -1<0,-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥0,0<a x -1<5.当a >1时,有⎩⎪⎨⎪⎧x <1,x >1-log a 2或⎩⎪⎨⎪⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. 所以当a >1时,函数的定义域为(0,+∞); 当0<a <1时,函数的定义域为(-∞,0).(2)当a >1时,任取x 1,x 2∈(0,+∞),且x 1>x 2,则即f (x 1)>f (x 2).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值;(2)判断函数的奇偶性; 【导学号:37590095】 (3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0), ∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数.(3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1, ∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13 =f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。

苏教版高中数学必修一和四综合练习

苏教版高中数学必修一和四综合练习

高一数学必修一和必修四综合练习一姓名_________一、填空题:1.sin163sin 223sin 253sin313+=_________2.已知集合2{|log (1)1}A x x ,集合{|34260}x x B x ,则A B _________ 3.幂函数24()mm f x x -=的图像关于y 轴对称,且在(0, )+∞上递减,则整数m =_________ 4.三个数20.30.320.3, log , 2a b c 之间的大小关系由小到大的顺序是_________5.已知平面向量(3, 3)p =,(1, 2)q =-,(4, 1)r =,若(2)p tr q +⊥,则实数t 的值为_________6.计算:511log 224()lg559---=_________7.若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为_________ 8.若方程125x x 的解所在区间是(, 1)k k +,k Z ∈,则k =_________9.下列四个函数中,同时具有以下性质: “①最小正周期为;②图像关于直线3x对称;③在[,]63上单调递增” 的一个函数是_________(1)sin()26x y ;(2)cos(2)3y x ;(3)sin(2)6y x ;(4)cos(2)6y x . 10.已知(1,2), (2,4), 5a b c ==--=,若5()2a b c +⋅=,则a 与c 的夹角为_________ 11.已知2() (0)f x ax bx c a ,分析该函数图像的特征,若方程()0f x 一根大于3, 另一根小于2,则下列推理不一定成立的是_________①232b a ; ②240ac b ; ③(2)0f ; ④(3)0f .12.已知函数()sin f x x =,()sin()2g x x π=-,直线x m =与()f x ,()g x 的图像分别交于点M 、N ;则MN 的最大值是_________13.设()f x 是定义在实数集R 上的函数,若函数(1)y f x =+为偶函数,且当1x ≥时, 有()12x f x =-,则321(), (), ()233f f f 的大小关系是_________ 14.下列几个命题:①方程2(3)0x a x a 有一个正实根,一个负实根,则0a <; ②函数2211y x x 是偶函数,但不是奇函数;③函数()f x 值域是[2, 2]-,则函数(1)f x值域为[3, 1]-; ④设奇函数()y f x 图象沿x 轴正方向平移5个单位后,所得到图象为M , 又设M 与M 关于原点对称,则M 对应函数是(5)yf x ; ⑤一条曲线2|3|y x 与直线 ()y a a R 的公共点个数是m ,则m 值不可能是1. 其中正确的有_________二、解答题: 15.已知函数y=A ,集合{|10, *}B x ax a N =-<∈, 集合12{|log 1}C x x =>且()CA B ; (1)求A C ; (2)求a .16.向量(3sin , 0)m x ω=,(cos , sin )n x x ωω=-(0)ω>,在函数()()f x m m n t =⋅++的图像中,对称中心到对称轴的最小距离为4π,且当[0, ]3x π∈时,()f x 的最大值为32; (1)求()f x 的解析式;(2)求()f x 的单调递增区间.17.在ABC ∆中,已知AB AC BA BC ⋅=⋅;(1)求证:||||AC BC =;(2)若||||6AC BC AC BC +=-=||BA tBC -的最小值以及相应的t 的值.18.已知函数()22x x f x a -=⋅+为偶函数;(1)求a 的值;(2)判断函数()y f x =在[0, +)∞单调性;(3)若2(1)(4cos 2sin )f t f θθ+<-+对任意实数θ恒成立,求t 的取值范围.19.某矩形花园ABCD ,2AB =,3AD =,H 是AB 的中点,在该花园中有一花圃其形状是以H 为直角顶点的内接Rt HEF ∆,其中E 、F 分别落在线段BC 和线段AD 上如 图;分别记BHE ∠为θ,Rt EHF ∆的周长为l ,Rt EHF ∆的面积为S ;(1)试求S 的取值范围;(2)θ为何值时l 的值为最小;并求l 的最小值.20.已知函数2()||21f x ax x a =-+-(a 为实常数);(1)若1a =,求()f x 的单调区间;(2)若0a >,设()f x 在区间[1, 2]的最小值为()g a ,求()g a 的表达式;(3)设()()f x h x x,若函数()h x 在区间[1, 2]上是增函数,求实数a 的取值范围.。

2020-2021学年苏教版高中数学必修一阶段性综合检测试题

2020-2021学年苏教版高中数学必修一阶段性综合检测试题

(新课标)最新苏教版高中数学必修一高一数学必修1阶段性考试试题一、 选择题:(本大题共12小题,每小题4分,共48分) 1、下列关系式中,正确的关系式是 ( )A ∈QB .0∉NC .∈2{1,2}D . φ={0}2.已知集合{}21,M y y x x R ==-∈,{N x y ==,则=N M I ( ) A .),1[+∞-B .]2,1[-C .),2[+∞D .∅3.下列各组函数是同一函数的是 ( )①()f x ()g x =()f x x =与()g x =③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A. ①②B. ①③C. ③④D. ①④4.定义在R 上的偶函数[)()0,f x +∞在区间是增函数 ,则下列关系正确的是( ) A (2)(1)(3)f f f ->>- B (3)(1)(2)f f f ->>- C (3)(2)(1)f f f ->-> D (1)(3)(2)f f f >->-5.已知函数()3log 020x x x f x x >⎧=⎨≤⎩,则1(())9f f =( )A .4B .14 C .4- D .14- 6.设0.3222,0.3,log 3a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .b a c << D .c a b << 7.已知函数268y x x =-+在[)1,a 为减函数,则a 的取值范围是( ) A .3a ≤ B .13a <≤ C .3a ≥ D .03a ≤≤ 8、已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0<x 时,)(x f 的解析式为 ( )A.32)(2-+-=x x x f B. 32)(2+-=x x x fC.32)(2---=x x x f D. 32)(2+--=x x x f9. 已知全集{}1,2,3,4,5,6,7,8U =,集合{}1,3,4,6,8A =,{}2,4,5,6B =,则图中阴影部分所表示的集合是 ( )A.{25},B.{46},C.{24,5,6},D.{1,3,8}10.若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是( )A .()1,1-B .()(),22,-∞-+∞∪C .()2,2-D .()(),44,-∞-+∞∪11.下列幂函数中过点)0,0(,)1,1(的偶函数是( )A .21x y = B .4x y = C .2-=x y D .31x y =12.设,1)21()(+-=x x f x 用二分法求方程01)21(=+-x x 在)3,1(内近似解的过程中,,0)3(,0)2(,0)5.1(,0)1(<<<>f f f f 则方程的根落在区间 ( )A .)5.1,1(B .)2,5.1(C .)3,2(D .无法确定二、填空题:本大题共4小题,每小题4分,共16分. 13.已知x x x f 2)1(2-=+,则)(x f = .14、函数y _______________。

高一数学必修一综合练习苏教

高一数学必修一综合练习苏教

函数综合练习一填空题1.幂函数n x y =的图象一定经过 点2. 若1()3x g x t +=+的图象不经过第二象限,则t 的取值范围为 3.设132log <a ,则实数a 的取值范围为 4. 已知方程310x x --=仅有一个正零点,则此零点所在的区间是(k ,k+1 )k Z ∈则k=5. 已知函数()f x 是定义在R 上的奇函数,且当0x >时,x x x f 2)(2-=,则()y f x =在R上的解析式为6、若关于x 的方程23(37)40tx t x +-+=的两个实根,αβ满足012αβ<<<<,则t 的取值范围是7. 函数221()(31)m m f x m m x +-=++⋅是幂函数,且其图像过原点,则m =8. 二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是9. 已知(31)4,1(),1x a x a x f x a x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那么a 的取值范围是 . 10.设方程120x x-=的根为a ,则log 2a 与log 3a 的大小关系为11. 下列几个命题:①方程2(3)0x a x a +-+=的有一个正实根,一个负实根,则0a <; ②函数2211y x x =--是偶函数,但不是奇函数;③函数()f x 的值域是[2,2]-,则函数(1)f x +的值域为[3,1]-; ④函数y=2008x在区间(-),0()0,+∞∞ 上是单调递减的; ⑤一条曲线2|3|y x =-和直线 ()y a a R =∈的公共点个数是m ,则m 的值不可能是1.其中正确的有 .二、解答题1.(本题满分10分) 已知11223x x-+=, 求下列各式的值.(1)1x x -+; (2)33222223x x x x --++++.2. (1)已知{}023|2=+-=x x x P ,{}02|=-=ax x Q ,P Q ⊆,求a 的值. (2)已知{}|211A x x =≤≤ ,{}521|+≤≤+=m x m x B ,A B ⊆,求m 的取值范围.3. 已知xx x f a-+=11log )()1,0(≠>a a . (1)求)(x f 的定义域; (2)判断)(x f 的奇偶性;(3)判断)(x f 单调性并用定义证明.。

【高一数学试题精选】苏教版高一数学必修一全册课时练习题(有答案)

【高一数学试题精选】苏教版高一数学必修一全册课时练习题(有答案)

【高一数学试题精选】苏教版高一数学必修一全册课时练习题
(有答案)
苏教版高一数学必修一全册课时练习题(有答案)
5 集合的含义与表示
1.下列说法正确的是()
A.某个村子里的年青人组成一个集合
B.所有小正数组成的集合
c.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合
D.这些数组成的集合有五个元素
2.下面有四个命题
(1)集合N中最小的数是否;
(2)0是自然数;
(3){1,2,3}是不大于3的自然数组成的集合;
(4)
其中正确的命题的个数是()
A.1个B.2个C.3个D.4个
3.给出下列关系
(1)
(2)
(3)
(4)
其中正确的个数为()
A.1个B.2个C.3个D.4个
4.给出下列关系
(1){0}是空集;
(2)
(3)集合
(4)集合。

苏教版数学必修1:第1章章末综合检测

苏教版数学必修1:第1章章末综合检测

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列说法:①{0,1}与{1,0}是两个不同的集合;②{(1,1)}与{1}是相同的集合;③0∈N但0∉N *;④方程x 2-2x +1=0的解集是{1},其中正确的是________.(填序号)答案:③④2.给出下列5个集合,①{x |1<x <3,x ∈R};②{x |1<x <3,x ∈Q};③{(x ,y )|(x +1)2+(y -2)2=0};④{(x ,y )|y =2x -3};⑤{x |x ≥1且x ∈Z}∩{x |x ≤3且x ∈Z},其中,为有限集合的是________.(填序号)解析:③中集合为{(-1,2)};⑤中集合为{x |1≤x ≤3,x ∈Z}={1,2,3}.而①②④中元素都为无限个.答案:③⑤3.已知集合M ={x |-2<x <1},N ={x |x ≤-2},则M ∪N =________.解析:M ∪N ={x |-2<x <1或x ≤-2}={x |x <1}=(-∞,1).答案:(-∞,1)4.设A ={(x ,y )|y =-4x +6},B ={(x ,y )|y =5x -3},则A ∩B =________.解析:A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧y =-4x +6y =5x -3 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x =1y =2={(1,2)}. 答案:{(1,2)}5.设集合U ={1,2,3,4,5},A ={1,2},B ={2,4},则∁U (A ∪B)=________. 解析:A ∪B ={1,2,4},∴∁U (A ∪B)={3,5}.答案:{3,5}6.若集合A ={0,1},A ∪B ={0,1,2},则满足条件的集合B 的个数是________. 解析:由A ={0,1},A ∪B ={0,1,2},可知2∈B ,但0,1可属于B 也可不属于B. ∴B 的取值集合为{2},{0,2},{1,2},{0,1,2},有4种可能.答案:47.设集合M ={x |f(x )=0},N ={x |g(x )=0},则方程f(x )·g(x )=0的解集为________. 解析:f(x )·g(x )=0⇔f(x )=0或g(x )=0,故所求的解集为{x |f(x )=0或g(x )=0}=M ∪N . 答案:M ∪N8.已知全集I(I ≠∅),子集合A 、B 、C ,且A =∁I B ,B =∁I C ,则A 与C 的关系是________. 解析:A =∁I B =∁I (∁I C)=C.答案:A =C9.设M ={3,6,9},若m ∈M ,且9-m ∈M ,那么m 的值是________.解析:当m =3时,9-m =9-3=6∈M ;当m =6时,9-m =9-6=3∈M ;当m =9时,9-m =9-9=0∉M .∴m =3或m =6.答案:3或610.已知集合U ={1,2,3,…,100},A ={被3整除的数},B ={被2整除的数},则A ∪B 中元素的个数有________.解析:集合A 中共有33个元素,集合B 中共有50个元素,又A ∩B 表示被6整除的数的集合,故A ∩B 有16个元素,作出V e nn 图可知A ∪B 中元素个数为33+50-16=67. 答案:6711.设集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12,k ∈Z},则集合M 与N 的关系是________. 解析:M ={x |x =k 2+14,k ∈Z}={x |x =2k +14,k ∈Z},N ={x |x =k 4+12,k ∈Z}={x |x =k +24,k ∈Z},M 中元素为奇数乘以14,N 中元素为整数乘以14,故M N .答案:M N12.设P ,Q 为两个非空数集,定义集合P +Q ={x |x =a +b ,其中a ∈P ,b ∈Q},若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________.解析:由题意,P +Q ={1,2,6,3,4,7,8,11},因此共有8个元素.答案:813.若集合M ={x |x 2+x -6=0},N ={x |a x +2=0,a ∈R},且N M ,则a 的取值集合为________.解析:M ={2,-3}.若N =∅,则a =0;若N ={2},则a =-1;若N ={-3},则-3a +2=0,∴a =23.∴a 的取值集合为{-1,0,23}. 答案:{-1,0,23} 14.已知集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若B A ,则满足条件的实数a 的取值集合是________.解析:(1)当B =∅时,则4a +1≤a +1,即a ≤0,此时有B A ;(2)当B ≠∅时,由题意可知⎩⎪⎨⎪⎧a +1<4a +1,a +1>-3,4a +1≤5,解得0<a ≤1.综上,a ≤1.答案:{a|a ≤1}二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知集合A ={1,2,3},若A ∪B =A ,求集合B.解:∵A ∪B =A ,∴B ⊆A.∴B 的取值集合为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.16.(本小题满分14分)已知集合U ={x |x 取不大于30的质数},并且A ∩(∁U B)={5,13,23},(∁U A)∩B ={11,19,29},(∁U A)∩(∁U B)={3,7},求A ,B.解:∵U ={2,3,5,7,11,13,17,19,23,29},由V e nn 图(图略),得A ∩B ={2,17},∴A ={2,5,13,17,23},B ={2,11,17,19,29}.17.(本小题满分14分)设集合A ={2,-1,x 2-x +1},B ={2y ,-4,x +4},且A ∩B ={-1,7},求x ,y 的值.解:∵A ∩B ={-1,7},∴7∈A ,即有x 2-x +1=7,解得x =-2或x =3.当x =-2时,x +4=2∈B ,与2∉A ∩B 矛盾,应舍去;当x =3时,x +4=7,这时2y =-1,即y =-12, 故得x =3,y =-12. 18.(本小题满分16分)已知集合A ={x |x 2+p x +q =0},B ={x |q x 2+p x +1=0},同时满足①A ∩B ≠∅,②A ∩(∁RB)={-2},pq ≠0.求p ,q 的值.解:设x 0∈A ,则有x 20+p x 0+q =0;两端同除以x 20,得1+p·1x 0+q ·1x 20=0, 则知1x 0∈B , 故集合A ,B 中元素互为倒数.由A ∩B ≠∅,一定有x 0∈A ,使得1x 0∈B ,且x 0=1x 0, 解得x 0=±1.又A ∩(∁RB)={-2},则-2∈A ,A ={1,-2}或{-1,-2}.由此得B =⎩⎨⎧⎭⎬⎫1,-12或B =⎩⎨⎧⎭⎬⎫-1,-12. 根据根与系数的关系有⎩⎪⎨⎪⎧1+(-2)=-p 1×(-2)=q 或⎩⎪⎨⎪⎧-1+(-2)=-p ,(-1)×(-2)=q. 得⎩⎪⎨⎪⎧p =1q =-2或⎩⎪⎨⎪⎧p =3,q =2. 19.(本小题满分16分)已知集合A ={a 1,a 2,a 3,a 4},B ={a 21,a 22,a 23,a 24},其中a 1,a 2,a 3,a 4为正整数,且a 1<a 2<a 3<a 4,若A ∩B ={a 1,a 4},a 1+a 4=10,A ∪B 中所有元素之和为124,求集合A.解:由题意得a 1,a 4为两正整数的平方,而a 1+a 4=10,故有a 1=1,a 4=9.由9∈B ,从而3∈A ,由9∈A ,从而81∈B.若a 2=3,则A ={1,3,a 3,9},B ={1,9,a 23,81},从而1+3+a 3+9+a 23+81=124,得a 3=5或a 3=-6(舍去),此时集合A ={1,3,5,9};若a 3=3,则a 2=2,此时A ={1,2,3,9},B ={1,4,9,81}不满足A ∪B 元素和为124,故不合题意.综上所述,集合A ={1,3,5,9}.20.(本小题满分16分)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +a 2-5=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围;(3)若U =R ,A ∩(∁U B)=A ,求实数a 的取值范围.解:(1)由题意得A ={1,2}.若A ∩B ={2},则2∈B ,∴22+2(a +1)×2+a 2-5=0,解得a =-1或a =-3.①当a =-1时,B ={x |x 2-4=0}={-2,2},符合题意;②当a =-3时,B ={x |x 2-4x +4=0}={2},符合题意.综上可得a =-1或a =-3.(2)∵A ∪B =A ,∴B ⊆A.Δ=4(a +1)2-4(a 2-5)=8a +24.①当Δ<0即a<-3时,B =∅,符合题意;②当Δ=0即a =-3时,B ={2}⊆A ,符合题意;③当Δ>0即a>-3时,B ⊆A ,则1,2为x 2+2(a +1)x +a 2-5=0的两根,∴⎩⎪⎨⎪⎧-2(a +1)=1+2,a 2-5=1×2,无解. 综上可得a ≤-3.(3)由题意得A ∩B =∅,即1,2∉B ,∴⎩⎪⎨⎪⎧1+2(a +1)+a 2-5≠0,22+2(a +1)×2+a 2-5≠0, 解得a ≠-1或-3或-1±3.∴a 的取值范围是{a|a ≠-1或-3或-1±3,a ∈R}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1综合复习试题
一、填空题
1.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )= .
2.已知函数20()10x x f x x x ⎧=⎨->⎩,≤,,,若1()2f a =,则实数a = . 3.方程)2(log )12(log 255-=+x x 的解集为 .
4.函数23
)(-=x x f 的定义域为 .
5.已知函数()f x 是R 上的奇函数,且当0x >时,32()2f x x x =-,则0x <时,函数()f x 的表达式为()f x = .
6.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 .
7.已知定义在R 上的奇函数)(x f 满足),()2(x f x f -=+则)6(f =_________.
8.若2()2(1)2f x ax a x =+-+在(3,3)-为单调函数,则a 的取值范围是 .
9
.函数y 的单调递减区间为 .
10.函数)86lg()(2++-=a ax ax x f 的定义域为R ,则实数a 的取值范围是 .
11.若关于x 的方程a
a x -+=
523)43(有负实数解,则实数a 的取值范围为 .
12.如果函数()223f x x x =-+在[]0,m 上有最大值3,最小值2,则m 的范围是 .
13.已知定义域为()(),00,-∞+∞U 的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则 不等式()0x f x ⋅>的解集为 .
14.不等式012
≥+-ax x 对所有]2,1[∈x 都成立,则实数a 的取值范围 .
二、解答题
15.设集合{}2|lg(2)A x y x x ==--,集合{}|3||B y y x ==-.
⑴ 求B A ⋂和A B U ; ⑵ 若{}|40C x x p =+<,C A ⊆,求实数p 的取值范围.
16.计算下列各式的值:
(1)3212833)21()
32(⎪⎭⎫ ⎝⎛--+-- ; (2) 2lg 2lg3111lg 0.36lg823
+++.
17.设不等式21122
2(log )9(log )90x x ++≤的解集为M ,
求当x M ∈时,函数()22(log )(log )28
x x f x =的最大值和最小值.
18.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加 投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:
()()2
15052
R x x x x =-≤≤,其中x 是产品生产的数量(单位:百台) (1)将利润表示为产量的函数; (2)年产量是多少时,企业所得利润最大?
19.函数2
1)(x b ax x f ++=是定义在)1,1(-上的奇函数,且52)21(=f . (1)确定函数的解析式; (2)证明函数)(x f 在)1,1(-上是增函数; (3)解不等式0)()1(<+-t f t f .
20.已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =.
(1)求()f x 的解析式; (2) 当[1,1]x ∈-时,不等式()2f x x m >+恒成立,求m 的范围;
(3)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大.
高一数学必修1 综合复习(一) 参考答案 3.}3{
4. (0,∞+)
6. 14
8. 11,24⎡⎤-⎢⎥⎣⎦
9. 1(,]2
-∞ 11. )5,4
3( 13. ()()1,01,-+∞U
16.(1)原式=21--
lg12lg12lg12(2)11lg 0.6lg 2lg10lg 0.6lg 2lg12
====++++ 17. []1,0-
18.解:(1)当05x ≤≤时,产品能全部售出,成本为0.250.5x +,收入为2152
x x - 利润()221150.250.5 4.750.522
f x x x x x x =---=-+- 当5x >时,只能销售5百台,成本为0.250.5x +,销售收入为212555522⨯-
⨯= 利润()250.250.50.25122
f x x x =--=-+ 综上, 利润函数()20.5 4.750.5050.2512
5x x x f x x x ⎧-+-≤≤=⎨-+>⎩ (2)当05x ≤≤时,()()21 4.7510.781252
f x x =--+ 当 4.75x =时,()max 10.78125f x =万元
当5x >时,函数()f x 是减函数,则()120.25510.75f x <-⨯=万元 综上,当年产量是475台时,利润最大
20.已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =.
(1)求()f x 的解析式;
(2) 当[1,1]x ∈-时,不等式:()2f x x m >+恒成立,求实数m 的范围值;
(3)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大.
(1)解:令2()(0)f x ax bx c a =++≠代入:
得:22(1)(1)()2,22a x b x c ax bx c x ax a b x ++++-++=++= ∴1
11
a b c =⎧⎪=-⎨⎪=⎩ ∴2()1f x x x =-+
(2)当[1,1]x ∈-时,()2f x x m >+恒成立即:231x x m -+>恒成立; 令2235()31()24g x x x x =-+=--,[1,1]x ∈-则对称轴:
3
[1,1]2x =∈-,min ()(1)1g x g ==-∴1m ≤-
(3) []22()(2)4(42)1,1,1g t f t a t a t a a t =+=+-+-+∈-
对称轴为:124a
t -=
① 当1204a
-≥时,即:1
2a ≤;如图1:
2
2max ()(1)4(42)157g t g a a a a a =-=--+-+=-+
②当1204a
-<时,即:1
2a >;如图2:
22max ()(1)4(42)133g t g a a a a a ==+-+-+=++
综上所述:2max 21
572
()1
332
a a a g t a a a ≤
⎧-+=⎨++⎩>。

相关文档
最新文档