《扇形的认识》教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《扇形》教学设计
一、教学内容分析:
这部分内容是在学生学习了圆的认识的基础上进行教学的,学好这部分内容有利于提高学生的动手能力,增强创新意识,而且进一步发展了学生对空间与图形的兴趣,获得解决实际问题的方法有着重要的价值。
二、教学对象分析:
学生在以前已经认识了圆,又在前面三课时的基础上来认识扇形,学生有了一定的知识积累和生活经验,对扇形的认识也打下了一定的基础,对于学生来说认识扇形很简单,但是在认识扇形的基础上认识圆心角,测量圆心角度数对于学生来说还是比较难的,
三、教学目标:
1.理解弧、圆心角、扇形等概念。
2.理解扇形的大小与圆心角和半径的关系。
3.能按要求画扇形。
四、教学重点、难点分析:
1.教学重点:认识弧、圆心角和扇形。
2.教学难点:如何按要求画扇形。
五、教学流程图:
六、教学过程:
(一)复习导入
教师把事先准备的画着三个角的纸分发给学生,让学生量出这三个角的大小并表示出来.
(二)新课展开
1.认识弧。
(1)教师直观演示:先在黑板上画一个虚线圆,再在圆上任意取两点A和B,然后用实线连接AB两点。
(2)设问:AB两点间的实线部分是在什么上面画出来的?模仿老师的画法,请你也在一个虚线圆中画一段实线。
(3)揭示概念,指导读法。
①学生练习后,教师直接指明:圆上AB两点之间的部分就叫做弧。
读作弧AB 。
(4)练习读法。
投影出示一组图形,让学生认识弧,并读出来。
2.认识扇形。
(1)教师用彩笔连接A点和圆心O,B点和圆心O。
并且用彩笔将弧AB也连接起来,再用彩笔将扇形涂色。
设问:
① 涂上彩色的图形同我们日常生活用品中的什么东西有点相似?(扇子)
②它是圆的一部分,是由什么和什么围成的图形呢?
(3)根据学生回答,归纳并揭示:扇形是由两条半径和圆上的一段曲线(弧)围成的。
指导学生练习。
在刚才认识的圆中画出扇形。
投影显示练一练第1题,要求学生回答时讲明理由。
继续认识扇形与三角形的关系。
设问:想一想,扇形与三角形有什么不同?
3.认识圆心角。
(1)在例图中标出圆心角∠1,指出像∠1这样,顶点在圆心的角叫做圆心角。
(2)观察并设问:圆心角是由什么组成的?顶点必须在哪里?
(3)投影显示,练习第1题,指出哪些是圆心角?哪些不是?简单说明理由。
(4)教师出示一组相等的圆,复片投影,分别显示圆心角是150°20°
90°、40°四个扇形,通过直观比较。
设问:扇形的大小与圆心角的大小有什么关系?
归纳:在同圆或等圆中,圆心角越大,扇形越大;反之,圆心角越小,扇形就越小。
教师出示圆心角相同,但半径不同的一组圆,同样进行直观比较,让学生自己归纳出扇形的大小与圆半径的关系。
4.指导画扇形。
(1)练习:画一个半径3分米,圆心角是80°的扇形。
(2)讨论作图步骤,边讨论边演示:
(三)巩固练习
书面作业,完成P.10第2题。
(四)全课小结。
今天学了什么?说说你知道了哪些知识?
板书设计:
扇形的认识
扇形是由两条半径和圆上一段曲线围成的。
在同圆或等圆中,圆心角越大,扇形越大;反之,圆心角越小,扇形就越小。
教学反思:
本课在人教版教材中属于选学内容,在冀教版中改成了讲读内容,我认为是十分必要的。
因为在日常生活中,扇形和圆形一样,都是无处不在的。
而且,扇形里面蕴含的数学信息更是十分丰富的。
所以,在教学中,我循序渐进,将扇形的组成、大小的关系等一一道来。
学生对扇形顶角的理解不是很到位,我借用扇子一把,形象的给学生诠释了扇形的大小和圆心角有关,学生恍然大悟了。
这为以后进行扇形统计图的教学打下了坚实的基础。
同时,对半径、圆心角的认识,也为以后进行非正规圆面积和周长的计算做好了铺垫。
总之,扇形的认识这一节内容作为讲读来对待,我认为是十分有效的。