应用随机过程4.1更新过程.

合集下载

随机过程-第四章 更新过程

随机过程-第四章 更新过程
t
N (t ) 的情况。 t
为考虑 N (t ) 的发散速度,我们先考虑到达时刻 TN (t ) ( TN (t ) 表示在时刻 t 或时刻 t 之前 最后一次更新发生的时刻,以此类推,则 TN (t )1 表示在时刻 t 之后第一次更新发生的时刻) 。 利用 TN (t ) 和 TN (t )1 ,我们提出并证明以下命题。
X
i 1
n
i
n

Tn n
以概率 1 成立。因 0 ,这意味着当 n 时,Tn ,这即是说无穷多次更新只可能 在无限长的时间内发生,因此在有限时间内至多只能发生有限次更新。因此,更新过程亦可 写成
N (t ) max n, Tn t
4.2 N (t ) 的分布
这其中利用了 X n , n 1, 2, 的独立同分布性质,这里 [1 F (b)] (0,1) 。又因为
k
Tmk t Tk T0 t , T2k Tk t ,, Tmk T( m1)k t
而且更新区间(相当于时间间隔)服从独立同分布,即
N (t ) 的分布至少在理论上能够得到,首先我们注意这样一个重要的关系:到时刻 t 为
止的更新次数大于或等于 n 当且仅当在 t 之前或在时刻 t 发生第 n 次更新,即
N (t ) n Tn t
所以
P N (t ) n P N (t ) n P N (t ) n 1 P Tn t P Tn1 t
N (t ) sup n, Tn t
定义 4.1 更新过程:计数过程 N (t ), t 0 称为更新过程。
在更新过程中我们将事件发生一次叫做一次更新, 从而 X n 就是第 n 1 次与第 n 次更新 相距的时间,Tn 表示第 n 次更新发生的时刻, 而 N (t ) 就是 t 时刻或 t 时刻之前发生的总的更 新次数。更新过程一个典型的例子是机器零件的更换。 我们首先要回答是第一个问题是在有限时间内是否会有无限多次更新发生。答案是不 会发生这种情况的概率为 1。由强大数定律可知

应用随机过程教学大纲

应用随机过程教学大纲

遵义师范学院课程教学大纲应用随机过程教学大纲(试行)课程编号:280020 适用专业:统计学学时数:48 学分数: 2.5执笔人:黄建文审核人:系别:数学教研室:统计学教研室编印日期:二〇一五年七月课程名称:应用随机过程课程编码:学分:2.5总学时:48课堂教学学时:32实践学时:16适用专业:统计学先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学)一、课程的性质与目标:(一)该课程的性质《应用随机过程》课程是普通高等学校统计学专业必修课程。

它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。

(二)该课程的教学目标(1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。

(2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。

着重基本思想及方法的培养和应用。

(3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。

二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。

三、教学内容与要求 第一章 预备知识 【教学目标】通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

【教学内容和要求】随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。

其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。

应用随机过程

应用随机过程

应用随机过程引言随机过程是一种数学模型,用于描述随机事件在不同时间点上的演变过程。

它在很多领域中有重要的应用,例如金融、统计学、生物学等。

本文将介绍随机过程的概念、性质以及在一些实际问题中的应用。

随机过程的定义和性质随机过程是一族随机变量的集合,这些变量依赖于某个参数,通常是时间。

随机过程可以用于描述随机事件随时间的演变。

具体来说,假设我们有一个随机过程{X(t), t ∈ T},其中X(t)是在时间t上的一个随机变量,T为参数的取值范围。

随机过程可以分为离散时间和连续时间两种情况。

对于离散时间的随机过程,参数t的取值范围是一组离散的时间点。

我们可以用{X₁, X₂, …, Xₙ}来表示随机过程在每一个时间点上的取值。

而连续时间的随机过程,则比较复杂,其参数t的取值范围是一个连续的时间域。

随机过程的性质主要包括两方面:两点分布和一点分布。

两点分布指的是随机过程在不同时间点上的取值之间的关系,一点分布则是指随机过程在某一固定时间点上取值的概率分布。

通过研究随机过程的这两个性质,我们可以了解随机事件随时间的演变规律。

应用举例:金融领域中的随机过程模型随机过程在金融领域中有广泛的应用,尤其是在期权定价和风险管理方面。

其中,著名的布莱克-斯科尔斯期权定价模型就是基于随机过程的。

在布莱克-斯科尔斯模型中,假设股票价格的对数收益率服从几何布朗运动,即随机过程满足以下随机微分方程:dS(t) = μS(t)dt + σS(t)dW(t)其中,S(t)表示股票价格在时间t的取值,μ是预期收益率,σ是波动率,W(t)是布朗运动。

利用随机微分方程,可以推导出期权的定价公式。

布莱克-斯科尔斯模型假设市场是无套利的,通过构建一个复制组合,可以得到一个偏微分方程来解决期权的定价问题。

除了布莱克-斯科尔斯模型,随机过程还可以用于建立其他的金融模型,例如随机波动率模型、随机利率模型等。

这些模型在金融衍生品定价和风险管理中都有重要的应用。

《应用随机过程》教学大纲

《应用随机过程》教学大纲

《应用随机过程》教学大纲应用随机过程教学大纲一、课程简介《应用随机过程》是一门应用性较强的数学课程,主要介绍了随机过程及其在实际问题中的应用。

随机过程是对随机变量的研究,是概率论的一个重要分支。

通过本课程的学习,学生可以了解随机过程的基本概念、性质和常见的应用领域,并能够运用所学知识解决实际问题。

二、教学目标1.掌握随机过程的基本概念、性质和常用模型。

2.学会应用随机过程解决实际问题,如排队论、信号处理等。

3.培养学生的数学建模能力和分析问题的能力。

三、教学内容1.随机过程的基本概念1.1随机过程的定义1.2随机过程的分类1.3随机过程的性质2.随机过程的常见模型2.1马尔可夫链2.2马尔可夫过程2.3泊松过程2.4随机游动3.应用随机过程解决实际问题3.1排队论3.1.1M/M/1模型3.1.2M/M/s模型3.1.3M/M/1队列的平稳分析3.2信号处理3.2.1随机信号的表示3.2.2自相关函数与功率谱密度3.2.3高斯过程与线性系统四、教学方法1.理论讲解:通过课堂讲解,介绍随机过程的基本概念、性质和常见模型。

2.实例分析:针对不同应用实际问题,引导学生运用所学知识解决实际问题。

3.课堂讨论:设置讨论环节,鼓励学生主动参与,提出问题并进行交流和讨论。

4.课后作业:布置随堂练习和课后作业,巩固学生对所学内容的理解和运用能力。

五、教学评价1.平时成绩:包括作业完成情况、课堂表现等。

2.期中考试:考查学生对基本概念和性质的掌握。

3.期末考试:综合考查学生对整个课程的理解和应用能力。

六、参考教材1. Sheldon M. Ross,《随机过程学》2.吴建平,李荣华,李云龙,《随机过程与应用》七、教学时长本课程共计48学时,其中理论课程36学时,实践课程12学时。

《应用随机过程》-课程教学大纲

《应用随机过程》-课程教学大纲

《应用随机过程》课程教学大纲一、课程基本信息课程代码:16055502课程名称:应用随机过程英文名称:Applied Stochastic Processes课程类别:专业课学时:32学分: 2适用对象:财经类专业本科生考核方式:考试先修课程:微积分、线性代数、概率论二、课程简介中文简介紧抓课程改革核心环节,不断提升教学质量,将“课程思政”作为融合德育与智育的融合主渠道,是逐步实现“立德树人”的综合教育理念的前进方向。

《应用随机过程》是面向经济统计专业三年级学生开设的一门必修课,随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系。

具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用,培养学生的科学精神,探索自然和人类的奥秘。

英文简介The course Applied Stochastic Processes is one of the compulsory courses for the junior undergraduates majoring in Economic Statistics,which is usually viewed as the dynamic part of probability theories. It focuses on the dynamic feature of stochastic phenomena and emphasizes modeling the stochastic phenomena varying with time and space .Moreover,it explores the inner property and relationship among various models and it is quite theoretical and widely used in social science,natural science,Economic and management science etc.三、课程性质与教学目的本课程是经济统计专业一门应用性很强的专业课。

《应用随机过程》课件

《应用随机过程》课件
随机过程作为一种强大的数学工具,能够应用于各个领域,为解决实际问题 提供了有力支持。
希望本课程能够为您的学习和职业发展带来启发和帮助!谢谢大家!
随机过程在传输信号、网络拥塞控制和信道建 模等方面具有广泛应用。
随机过程的模拟和分析
模拟
利用数值方法和计算机模拟生成随机过程的样本路径,用于验证和测试理论模型。
分析
通过概率论和统计学方法分析随机过程的特性和统计规律,为实际问题提供解决方案。
总结
通过本课程的学习,我们深入了解了随机过程的基本概念、分类、特性、应 用以及模拟和分析方法。
马尔可夫性
随机过程的未来值只与当前值相关, 与过去值无关,便于建模和计算。
随机过程的应用
金融领域
随机过程在股票市场预测和衍生品定价等方面 发挥重要作用。
数据分析
随机过程的工具和方法用于分析和建模时间序 列数据,揭示隐藏的统计规律。
排队系统
随机过程可用于优化排队系统的性能,提高服 务质量和效率。
通信网络
连续时间
随机变量在连续的 时间区间内变化, 例如布朗运动和泊 松过程。
时齐
随机过程的统计特 性在时间上是不变 的,例如平稳随机 过程。
非时齐
随机过程的统计特 性随时间变化,例 如非平稳随机过程。
随机过程的特性
1
平稳性
2
随机过程的统计特性在时间上保持不
变,具有一定的预测性。
3
随机性
随机过程的未来值是随机的,无法精 确预测。
《应用随机过程》PPT课件
课程介绍 什么是随机过程 随机过程的分类 随机过程的特性 随机过程的应用 随机过程的模拟和分析 总结
课程介绍
欢迎大家来到《应用随机过程》课程!本课程将带领您深入了解随机过程的 理论和应用,为您打开了一扇探索机会与挑战的大门。

随机过程应用应用随机过程解决实际问题

随机过程应用应用随机过程解决实际问题

随机过程应用应用随机过程解决实际问题随机过程应用:应用随机过程解决实际问题随机过程是概率论中的一种重要的数学工具,用于描述随机变量随时间变化的过程。

随机过程的应用非常广泛,可以解决许多实际问题。

本文将探讨随机过程的应用,并介绍其中一些实际问题的解决方法。

一、排队论排队论是随机过程应用的一个重要领域,用于解决有关排队问题的数学模型。

排队问题广泛存在于我们的日常生活中,比如银行、超市等地的排队现象。

通过排队论的分析,可以确定最优的队列长度、服务台数量等,以提高服务效率。

二、信号处理随机过程在信号处理中也有广泛的应用。

在无线通信中,信号通常会受到噪声的干扰,而随机过程可以用来描述这些干扰的统计特征。

通过对随机过程进行分析,可以提高信号处理的效果,减小噪声对信号质量的影响。

三、金融工程随机过程在金融工程领域也有着重要的应用。

股票价格、利率等金融变量通常都是随机变量,它们的变化过程可以用随机过程来描述。

通过对随机过程进行建模和分析,可以预测未来的金融市场走势,为投资决策提供参考。

四、优化问题在一些优化问题中,随机过程也发挥着关键的作用。

比如在生产调度中,将任务分配给不同的机器,机器故障时间也可用随机过程来描述。

通过对随机过程的优化分析,可以提高生产效率,降低成本。

五、风险评估风险评估是许多领域中的一个重要问题,而随机过程可以用来对风险进行评估和预测。

比如在保险行业,通过对随机过程的分析,可以评估不同风险事件的发生概率,从而合理确定保险费率。

六、物理系统建模在物理系统的建模中,随机过程也是一个重要的工具。

比如在材料科学中,材料的疲劳寿命通常也是一个随机变量,可以用随机过程来描述。

通过对随机过程的分析,可以预测材料的寿命,从而制定合理的材料使用方案。

综上所述,随机过程在许多领域中都有着广泛的应用。

从排队论到金融工程,从信号处理到优化问题,从风险评估到物理系统建模,随机过程都为解决实际问题提供了有力的工具和方法。

应用随机过程riemann-stieltjes积分_理论说明

应用随机过程riemann-stieltjes积分_理论说明

应用随机过程riemann-stieltjes积分理论说明1. 引言1.1 概述随机过程是概率论与数学统计中的重要研究对象,它描述了随时间变化的随机现象。

而Riemann-Stieltjes积分作为一种重要的积分形式,广泛应用于众多数学和科学领域。

本文旨在探讨应用随机过程riemann-stieltjes积分理论的相关问题,以期揭示其在实际应用中的潜在意义。

1.2 文章结构本文主要分为五个部分:引言、Riemann-Stieltjes积分理论、随机过程简介、Riemann-Stieltjes积分在随机过程中的应用以及结论与展望。

首先,在引言部分将简要介绍本文研究的背景和目标;接下来,将详细阐述Riemann-Stieltjes 积分理论及其定义、性质和应用;然后,介绍随机过程的基本知识、分类和特点;然后,深入讨论Riemann-Stieltjes积分在随机过程中的具体应用,包括引入、计算方法和实例研究;最后,在结论与展望部分总结文章内容发现,讨论不足之处并展望Riemann-Stieltjes积分在随机过程中更多的应用方向。

1.3 目的本文旨在探究Riemann-Stieltjes积分理论在随机过程中的应用。

首先,将介绍Riemann-Stieltjes积分的定义和性质,为后续的讨论奠定基础。

接着,重点关注随机过程的概念、分类和特点,以揭示其与随机变量之间的区别。

随后,在具体应用方面,将深入研究Riemann-Stieltjes积分在随机过程建模中的引入、计算方法和实例研究,并探讨其在实际应用中的意义。

最后,对本文进行总结归纳,并提出可能存在的不足之处,并展望Riemann-Stieltjes积分在随机过程中更多的潜在应用方向。

2. Riemann-Stieltjes积分理论:2.1 Riemann-Stieltjes积分的定义:Riemann-Stieltjes积分是一种对函数在有限区间上进行积分的扩展。

应用随机过程4-更新过程

应用随机过程4-更新过程

N (t ) k 1
X
k
, t 0
假设2
c (1 )
其中 0 称为 相 对安 全 负载 。
U (t ) , a.s. {ct S (t ), t 0}为齐次的独立增量过程。盈余过程 lim t 当盈余过程取负值时,称保险公司“破产”。T inf{t : U (t ) 0}
2010-9-2
定理4.3.2
(Blackwell更新定理)
记 E( X n ) ,
(1). 若 F 不是格点的,则对一切 a 0 ,当 t 时 a M (t a ) M (t )
(2). 若 F 是格点的,周期为 d,则当 n 时 d P{在nd处发生更新}
E[TN ( t ) 1 ] E[ X 1 X 2 X N ( t ) 1 ] E ( X 1 ) E ( N (t ) 1)
二* 、更新方程在人口学中的一个应用
设 B (t ) 为 t 时刻女婴的出生率,已知过去的 B (t ),t 0 ,要预测未 来的 B (t ),t 0 。


注: Feller初等更新定理是Blackwell更新定理的特殊情形。
2010-9-2
理学院 施三支
定理4.3.3
(关键更新定理)
记 E ( X n ) ,设函数 h (t ), t [0, ] ,满足
(1). h(t ) 非负不增;(2).


0
h(t ) dt 。 H (t ) 是更新方程
2010-9-2 理学院 施三支
例4.3.1
(剩余寿命与年龄的极限分布)
以 r (t ) TN ( t ) 1 t 表示时刻 t 的剩余寿命,即从 t 开始到下 次更新的时间,s (t ) t TN ( t ) 为 t 时刻的年龄。 求 r (t ) 和 s (t ) 的 极限分布。

应用随机过程-教学大纲

应用随机过程-教学大纲

《应用随机过程》教学大纲“Applied Stochastic Process” Course Outline课程编号:152063A课程类型:专业选修课总学时:48 讲课学时:48 实验(上机)学时:0学分:3适用对象:经济学、管理学、统计学、金融学等先修课程:概率论与数理统计、线性代数、微积分Course Code: 152063ACourse Type: Discipline basic coursePeriods: 48 Lecture: 48 Experiment (Computer): 0Credits: 3Applicable Subjects:Economics, Management, Statistics, Finance etc.Preparatory Courses: Probability and Mathematical Statistics, Linear Algebra, Mathematical Analysis一、课程的教学目标这是一门向经济学和管理学相关专业本科生介绍随机过程的理论方法和实际应用的专业选修课程。

本课程在学生已经扎实掌握概率论和数理统计基础知识的前提下,介绍随机过程中的基本概念和结果。

本课程主要训练学生的如下能力:(1)灵活组合运用微积分,线性代数和概率论解决数学问题的能力;(2)进一步的抽象思维和符号运算能力;(3)把实际问题抽象为理论模型,再把理论结果结合实际情况进行解释的能力;(4)利用计算机和MATLAB软件解决复杂计算问题和无解析解的问题的能力。

学习完本课程后,学生们能对随机过程及其应用有基本的认识,并且具有今后进一步学习高级随机过程理论,现代金融工程和随机控制理论和从事相关工作的专业基础。

The course of Applied Stochastic Process introduces theory and application of stochastic process to undergraduate students. Students are assumed to have already finished their study of undergraduate level probability and statistics. Students train thefollowing abilities this course: (1) methodologically applying calculus, linear algebra and probability theory to new mathematical problems; (2) advanced logical reasoning and symbol handling; (3) building mathematical models from real world problems, and then translating mathematical results back to fit the original question; (4) employing computers and MATLAB software to solve computationally complexed problems and/or problems without closed form solution. Upon finishing the course, students can gain a basic understanding of the theory and application of stochastic process, and build a foundation for studying advanced stochastic process theory, modern financial engineering and stochastic control theory, as well as performing relevant work.二、教学基本要求本课程讲述随机过程的基础理论结果及其应用。

应用随机过程-更新过程(PDF)

应用随机过程-更新过程(PDF)
第4章 更新过程
4.1 更新过程的定义及若干分布 4.2 更新方程及其应用 4.3 更新定理 4.4 Lundberger-Cramer 破产论 4.5 更新过程的推广
2010-9-2
理学院 施三支
4.1 更新过程的定义及若干分布
一、更新过程的定义
定义4.1.1 设{ X n , n 1,2, }是独立同分布的非负随机变量列,
t
其中f
(t)
m(t) F (t )。
f
(t) 0 m(t s) f
(s)ds
t
定义4.2.1 称积分方程 K (t) H (t) K (t s)dF (s) 为更新方程 0
其中 H (t),F (t) 为已知,且当 t 0时,H (t) F (t) 0。
当 H (t) 有上界时,称之为适定的。
假定1 {X k , k 1}是恒正的、独立同分布的随机变量列,
F (x) 是 X1 分布函数, 是 X1 的期望;{N (t), t 0} 是参数为 ,
且与{X k , k 1}独立的泊松过程。
2010-9-2
理学院 施三支
N (t)
到t时刻为止的索赔总额: S(t) X k ,t 0 k 1
则它表示初始盈余为u时,保险公司永不破产的概率,称为生存概率
2010-9-2
理学院 施三支
4.5 更新过程的推广
一、延迟更新过程
更新过程要求时间间隔是独立同分布的序列,如果放宽第一个时 间间隔X1,允许其分布不同,则由X1 ,X2 ,…确定的计数过程为 延迟更新过程。
二、更新回报过程
N (t)
设 R(t) Ri , 其 中 {N (t), t 0} 是 一 个 更 新 过 程 , i 1

应用随机过程更新定理

应用随机过程更新定理

(1) 在远离原点的长度为a的区间内,更新次数的期望

a
, 因为这里的
1
是长时间后更新过程发生的平均
速率.
(2) 如果X是格点的,更新只能发生在d的整数倍处, 从而更新次数依赖区间上形如nd的点的数目,而同样 长度的区间内含有此类点的数目是可以不同的,故 (1)不成立了.
本节的最后一个更新定理——Smith关键更新定理,它 是与定理4.6等价的.
K(t)
0
E(TN(t)+1|X1
=s)d F(s)
0t[s+E(TN(t-s)1)]d F(s)+
s d F(s)
t

EX1
t K(t-s)d F(s),
0
显然,这是更新方程. 由定理4.4知
K(t) EX1
t 0
EX1d M(s)
EX1
[1
M(t)]
EX1 [1EN(t)] EX1 E[N(t) 1].
N(t)+1
E[TN(t)+1] E[ Xi ] EX1 E[N(t)+1]. i1
证明:考虑TN(t)+1关于首次更新时刻X1的条件期望:
s E(TN(t)+1 | X1=s) s E(TN(t-s)+1)
s>t st .
第13页/共15页
令K(t) E(TN(t)+1),则
(II). 若F是格点分布,对0 c<d,有
limn
H (c
nd )
d
n0
h(c
nd ),

论述一下定理4.6与4.7的等价性.
我们仅仅考虑F不是格点的,先取一个满足定理4.7的函数h(t):

应用随机过程张波课后答案

应用随机过程张波课后答案

应用随机过程张波课后答案应用随机过程张波课后答案【篇一:随机过程期末论文】ass=txt>【摘要】:通过市场调查研究发现,很多现象是可以用随机过程来描述的。

比如说,企业在人力资源需求方面就是一个随着时间不断变化的随机过程。

本文试图将马尔科夫链引入,并运用其原理以及特性,对企业人力资源需求方面进行分析和预测,从而帮助企业明确未来人力需求趋势,做好人才储备工作。

【关键字】:马尔科夫链;人力资源;预测;需求一、马尔科夫链原理简介一个经济系统x(t)是随时间t变化的随机变量。

人们可根据该经济系统在时刻t0所处的状态推出它在任何一个较后时刻t(t0)的状态。

由此原则,可得到这样一个基本方法:系统内x(t)在给定的时刻tn的状态x(tn)=xn,可根据它在任何较早时刻tn?1(tn)所处的状态x(tn?1)=xn-1推出,而不依赖于系统在时刻以tn?1前的历史状态。

满足这一条件的系统所观测结果的随机过程,就称之为马尔科夫过程。

而马尔科夫链是状态离散的一类特殊马尔可夫过程, 即过程的发展可看作是在某些值(称为过程的“状态”)之间一系列转移, 而且具有下面性质:一旦过程处于一给定状态, 则过程未来发展只依赖于这个状态, 而与它过去到达过的状态无关。

假设过程的时间参数集任意n个时刻为t1t2......tn,系统x(t)在时刻ti 处于状态xi,即x(ti)=xi(i=1,2,...,n-1),则x(tn)的条件概率分布只依赖于x(tn-1)=xn-1最近的已知值,即:p{x(tn)?xn|x(t1)=x1,...,x(tn-1)=xn-1}=p{x(tn)xn|x(tn-1)=xn-1} 可以直观地解释为当给定过程“现在”的条件下,它的“将来”与“过去”无关。

二、状态转移矩阵运用马尔科夫链进行预测的关键在于:建立状态转移概率矩阵(指系统在时刻t所处状态,转变为时刻t+1所处状态时与之相对应的一个条件概率)。

应用随机过程第五版张波商豪教案

应用随机过程第五版张波商豪教案

应用随机过程第五版张波商豪教案摘要:随机过程是概率论中的重要内容,通过对随机过程的学习和应用,可以帮助我们更好地理解和解决实际问题。

本教案分析了应用随机过程的相关案例,并结合张波商豪教授的第五版教材进行教学设计。

引言:应用随机过程是一个有趣且实用的领域,它可以帮助我们了解和模拟现实世界中的随机现象。

在现代科学和工程领域,应用随机过程的知识和方法被广泛应用于通信、金融、电力系统、生物医学工程等诸多领域。

通过学习和应用随机过程,我们可以更好地理解和预测这些领域中的随机现象,提高问题解决的效率和准确性。

主体:1. 应用随机过程的基本概念和性质1.1 随机过程的定义和分类1.2 随机过程的性质:平稳性、独立增量性、Markov性2. 马尔可夫链的建模和分析2.1 马尔可夫链的定义和特性2.2 马尔可夫链的转移概率矩阵2.3 马尔可夫链的平稳分布2.4 马尔可夫链的应用案例3. 排队论的应用3.1 排队论的基本概念和模型3.2 M/M/1排队模型3.3 M/M/1排队模型的应用4. 随机过程在金融工程中的应用4.1 随机过程模型在金融衍生品定价中的应用4.2 随机过程模型在风险评估中的应用4.3 随机过程模型在投资组合优化中的应用5. 随机过程在通信系统中的应用5.1 随机过程模型在信道建模中的应用5.2 随机过程模型在网络性能评估中的应用5.3 随机过程模型在调度算法设计中的应用结论:应用随机过程是一个广泛而深入的领域,通过学习和应用随机过程的方法,我们可以更好地理解和解决实际问题。

本教案以张波商豪教授的第五版教材为基础,结合相关案例进行教学设计,旨在帮助学生掌握随机过程的基本概念和方法,并将其应用到实际问题中。

通过本教案的学习,学生将能够提高问题解决的能力和创新思维,为将来的学习和研究打下坚实的基础。

应用随机过程-期末复习资料

应用随机过程-期末复习资料

第一章 随机过程的基本概念一、随机过程的定义例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。

例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。

令X n 表示第n 次统计所得的值,则X n 是随机变量。

为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。

例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。

以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。

例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。

乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。

定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ℑΩ上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。

E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。

例1:E 为{0,1} 例2:E 为[0, 10]例3:E 为},2,2,1,1,0{ -- 例4:E 都为),0[∞+注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。

(2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n+1
=Fn(t)-Fn+1(t), 这里Fn 是F的n重卷积.
接下来我们讨论EN(t)的性质。
这里的EN(t)称为更新函数,记作M(t).
注:更新函数M(t)就是更新过程{N(t),tห้องสมุดไป่ตู้0}的均值函数, 它不是一个r.v.,而是关于t的函数。
定理 4.1
M(t ) i=1 Fn(t ).

定义3.3: 如果事件发生时间间隔X1,X2,X3,…,是一列 独立的且指数分布的随机变量,那么{Nt, t>=0}是Poisson 过程.
我们作如下的一个推广:
保留X1,X2, ...的独立性和同分布性,但是该分布 是任意的,不再仅仅是指数分布的.
由此得到的计数过程就是更新过程, 其定义如下:
定义 4.1 设{X n,n 1}是一列独立同分布的非负r.v.s, 分布函数为F(x),且F(0)<1. 令 T0 0,Tn i 1 Xi .
有限次更新,从而 P(N(t)<)=1。
2). 两个等价事件: {N(t) n} {Tn t}; {N(t) n} {Tn t<Tn+1};
下面我们来看N(t)的分布。
P(N(t) n)=P(Tn t<Tn+1 ) =P(Tn t)-P(Tn+1 t) =P( i=1 Xi t)-P( i=1 Xi t)
第四章
Renewal process
1. 2. 3. 4. 5. 定义及若干性质 更新方程及其应用 更新定理 Lundberg-Cramer 破产论 更新过程的推广
4.1 更新过程的定义及若干分布
4.1.1 更新过程的定义
首先回顾 Poisson 过程. 定义3.3告诉我们:
在Poisson过程中,相邻事件发生的时间间隔X1, X 2,...是一列独立同分布的随机变量,此时的 "同分布"是指他们服从同一个指数分布.
n
n 证明 M(t ) EN(t ) i=1 P(N(t) n)
i=1 P(Tn t ) i=1 Fn (t ).
n n
定理 4. 2 M(t )是关于t不减的,且对0 t<, 有M(t)<. 证明 由于N(t )是关于t不减的,故M(t)也是不减的.下证
所以, Fn (t ) P( i 1 X i t) P( i 1 (X i t))=[F(t )]n ,
n n
最后一个等号是由于{Xi,i 1}的独立同分布性.
再由定理4.1及F(t)<1知, M(t) n1 Fn (t ) n1[F(t)]n

F (t )(1 F (t )) 1 .
如果我们将事件发生一次称为一次更新,那么 定义4.1中的X n 就是第n-1次和第n次更新的间隔 时间,Tn是第n次更新发生的时刻,而N(t)就是 t时刻之前发生的更新次数.
更新过程可以模拟机器零件更换:
如在0时刻安装一零件,并开始工作,经过时间X1,在T1 时刻发生损坏,立即换新的零件并开始工作,又经过时 间X 2,在T2时刻有坏掉了,同样还第三个,依次下去, ... 我们可以认为这些零件的使用寿命是i.i.d.的,显然到 t时刻为之所更换的零件数目就构成一个更新过程.
n
对t 0, 记 N(t)= sup{n, Tn t}, 称{N(t),t 0}为更新过程.
图示:
X1 X2 T1 T2 X3 T3 X4 T4 X5 T5 X6 t T6
T0
显然,更新过程亦是一个计数过程,并且是 Poisson 过程把时间间隔由指数分布推广到一般分布的情形.
定义4.1定义的过程为什么被称为更新过程呢?
4.1.2 N(t)的分布及EN(t)的性质
我们先讨论一下更新过程的一些性质:
1). 由{X ,n 1}的独立同分布性及强大数律,知 n Tn i 1 Xi 0 以概率1成立。 EX1 n n 所以,当n 时,Tn ,换言之,无穷多次更新只
n
能发生在无限长时间内, 即在有限时间内最多只能发生
M(t )的有限性。首先我们先确定一个结论,即
Fn (t ) [F(t )]n .
实际上,由{Xi,i 1}的非负性知,事件( i 1 X i t)
n
一定能推出( i 1 (X i t)),即( i 1 X i t) ( i 1 (X i t)).
n n n
相关文档
最新文档