苏州市市区2016届中考数学一模试卷

合集下载

江苏省苏州市2016年中考数学试卷及答案解析(word版)

江苏省苏州市2016年中考数学试卷及答案解析(word版)

2016年江苏省苏州市中考数学试卷一、选择题(共10小题, 21 . 1的倒数是()A 3 r 3-2A .一B .- — C . — D .22 3每小题3分,满分30分)2 •肥皂泡的泡壁厚度大约是0.0007mm , 0.0007用科学 记数法表示为( ) -3- 3- 4- 5A . 0.7 X 10B . 7 X10C . 7 X10D . 7 X10 3 .下列运算结果正确的是()2 2A. a+2b=3ab B . 3a - 2a =12482332C . a ?a =aD . ( - a b ) +( a b ) = - b4. 一次数学测试后,某班40名学生的成绩被分为5组,第1〜4组的频数分 别为12、10、6、8,则第5组的频率是()A . 0.1B . 0.2C . 0.3D . 0.4(y 1=y 2D .无法确定阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的 阶梯水价”标准收费,某中学 研究学习小组的同学们在社会实践活动中调查了 30户家庭某月的用水量,如 用水量(吨)1520 25 30 35 户数36795则这30户家庭该用用水量的众数和中位数分别是( )A . 25 , 27B . 25 , 25C . 30 , 27D . 30 , 258.如图,长4m 的楼梯AB 的倾斜角/ ABD 为60 °为了改善楼梯的安全 性 能,准备重新建造楼b 分别相交于A 、B 两点,过点A 作直线I °则/ 2的度数为() (4, y 2) 都在反比例函数y= — ( k v 0)的图象上,则 A. y 1、y 2的大小关系为 y 1 > y 2B . y 1v y 2C .根据国家发改委实施28已知点A ( 2, y 1)、 B 6. 5.如图,直线a // b ,直线I 与a 、若/仁58梯,使其倾斜角/ ACD为45。

江苏省苏州市2016年中考数学模拟试卷(一)解析【解析版】

江苏省苏州市2016年中考数学模拟试卷(一)解析【解析版】

2016年江苏省苏州市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列式子结果为负数的是()A.(﹣3)0B.﹣|﹣3| C.(﹣3)2D.(﹣3)﹣2【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【试题解析】解:A、(﹣3)0=1>0;C、(﹣3)2=9>0;D、(﹣3)﹣2=>0;B、﹣|﹣3|=﹣3<0.【答案】B.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5 D.2.1×10﹣5【考点】科学记数法—表示较小的数.【试题解析】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;【答案】:D3.下列计算正确的是()A.(2a2)3=8a5B.()2=9 C.3﹣=3 D.﹣a8÷a4=﹣a4【考点】幂的乘方与积的乘方;算术平方根;同底数幂的除法;二次根式的加减法.【试题解析】解:A、(2a2)3=8a6,原式计算错误,故本选项错误;B、()2=3,原式计算错误,故本选项错误;C、3﹣=2,原式计算错误,故本选项错误;D、﹣a8÷a4=﹣a4,原式计算正确,故本选项正确.【答案】D.4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【考点】全面调查与抽样调查.【试题解析】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;【答案】:B.5.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【试题解析】解:应该将②涂黑.【答案】B.6.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【试题解析】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;【答案】:A.7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【试题解析】解:从上面看,图2的俯视图是正方形,有一条对角线.【答案】C.8.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【试题解析】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB∥OE,∴∠DBF=∠OEF,在△BDF和△EOF中,,∴△BDF ≌△EOF (AAS ),∴S 阴影=S 扇形DOE =×π×12=.【答案】B .9.在△ABC 中,∠ABC=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A .3个B .4个C .5个D .6个【考点】勾股定理;含30度角的直角三角形.【试题解析】解:如图,过点A 作AD ⊥BC 于D ,∵∠ABC=30°,AB=10,∴AD=AB=5,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6个.【答案】D .10.二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<n B.d<m<n<e C.d<m<e<n D.m<d<n<e【考点】抛物线与x轴的交点.【试题解析】解:二次函数y=x2+px+q+1图象如图所示:结合图象可知方程x2+px+q﹣5=0的两个实数根即为函数y=x2+px+q+1和y=6的交点,即d<m<n<e,【答案】B.二、填空题(本大题共8小题,每小题3分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【考点】函数自变量的取值范围.【试题解析】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.【答案】x≥﹣1且x≠0.12.若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】点的坐标.【试题解析】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.【答案】0<a<2.13.分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【考点】提公因式法与公式法的综合运用.【试题解析】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.【答案】x(2x﹣y)2.14.方程x(x﹣2)=﹣(x﹣2)的根是x1=2,x2=﹣1.【考点】解一元二次方程-因式分解法.【试题解析】解:x(x﹣2)=﹣(x﹣2)移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.【答案】x1=2,x2=﹣1.15.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1=1.【考点】一次函数图象上点的坐标特征.【试题解析】解:∵点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,∴,解得,∴原式=﹣4×﹣1=1.【答案】1.16.某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【考点】规律型:数字的变化类.【试题解析】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:( +1)=2,( +1)=,( +1)=…(+1)=,( +1)=,故这样得到的20个数的积为:2×××…××=21, 【答案】21.17.如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 15°或165° .【考点】旋转的性质;等边三角形的性质;正方形的性质.【试题解析】解:①当正三角形AEF 在正方形ABCD 的内部时,如图1,∵正方形ABCD 与正三角形AEF 的顶点A 重合,当BE=DF 时,在△ABE 与△ADF 中,,∴△ABE ≌△ADF (SSS ),∴∠BAE=∠FAD ,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF 在正方形ABCD 的外部时.∵正方形ABCD 与正三角形AEF 的顶点A 重合,当BE=DF 时,∴AB=AD BE=DF AE=AF ,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°【答案】15°或165°.18.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2016=32015.【考点】切线的性质;一次函数图象上点的坐标特征.【试题解析】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2016=32015.【答案】32015.三、解答题(本大题共10小题,共76分)19.计算:﹣2cos30°+()﹣2﹣|1﹣|.【考点】特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.【试题解析】解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.【答案】+5.20.化简:÷(x+2﹣)【考点】分式的混合运算.【试题解析】解:÷(x+2﹣)=÷()=•=.【答案】.21.解不等式组:,并求它的整数解的和.【考点】一元一次不等式组的整数解.【试题解析】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣2<x≤1∴不等式组的整数解的和为﹣1+0+1=0.【答案】022.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);,△ABC的面积为S△,试说明>π.(2)记△ABC的外接圆的面积为S圆【考点】作图—复杂作图;勾股定理;三角形的外接圆与外心.【试题解析】解:(1)如图所示:(2)∵△ABC的外接圆的面积为S,圆=π×()2=π,∴S圆△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【答案】见解析23.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【试题解析】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【答案】见解析24.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【试题解析】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【答案】见解析26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y 值表示7:00时的存量,x=2时的y 值表示8:00时的存量…依此类推.他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系. 时段 x 还车数(辆)借车数 (辆) 存量y (辆) 6:00﹣7:00 145 5 100 7:00﹣8:00243 11 n … … … … …根据所给图表信息,解决下列问题:(1)m= 60 ,解释m 的实际意义: 该停车场当日6:00时的自行车数 ;(2)求整点时刻的自行车存量y 与x 之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【试题解析】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.【答案】见解析27.如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【试题解析】解:(1)∵A(5,0),B(3,0),∴OA=5,OB=3,∵∠CBO=45°,∴OC=OB=3,∴点C的坐标(0,3);(2)①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∵CO=3,∴OP=CO=,∵Q(﹣4,0),∴QP=+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,②当P在点B的右侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∵CO=3,∴OP=CO=3,∵Q(﹣4,0),∴QP=3+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述当∠BCP=15°时,t的值为或;(3)①如图1,当PC⊥BC时,⊙P与BC相切,∵∠CBO=45°,∴∠CPB=45°,CP=BC,∵CO=3,∴PO=3,∴QP=QO﹣PO=4﹣3=1,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=0.5(秒),②如图2,当PC⊥CD时,⊙P与CD相切,∵QO=4,点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=4÷2=2(秒)③如图3,当PA⊥AD时,⊙P与AD相切,设PA=r∵OA=5,OC=3,∴OP2+OC2=PC2,即(5﹣r)2+32=r2,解得:r=,∴QP=4+5﹣=,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述t1=0.5秒,t2=2秒,t3=秒.【答案】见解析28.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.【试题解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB ′﹣B ′N=t ﹣1,∴当2<t ≤时,S=S 梯形GNMF ﹣S △FKL =×2×(t ﹣1+t )﹣(t ﹣)(t ﹣1)=﹣t 2+2t﹣,④如图⑥,当<t ≤4时, ∵B ′L=B ′C=(6﹣t ),EK=EC=(4﹣t ),B ′N=B ′C=(6﹣t ),EM=EC=(4﹣t ),S=S 梯形MNLK =S 梯形B ′EKL ﹣S 梯形B ′EMN =﹣t+.综上所述:当0≤t ≤时,S=t 2,当<t ≤2时,S=﹣t 2+t ﹣;当2<t ≤时,S=﹣t 2+2t ﹣,当<t ≤4时,S=﹣t+.最大最全最精的教育资源网 全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 【答案】见解析。

2016年江苏省苏州市吴中区中考数学一模试卷带解析答案

2016年江苏省苏州市吴中区中考数学一模试卷带解析答案

17. (3 分)如图,半圆 O 的直径 AE=4,点 B,C,D 均在半圆上,若 AB=BC, CD=DE,连接 OB,OD,则图中阴影部分的面积为 .
18. (3 分)如图,在矩形 ABCD 中,AB=10,BC=5,若点 M、N 分别是线段 AC、AB 上的两个动点,则 BM+MN 的最小值为
25. (8 分)如图,一次函数 y=kx+b(k<0)的图象经过点 C(3,0) ,且与两 坐标轴围成的三角形的面积为 3. (1)求该一次函数的解析式; (2)若反比例函数 y= 的图象与该一次函数的图象交于二、四象限内的 A、B
第 4 页(共 27 页)
两点,且 AC=2BC,求 m 的值.
9. (3 分)如图,已知▱ ABCD 的对角线 BD=4cm,将▱ ABCD 绕其对称中心 O 旋转 180°,则点 D 所转过的路径长为( )
A.4πcm
B.3πcm
C.2πcm
D.πcm
10. (3 分)给出下列命题及函数 y=x,y=x2 和 y= 的图象: ①如果 >a>a2,那么 0<a<1; ②如果 a2>a> ,那么 a>1; ③如果 >a2>a,那么﹣1<a<0; ④如果 苏州市吴中区中考一模数学试卷
一、选择题(每题 3 分) 1. (3 分)2 的倒数是( A. B.﹣ ) C. (a3)2=a9 D.a2+a3=a5 ) C.± D.2
26. (10 分)如图,AB 是⊙O 的直径,弦 CD⊥AB 于 H,过 CD 延长线上一点 E 作⊙O 的切线交 AB 的延长线于 F.切点为 G,连接 AG 交 CD 于 K. (1)求证:KE=GE; (2)若 KG2=KD•GE,试判断 AC 与 EF 的位置关系,并说明理由; (3)在(2)的条件下,若 sinE= ,AK= ,求 FG 的长.

江苏苏州2016中考试题数学卷(含答案)汇总

江苏苏州2016中考试题数学卷(含答案)汇总

2016年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合; 3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。

一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.23的倒数是 A. 32 B. 32- C. 23 D. 23-2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为()A. 30.710-⨯B. 3710-⨯C. 4710-⨯D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -= C. 248a a a ⋅= D. 2332()()a b a b b -÷=-4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)ky k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y =D.无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示:则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30 ,258.如图,长4 m的楼梯AB的倾斜角∠ABD为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°免责调整后的楼梯AC的长为A. B. C. 2)m D. 2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中的,点E在AB上,当△CDE的周长最小时,点E的坐标为A. (3,1)B.4(3,)3C.5(3,)3D. (3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为A.2B. 94C.52D.3二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上..........12.分解因式:21x-=_________13.当x=________时,分式225xx-+的值为0.13.要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s),乙的方差为0.008(2s),则这10次测试成绩比较稳定的是_________运动员。

2016年江苏省苏州市中考数学试卷及答案

2016年江苏省苏州市中考数学试卷及答案

2016年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟.一、本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上。

........... 1.的倒数是( ) A .B .C .D .2.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 3.下列运算结果正确的是( )A .a+2b=3abB .3a 2﹣2a 2=1C .a 2•a 4=a 8D .(﹣a 2b )3÷(a 3b )2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是( )A .0.1B .0.2C .0.3D .0.45.如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为( ) A .58° B .42° C .32° D .28° 6.已知点A (2,y 1)、B (4,y 2)都在反比例函数y=xk(k <0)的图象上,则y 1、y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:则这30户家庭该用用水量的众数和中位数分别是( )A .25,27B .25,25C .30,27D .30,25第5题8.如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32mB .26mC .(23﹣2)mD .(26﹣2)m9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ) A .(3,1) B .(3,34) C .(3,35) D .(3,2) 10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,则△BEF 的面积为( ) A .2 B .49 C .25D .3第8题 第9题 第10题二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.分解因式:x 2﹣1= . 12.当x= 时,分式522+-x x 的值为0. 13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s ),甲的方差为0.024(s 2),乙的方差为0.008(s 2),则这10次测试成绩比较稳定的是 运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是 度.15.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .16.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D ,CD=3,则图中阴影部分的面积为 .第16题 第17题 第18题17.如图,在△ABC 中,AB=10,∠B=60°,点D 、E 分别在AB 、BC 上,且BD=BE=4,将△BDE 沿DE 所在直线折叠得到△B′DE (点B′在四边形ADEC 内),连接AB′,则AB′的长为 . 18.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,32),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线第一次垂直时,点P 的坐标为 .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:(5)2+|﹣3|﹣(π+)0.20.解不等式2x ﹣1>21-x 3,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=3.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M 的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M 落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形; (2)若AC=8,BD=6,求△ADE 的周长.25.如图,一次函数y=k x+b 的图象与x 轴交于点A ,与反比例函数y=xm(x >0)的图象交于点B (2,n ),过点B 作BC ⊥x 轴于点C ,点P (3n ﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC ,求反比例函数和一次函数的表达式.26.如图,AB 是⊙O 的直径,D 、E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD=BD ,连接AC 交⊙O 于点F ,连接AE 、DE 、DF . (1)证明:∠E=∠C ;(2)若∠E=55°,求∠BDF 的度数;(3)设DE 交AB 于点G ,若DF=4,cos B=32,E 是的中点,求EG•ED 的值.27.如图,在矩形ABCD 中,AB=6cm ,AD=8cm ,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm/s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3m/s ,以O 为圆心,0.8cm 为半径作⊙O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <58). (1)如图1,连接DQ 平分∠BDC 时,t 的值为 ;(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值; (3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与⊙O 相切时,求t 的值;并判断此时PM 与⊙O 是否也相切?说明理由.28.如图,直线l :y=﹣3x+3与x 轴、y 轴分别相交于A 、B 两点,抛物线y=ax 2﹣2ax+a+4(a <0)经过点B .(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).第11 页共11 页。

2016年苏州市中考一模数学试卷

2016年苏州市中考一模数学试卷

2016届江苏省苏州市中考模拟数学一、选择题(共10小题;共50分)1. 的绝对值是A. B. C. D.2. 新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为公里,用科学记数法表示为A. B. C. D.3. 如图,,,则的度数是A. B. C. D.4. 下列运算不正确的是A. B. C. D.5. 若代数式与的值相等,则的值是A. B. C. D.6. 太仓港城中学足球队的名队员的年龄如表所示:这名队员年龄的众数和中位数分别是A. 岁,岁B. 岁,岁C. 岁,岁D. 岁,岁7. 如图,在平面直角坐标系中,的顶点都在方格纸的格点上,如果将先向右平移个单位长度,在向下平移个单位长度,得到,那么点的对应点的坐标为A. B. C. D.8. 如图,一次函数与一次函数的图象交于点,则关于的不等式>的解集是A. B. C. D.9. 如图,正方形的对角线与相交于点,的角平分线分别交、于,两点.若,则线段的长为A. B. C. D.10. 如图,抛物线与轴交于点,,把抛物线在轴及其上方的部分记作,将向右平移得,与轴交于点,.若直线与,共有个不同的交点,则的取值范围是A. B.C. D.二、填空题(共8小题;共40分)11. 分解因式:.12. 如图,是的切线,是切点,,,则的周长为(结果保留).13. 小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.14. 如图,等边三角形的顶点的坐标为,顶点在反比例函数的图象上,则.15. 函数=中,自变量的取值范围是.16. 已知关于的方程的两个根为、,则.17. 如图,在边长为的正方形中,是的中点,以为圆心,为半径作半圆,交,所在的直线于,两点,分别以直径、为直径作半圆,则阴影部分面积为.18. 如图,在菱形中,,,分别交、于点,,,连接,以下结论:;点到的距离是;;的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题(共10小题;共130分)19. 计算:.20. 解不等式组:.21. 先化简,再求值:,其中.22. 太仓和温州两地相距,乘坐高铁列车比乘坐普通快车能提前到达,已知高铁列车的平均行驶速度是普通快车的倍,求高铁列车的平均行驶速度.23. 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的人恰好是乙和丙的概率.24. (1)如图,在矩形中,,求证:;(2)如图,在圆内接四边形中,为圆心,,求的度数.25. 如图1,点、都在反比例函数>的图象上,过点作轴于,过点作轴于.(1)求的值和直线的函数关系式;(2)动点从点出发,以每秒个单位长度的速度沿折线向点运动,同时动点从点出发,以每秒个单位长度的速度沿折线向点运动,当动点运动到时,点也停止运动,设运动的时间为秒.设的面积为,写出与的函数关系式;如图2,当的在线段上运动时,如果作关于直线的对称图形,是否存在某时刻,使得点恰好落在反比例函数的图象上?若存在,求的坐标和的值;若不存在,请说明理由.26. 如图,是的直径,弦垂直平分半径,垂足为,,连接,过作平行线交延长线于点.(1)求的半径;(2)求证:是的切线;(3)若弦与直径交于点,当时,求图中阴影部分的面积.27. 抛物线过点,,与轴交于点.(1)求抛物线的函数表达式;(2)如图1,连接,以为边作平行四边形,若点在直线上方的抛物线上,为坐标平面内的一点,且平行四边形的面积为,求点的坐标;(3)如图2,过点,,三点,为直径,点为上的一动点(不与点,重合),为直角,边与的延长线交于,求线段长度的最大值.28. 如图,已知:在矩形的边上有一点,,以为圆心,长为半径作圆,交于,恰好与相切于,过作弦,弦.若点是边上一动点(点与,不重合),过作直线交于,再把沿着动直线对折,点的对应点为.设,与矩形重叠部分的面积为.(1)求证:四边形是菱形;(2)问的直角顶点能落在上吗?若能,求出此时的值;若不能,请说明理由;(3)求与之间的函数关系式,并直接写出与相切时,的值.答案第一部分1. A2. B3. C4. D5. B【解析】根据题意得:,去分母得:,解得:.6. B7. D8. C9. C 【解析】作于,如图,因为四边形为正方形,所以,所以为等腰直角三角形,所以,因为平分,所以,所以,所以,所以,,因为,所以,所以,所以,即,所以.10. D【解析】令,即,解得或,则点,,由于将向右平移个长度单位得,则解析式为,当与相切时,令,即,,解得,当过点时,即,,当时直线与、共有个不同的交点.第二部分11.12.【解析】连接,因为是的切线,是切点,所以,在中,,,,由勾股定理得:,则的周长为.13.14.【解析】过点作轴于点,因为是等边三角形,点的坐标为,所以,,所以,,所以,所以.15.16.17.【解析】根据图形可知阴影部分的面积两个小的半圆的面积的面积大半圆的面积.因为的半圆的直径,所以.在中,,所以两个小半圆的面积大半圆的面积.所以阴影部分的面积的面积.在中,,所以阴影部分的面积的面积.18.【解析】因为菱形,所以,因为,所以,,在与中,所以,所以正确;过点作,过点作,,如图:因为,,,所以,因为,所以,所以点到的距离是,故正确;因为,,所以,所以,所以的面积为,故错误;因为,所以,因为,所以,所以,所以,所以,故正确.第三部分19. 原式.20.解得:解得:故不等式组的解为:.原式21.当,即时,原式.22. 设普通快车的速度为时,由题意得:解得:经检验:是原分式方程的解,,答:高铁列车的平均行驶速度是时.23. (1)【解析】因为喜欢散文的有人,频率为,所以.(2)【解析】在扇形统计图中,“其他”类所占的百分比为 .(3)画树状图,如图所示:所有等可能的情况有种,其中恰好是丙与乙的情况有种,所以丙和乙.24. (1)因为四边形是矩形,所以,,因为,所以,在和中,所以,所以.(2)因为,所以,因为,,,四点共圆,所以,所以.25. (1)因为点、都在反比例函数的图象上,所以,所以,所以,即,设的解析式为,把、代入上式得:解得:所以直线的解析式为.(2)由题意知:,,当在上运动时,,当在上运动时,;存在,作轴,轴于,交于,则,,,由题意知:,,所以,所以,设,,则,,所以,解得:,,所以,当在反比例函数的图象上时,,解得:,因为反比例函数的图形在第一象限,所以,所以.当个长度单位时,恰好落在反比例函数的图象上.26. (1)连接.因为垂直平分半径,所以,因为,所以,,所以,所以.(2)由知:,,所以,所以,因为,所以,所以,所以,所以是的切线.(3)连接.因为,因为,所以,所以,.所以阴影扇形27. (1)将点,的坐标代入抛物线的解析式得:解得:所以抛物线得解析式为.(2)如图所示:设点的坐标为,因为平行四边形的面积为,所以,即:梯形.所以.化简得:解得:或因为,所以点的坐标为.(3)连接、.因为是圆的直径,所以.所以.又因为,所以.因为,,所以点的横坐标为,将代入抛物线的解析式得:,所以点的坐标为.设点的坐标为,因为,所以,解得:.所以点的坐标为,所以,在中,由勾股定理得:,所以点的坐标为.所以,.因为,所以.所以.所以.所以当为直径时,最大,此时最大.所以,所以.28. (1)连接,如图所示.因为四边形是矩形,所以,,.因为,所以.所以.所以.因为,所以.所以,因为与相切于点,所以.所以.所以.所以.所以.因为,.所以.所以.因为,所以.因为,所以四边形是平行四边形.因为,是的直径,所以与相切于点.因为与相切于点,所以.所以平行四边形是菱形.(2)的直角顶点能落在上.如图所示,点落到上.因为,所以.因为,所以.由折叠可得:.所以.因为,所以..所以.所以.所以,.所以.所以.所以.所以点与点重合.此时的直角顶点落在上,对应的的值为.所以当的直角顶点落在上时,对应的的值为.(3)如图,在中,.所以.所以.如图,,,.因为,所以.所以.因为,所以.综上所述:当时,;当时,.当与相切于点时,延长交于点,过点作,垂足为,如图所示.因为四边形是矩形,所以,,所以.因为,所以.所以.因为,所以四边形是矩形.所以,.所以.在中,.所以.所以.解得:.因为,所以.所以与相切时,的值为.。

2016江苏苏州市中考数学试题

2016江苏苏州市中考数学试题

2016年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。

一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.(2016 苏州 1,3分)23的倒数是 A. 32 B. 32- C. 23 D. 23- 答案:A2. (2016 苏州 2,3分)肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为()A. 30.710-⨯B. 3710-⨯C. 4710-⨯D. 5710-⨯答案:C3. (2016 苏州,3,3分)下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅= D. 2332()()ab a b b -÷=-答案:D4. (2016 苏州 4,3分)一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.4答案:A5. (2016 苏州 5,3分)如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为A.58°B.42°C.32°D.28°答案:C6. (2016 苏州 6,3分)已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y =D.无法比较答案:B7. (2016 苏州 7,3分)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家庭某月的用水量,如小表所示:5 则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30,25答案:D8. (2016 苏州 8,3分)如图,长4 m的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为A.B. C. 2)m D. 2)m答案:B9. (2016 苏州 9,3分)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为A. (3,1)B. 4(3,)3 C. 5(3,)3D. (3,2)答案:A10. (2016 苏州 10,3分)如图,在四边形ABCD 中,∠ABC=90°,AB=BC=E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF.若四边形ABCD 的面积为6,则△BEF 的面积为A.2B. 94C. 52D.3 答案:C二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上..........11. (2016 苏州 11,3分)分解因式:21x -=_________答案:(x +1)(x -1)12. (2016 苏州 12,3分)当x =________时,分式225x x -+的值为0. 答案:213. (2016 苏州 13,3分)要从甲、乙两名运动员中选出一鸣参加“2016里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。

2016年江苏苏州昆山市初三一模数学试卷

2016年江苏苏州昆山市初三一模数学试卷

2016年江苏苏州昆山市初三一模数学试卷一、选择题(共10小题;共50分)1. 的倒数是A. B. C. D.2. 下列计算正确的是A. B.C. D.3. 下列图形中,不是中心对称图形的是A. B.C. D.4. 函数中自变量的取值范围为A. B. C. D.5. 小明在参加区运动会前进行米跑训练,老师对他次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这次成绩的A. 方差B. 众数C. 平均数D. 频数6. 如图,将正方形图案绕中心旋转后,得到的图案是A. B.C. D.7. 若点,,在抛物线上,则下列结论正确的是A. B. C. D.8. 已知二次三项式能分解成系数为整数的两个一次因式的积,则整数的取值范围有A. 个B. 个C. 个D. 个9. 若关于的一元二次方程有实数根,则的取值范围是A. B.C. 且D. 且10. 如图,在以为原点的直角坐标系中,矩形的两边,分别在轴、轴的正半轴上,反比例函数与相交于点,与相交于点,若,且的面积是,则A. B. C. D.二、填空题(共8小题;共40分)11. 分解因式:.12. 据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约万人次,用科学记数法可表示为人次.13. 邓老师设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是时,输出的数据是.14. 如图,在中,,,的垂直平分线分别交,于,,则的周长为.15. 如果,是一元二次方程的两个根,则的值是.16. 如图,已知函数和的图象交于点,则不等式的解集为.17. 如图,将一块斜边长为,的直角三角板,绕点逆时针方向旋转至的位置,再沿向右平移,使点刚好落在斜边上,则此三角板向右平移的距离为.18. 如图,是一张直角三角形彩色纸,,.若将斜边上的高分成等分,然后裁出张宽度相等的长方形纸条.则这张纸条的面积和是.三、解答题(共10小题;共130分)19. (1)计算:.(2)计算:.20. (1)解方程:;(2)解不等式组:21. 已知一纸箱中放有大小均匀的只白球和只黄球,从箱中随机地取出一只白球的概率是.(1)试写出与的函数关系式;(2)当时,再往箱中放进只白球,求随机地取出一只黄球的概率.22. 已知二次函数()的图象上部分点的横坐标与纵坐标的对应值如下表所示:求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中的值.23. 已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.24. 如图,在等边中,点,分别在边,上,且,与交于点.(1)求证:;(2)求的度数.25. 在平面直角坐标系中,点关于轴的对称点为点,连接,反比例函数的图象经过点,过点作轴于点,点是该反比例函数图象上任意一点,过点作轴于点,点是线段上任意一点,连接,.(1)求的值;(2)判断与的面积是否相等,并说明理由.26. 已知点,在二次函数的图象上,当,时,.(1)①求的值;②若抛物线与轴只有一个公共点,求的值;(2)若,是函数图象上的两点,且,求实数的取值范围.27. 某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了天的试销售,购进价格为元/件.销售结束后,得知日销售量(件)与销售时间(天)之间有如下关系:(,且为整数);又知前天的销售价格(元/件)与销售时间(天)之间有如下关系:(,且为整数),后天的销售价格(元/件)与销售时间(天)之间有如下关系:(,且为整数).(1)试写出该商店前天的日销售利润(元)和后天的日销售利润(元)分别与销售时间(天)之间的函数关系式.(2)请问在这天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.(注:销售利润销售收入购进成本)28. 如图1,抛物线与轴交于、两点,与轴交于点,为抛物线的顶点,直线轴于点,是线段上一点,,且.(1)求抛物线的解析式;(2)是抛物线上一点,且是以为一条直角边的直角三角形,请求出所有符合条件的点的坐标;(3)如图,为线段上一个动点,以为等腰三角形顶角顶点,为腰构造等腰,且点落在直线上,若在直线上满足条件的点有且只有一个时,求点的坐标.答案第一部分1. C2. C3. D4. C5. A6. C7. C8. D9. D 10. C第二部分11.12.13.14.15.16.17.18.【解析】,,,.,.将斜边上的高分成等分,.,...解得.即从上往下数,第个矩形的长为;同理可得从上往下数,第个矩形的长为;从上往下数,第个矩形的长为.而所有矩形的宽都为.这张纸条的面积和为.第三部分原式19. (1)原式(2)20. (1)方程两边乘,得解得检验:当时.所以,原分式方程的解为.(2)解不等式①得:解不等式②得:所以,此不等式组的解集为.21. (1)由题意得,即.∴.(2)由(1)知当时,.∴取得黄球的概率.22. (1)依题意,得解得二次函数的解析式为:.(2)当时,,由,故其顶点坐标为.23. (1)根据题意得:,解得:(2)由为正整数,得到或,利用求根公式表示出方程的解为,方程的解为整数,为完全平方数,则的值为.24. (1)是等边三角形,,.在和中,..(2),..25. (1)点与点关于轴对称,点的坐标为,反比例函数的图象经过点.,解得.(2)相等.理由如下:设点的坐标为,其中,,点在反比例函数的图象上,,即.,,,轴,,,点在线段上,..26. (1)①,时,,,.②抛物线与轴只有一个公共点,,即,.(2)抛物线的对称轴为直线,当,在对称轴的右侧,则时,;当,在对称轴的两侧,而当,时,,则时,.实数的取值范围为或.27. (1)根据题意,得且为整数且为整数(2)当,且为整数时,,当时,的最大值为.当,且为整数,在中,的值随值的增大而减小,当时,的最大值为.,当,即在第天时,日销售利润最大,最大值为元.28. (1),.,即..代入解析式得:.(2) i)当时,作交抛物线于,交轴于.得,,得,,,直线为:,联立:得:,.ii)当时,求得直线为:,同理可求.(3)作,当时,点满足题意,设.则在中,.,直线为:.....解得或,(舍).第11页(共11 页)。

2016年苏州市中考数学模拟试卷(一)含答案

2016年苏州市中考数学模拟试卷(一)含答案

2016年苏州市中考数学模拟试卷(一)(满分:130分 考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1. 下列计算结果为负数的是 ( )A. 0(3)-B. 3--C. 2(3)-D. 2(3)--2. 已知一粒大米的质量约为0. 000 021 kg.这个数用科学记数法表示为 ( )A. 0.21×10-4B. 2.1×10-4C. 0.21×10-5D. 2.1×10-53. 下列计算正确的是 ( )A. 235(2)8a a = B. 2(3)9=C. 3223-=D. 844a a a -÷=-4. 下面调查中,适合采用普查的是 ( )A. 调查全国中学生心理健康现状B. 调查你所在的班级同学的身高情况C. 调查我市食品合格情况D. 调查苏州电视台某电视节目的收视率5. 如图,在方格纸中选择标有序号①②③④的一个 小正方形涂黑,使它与图中阴影部分组成的新图 形为中心对称图形,该小正方形的序号是( ) A. ① B. ②C. ③D. ④ (第5题) 6. 已知 2x =,是二元一次方程组 7ax by +=的解,则a b -的值为 ( ) 1y = 1ax by -= A. -1 B. 1 C. 2 D. 37. 如图,图①是一个底面为正方形的直棱柱,现将图①切割成图②的几何体,则图②的俯视图是 ( )① ② A. B. C. D.(第7题)8. 如图,在ABC ∆中,A ∠= 90°, 2AB AC ==, 点O 是边BC 的中点,半圆O 与ABC ∆相切于点D 、 E ,则阴影部分的面积等于 ( )A. 14π-B. 18π-C. 4πD. 8π9. 在ABC ∆中,ABC ∠=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是 ( ) A. 3个 B. 4个 C. 5个 D. 6个10. 二次函数2y x px q =++中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 的增大而减小,从而得到y 越大,则x 越小;在对称轴右侧,y 随x 的增大而增大,从而得到y 越大,则x 也越大.请根据你对这句话的理解,解决下面的问题:若关于x 的方程210x px q +++=的两个实数根是m 、n (m <n ),关于x 的方程250x px q ++-=的两个实数根是d 、e (d <e ),则m 、n 、d 、e 的大小关系是 A. m <d <e <n B. d <m <n <eC. d <m <e <nD. m <d <n <e ( ) 二、填空题(本大题共8小题,每小题3分,共24分) 11. 在函数1x y x+=中,自变量x 的取值范围是 . 12. 若点P (a ,a -2)在第四象限,则a 的取值范围是 . 13. 分解因式:32244x x y xy -+= . 14. 方程(2)(2)x x x -=--的根是 . 15. 已知点(,)P a b 在直线112y x =-上,点Q (a -,2b )在直线1y x =+上,则代数式2241a b --的值为 .16. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为 . 17. 如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将AEF ∆绕其顶点A 旋转,在旋转过程中,当BE DF =时,BAE ∠的大小可以是 .(第17题) (第18题)18. 如图,圆心都在x 轴正半轴上的半圆1O 、半圆2O 、…、半圆n O 与直线33y x =相切,设半圆1O 、半圆2O 、…、半圆n O 的半径分别是1r 、2r 、…、n r ,则当1r = 1时,2016r = .三、解答题(本大题共10小题,共76分) 19. (本小题满分5分)计算:21272cos30()132--︒+-- .20. (本小题满分5分)化简:35(2)22x x x x -÷+--- .21. (本小题满分6分)解不等式组: 3(1)(3)8211132x x x x -+--<⎧⎪+-⎨-≤⎪⎩ ,并求它所有整数解的和.22. (本小题满分6分) 如图是数轴的一部分,其单位长度为a .已知ABC ∆中,3AB a =,4BC a =,5AC a =.(1)用直尺和圆规作出ABC ∆ (要求:使点A 、C 在数轴上,保留作图痕迹,不必写作法);(2)记ABC ∆外接圆的面积为S 圆,ABC ∆的面积为S ∆,试说明S S π∆>圆.(第22题)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会.抽奖方案如下:将一副扑克牌中点数为“2”、“3”、“3”、“5”、“6”的5张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖.记每次抽出两张牌点数之差为x,按下表要求确定奖项.奖项一等奖二等奖三等奖≤<3x4x=1xx=3(1)用列表或画树状图的方法求出甲同学获一等奖的概率;(2)是否每次抽奖都会获奖,为什么?24. (本小题满分8分)为了解八年级学生的课外阅读情况,学校从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(说明:每组时间段含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)①“2~2.5 h”的部分对应的扇形圆心角为°;②课外阅读时间的中位数落在内.(填时间段)(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5h的有多少人.如图,在四边形ABCD 中,∠A=∠C=45°,∠ADB=∠ABC=105°. (1)若AD =2,求AB ;(2)若232AB CD +=+,求AB .26. (本小题满分10分)“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x =1时的y 值表示7:00时的存量,x =2时的y 值表示8:00时的存量……依此类推.他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系.时段 x还车数/辆借车数/辆存量y /辆6:00~7:00 1 45 5 100 7:00~8:002 43 11 n……………根据所给图表信息,解决下列问题:(1) m = ,解释m 的实际意义: ; (2)求整点时刻的自行车存量y 与x 之间满足的二次函数关系式;(3)已知9:00 ~10:00这个时段的还车数比借车数的3倍少4.求此时段的借车数.如图,A (-5,0),B (-3,0),点C 在y 轴的正半轴上. CBO ∠=45°,CD //AB ,90CDA ∠=︒.点P 从点Q (4,0)出发,沿x 轴向左以每秒1个单位长度的速度运动,运动时间为t s. (1)求点C 的坐标;(2)当BCP ∠=15°时,求t 的值; (3)以点P 为圆心、PC 为半径的⊙P 随点P 的运动而变化.当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.28 (本小题满分10分)已知:如图,在直角梯形ABCD 中,AD //BC , 90B ∠=︒,AD =2,BC =6,AB =3. E 为BC 边上一点,以BE 为边作正方形BEFG.使正方形BEFG 和梯形ABCD 在BC 的同侧. (1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长:(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B EFG ',当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B EFG '的边EF 与AC 交于点M ,连接B D '、B M '、DM .是否存在这样的t ,使B DM '∆是直角三角形?若存在,求出t 的值;若不存在,请说明理由.(3)在(2)问的平移过程中,设正方形B EFG '与ADC ∆重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案BDDBBACCDB二、填空题11. 1x ≥-且0x ≠ 12. 02a << 13. 2(2)x x y - 14. 122,1x x ==-15. 1 16. 21 17. 15︒或165︒ 18. 20153三、解答题19. 解:原式=35+ . 20. 解:原式=13x + . 21. 解:不等式组的整数解的和为0 . 22. 解: (1) 所作ABC ∆如图所示; (2)2524S S ππ∆=>圆; 23. 解:(1)画树状图如下:甲获一等奖的概率为110. (2)不一定,当两张牌都抽取3时,0x =,不会获奖. 24. 解:(1)120名.(2)①36︒; ②1~1.5h (3)240人. 25. 解:(1)26AB =+.(2)31AB =+.26. 解: (1)60m =,实际意义即6点之前的存量为60.(2)二次函数解析式为244460y x x =-++(x 为1~12的整数).(3)此时段借出自行车10辆.27. 解: (1)点 C 的坐标为(0,3);(2)当点P 在点B 右侧时,如图①,此时43t =+; 当点P 在点B 左侧时,如图②,此时433t =+. (3)有三种情况:①当⊙P 与BC 相切于点C 时,1t =;②当⊙P 与CD 相切于点C 时,点P 与点O 重合,4t =; ③当⊙P 与AD 相切时,点A 为切点,如图③, 5.6t = ; 综上所述,t 为1或4或5.6 .28. 解: (1)如图①,设正方形BEFG 的边长为x ,解得2,x =即2BE =. (2)存在满足条件的t ,作辅助线如图②: Ⅰ.若90DB M '∠=︒,207t =; Ⅱ.若90B MD '∠=︒,317t =-+; Ⅲ.若90B DM '∠=︒,t 无解;综上所述,当207t =或317-+时,B DM '∆是直角三角形. (3)当403t ≤<时,214S t =;当423t ≤<时,21283S t t =-+-;当1023t ≤<时,235283S t t =-+-;当1043t ≤≤时,1522S t =-+.。

2016年苏州市中考数学试卷及答案

2016年苏州市中考数学试卷及答案

2016年苏州市初中毕业暨升学考试试卷数 学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.2的相反数是A .2B .12C .-2D .-122.有一组数据:3,5,5,6,7,这组数据的众数为A .3B .5C .6D .7 3.月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为A .1.738×106B .1.738×107C .0.1738×107D .17.38×105 4.若()222m =⨯-,则有 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-25.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表: 通话时间x /min0<x ≤5 5<x ≤10 10<x ≤15 15<x ≤20 频数(通话次数) 20 16 9 5则通话时间不超过15min 的频率为A .0.1B .0.4C .0.5D .0.9 6.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab -4DCB A (第7题)的值为A .0B .-2C . 2D .-6 7.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为A .35°B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为A .433π- B .4233π- C .3π- D .233π-10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为A .4kmB .()22+kmC .22kmD .()42-km 二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.(第9题) D C B A O (第10题) l北西南东C D B A 45°22.5°c b a 21(第12题) (第13题)20%10%30%40%其他乒乓球篮球羽毛球13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F 作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分) 计算:()09523+---.(第17题) G F E D CB A F EDC B A (第18题)(第15题) 8765432120.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分) 先化简,再求值:2121122x x x x ++⎛⎫-÷ ⎪++⎝⎭,其中31x =-.22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC 中,AB =AC .分别以B 、C 为圆心,BC 长为半径在BC 下方画弧,设两弧交于点D ,与AB 、AC 的延长线分别交于点E 、F ,连接AD 、BD 、CD .(1)求证:AD 平分∠BAC ;(2)若BC =6,∠BAC =50︒,求DE 、DF 的长度之和(结果保留π).(第24题) FE DCB A25.(本题满分8分)如图,已知函数k y x=(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若AC =32OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED .(1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.y xF O E D C B A (第25题) E B CDA O (第26题)27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接PA 、PC ,PA =PC .(1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△PAC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示);(2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由. y x O P C B A l (第27题)。

江苏省苏州市吴中区2016届中考第一次模拟数学测试卷(解析版)

江苏省苏州市吴中区2016届中考第一次模拟数学测试卷(解析版)

初三年级教学质量调研测试(一) 数 学 2016.04本试卷有选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间120分钟注意事项:1. 答题前,考生务必将学校、班级、姓名、考试号等信息黑色墨水签字笔填写在答题卷的相应位置上;2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生必须答在答题卡相应的位置上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 122.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a +=3. m 的颗粒物,将用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 355.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5 D7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是 A. 8 B.5 C.2 D.08.关于x 的一元二次方程2210kx x +-=有两个不相等实数根,则k 的取值范围是A. k >-1B. k >-1且k ≠0C. k ≠0D. k ≥-19.如图,已知ABCD 的对角线BD=4cm ,将ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为A. 4π cmB. 3π cmC. 2π cmD. π cm10.给出下列命题及函数y x =,2y x =和1y x =的图像①如果21a a a>>时,那么01a <<; ②如果21a a a >>时,那么1a >;③如果21a a a>>时,那么10a -<<; ④如果21a a a >>时,那么 1a <-.A.正确的命题是①②B.错误..的命题是②③④ C.正确的命题是①④D.错误..的命题只有③二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.计算:1(3)3-⨯=_________________________. 12.有一组数据:3,5,5,6,7,这组数据的中位数是________________________.13.如图,AB 是圆O 的直径,点C 在圆O 上,若∠A=40°,则∠B 的度数为___________.14.在平面直角坐标系中,点A 的坐标是(3,-2),则点A 关于原点O 的对称点的坐标是__________.15.抛物线223y x x =++的顶点左边是____________.16.热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,这栋高楼是100米,A 处与高楼的水平距离是______________米(结果保留根号).17.如图,半圆O 的直径AE=4,点B ,C, D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为_____________.18.如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两动点,则BM+MN 的最小值为________________.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(本题满分5分)计算:8 — | —1| + (—π)020.(本题满分5分) 解不等式组:312(1)312x x x ⎧-<+⎪⎨+≥⎪⎩21.(本题满分6分)先化简,再求值:232()224x x x x x x -÷+--,其中43x =-.22.(本题满分6分)某商场销售A、B两种型号的U盘,两种U盘的进货价格分别为每只30元,40元.商场销售5只A型号和1只B型号U盘,可获利润76元;销售6只A型号和3只B型号U盘,可获利润120.求商场销售A、B两种型号的U盘的销售价格分别是多少元?(利润=销售价-进货价)23.(本题满分8分)有3个完全相同的小球,把他们分别标号为1,2,3,放在一个口袋中,随机摸出一个小球不放回,再随机地摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(2)求摸出的两个球号码之和等于5的概率.24. (本题满分8分)已知:如图,AB=AC,点D是BC的中点,AD=AE, AE⊥BE,垂足为E,连接DE. (1)求证:AB平分∠DAE;(2)若△ABC是等边三角形,且边长为2cm,求DE的长.25.(本题满分8分)(2015泸州)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数myx的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.26. (本题满分10分)如图,AB 是⊙O 的直径,弦CD⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG2=KD•GE,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若3sin 5E ∠=,25AK =,求圆O 的半径.27.(本题满分10分)如图,二次函数2y ax bx c =++(0a ≠)的图像经过A(0,3)、C(3,0)、D (2,3)三点.(1)求过A 、D 、C 三点的抛物线的解析式;(2)设Q 为x 轴上任意一点,点P 是抛物线上的点,且在抛物线对称轴左侧,满足∠QCP=45°,问是否存在这样的点P 、Q ,使得以P 、Q 、C 为顶点的三角形与△ADC 相似?若存在,求出点P 、Q 的坐标;若不存在,则说明理由.28.(本题满分10分)(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=272,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A 运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH 的边上,请直接写出t的值.江苏省吴中市2016届中考第一次模拟数学测试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 12考点:有理数混合运算分析: 有理数四则运算法则解答: D2.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a +=考点: 幂的运算分析: 幂的的乘除运算解答:Bm 的颗粒物,将用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯考点: 科学计算法分析: 用科学技术发表示数解答:D4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 35考点: 三角函数与勾股定理分析: 勾股定理求边的长以及特殊三角函数的值解答:cosA=邻边/斜边=3/55.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等考点: 角平分线的性质,平行线的性质分析: 先用平行线的性质,再结合平行线的性质去求解解答:A6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5 D考点: 统计分析: 条形统计图解答:A7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是 A. 8 B.5 C.2 D.0考点: 代数式求值分析: 方程的解含义以及真题思想,代入求值。

江苏省苏州市高新区2016届中考数学第一次模拟试数学试卷(解析版)

江苏省苏州市高新区2016届中考数学第一次模拟试数学试卷(解析版)

2016届初中毕业暨升学考试模拟试题一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.) 1.如果2016x =,那么4x -的值是A.±2012B.2012C.-2012D.20142.下列计算正确的是A. 325()a a =B. 632a a a ÷= C. ()222ab a b = D. 222()a b a b +=+3.支付宝与“的的打车”联合推出优惠,“的的打车”一夜之间红遍大江南北.据统计,2016年“的的打车”账户流水总金额达到47.3亿元,47.3亿元用科学记数法表示数为 A. 84.7310⨯ B. 94.7310⨯ C. 104.7310⨯ D. 114.7310⨯4.实数a 在数轴上的位置如右图所示,则A. 7B. -7C. 215a -D. 无法确定5.如图,直线//a b ,直角三角形如图放置,∠DCB=90°. 若∠1+∠B=70°,则∠2的度数为A.20°B.40°C.30°D.25°6.下列说法正确的是A .掷两枚质地均匀的硬,“两枚硬币都是正面朝上“这一事 件发生的概率为12; B .“对角线相等且相互垂直平的四边形是正方形”这一事件是必然事件;C.“同位角相等“这一事件是不可能事件;D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件7.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 A. ab π B.12ab π C. ac π D. 12ac π8.图(1)为一张三角形ABC 纸片,点P 在BC 上,将A 折至P 时,出现折痕BD ,点D 在AC 上,如图(2)所示,若△ABC 的面积为80,△ABD 的面积为30,则AB 与PC 的长度之比为A. 3:2B. 5:3C. 8:5D. 13:89.(2014•济南模拟)如图,直线l :y x =-A ,C 两点,过A ,O ,C 三点作⊙O 1,点E 为劣弧AO 上一点,连接EC ,EA ,EO ,当点E 在劣弧AO 上运动时(不与A ,O 两点重合),EC EAEO-的值是否发生变化?( )A. 12B. 13C. D.不确定10. (2015•济南)如图,抛物线2286y x x =-+-与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D .若直线y x m =+与1C 、2C 共有3个不同的交点,则m 的取值范围是( )A . ﹣2<m <18 B . ﹣3<m <74- C . ﹣3<m <﹣2 D . ﹣3<m <158- 二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.函数y =x 的取值范围是_____________. 12.分解因式:2288b b -+____________.13.一组数据 -1, 3, 1 ,2 ,b 的唯一众数为-1,则这组数据的中位数为_______. 14.已知x 、y 是二元一次方程组23245x y x y -=⎧⎨+=⎩的解,则代数式224x y -的值____________.15.如图,在平面直角坐标系中,点A 的坐标为(0,4),△OAB 沿x 轴向右平移后得到△O A B ''',点A 的对应点A '是直线45y x =上一点,则点B 与其对应点B '间的距离为______.16.如图,四边形ABCD 是菱形,∠DAB=50°,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO=_________°17.(2015年常州改编) 在⊙O 的内接四边形ABCD 中,AB=6,AD=10,∠BAD=60°,点C 为弧BD 的中点,则AC 的长是_______________.18. 如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 以1cm/秒的速度沿折线BE —ED —DC 运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,△BPQ 的面积为ycm 2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段),则下列结论: ①AD=BE=5;②当0<t≤5时,y =45t 2 ;③cos∠ABE =35;④当t =292秒时,△ABE∽△QBP;⑤当△BPQ 的面积为42cm 时,时间t 515; 其中正确的结论是________________三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(本题满分5分)计算:021(()9tan 303π-++° 20.(本题满分5分)解方程:32111x x x-=-- 21.(本题满分7分)已知222111x x xA x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.22.(本题满分7分)(2015•梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.23. (本题满分8分)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)则出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A、E组发言的学生中都恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。

2016年江苏省苏州市中考数学试卷含答案

2016年江苏省苏州市中考数学试卷含答案

2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•苏州)的倒数是()A.B.C.D.2.(3分)(2016•苏州)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.(3分)(2016•苏州)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.(3分)(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.(3分)(2016•苏州)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.(3分)(2016•苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.(3分)(2016•苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.(3分)(2016•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.(3分)(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.(3分)(2016•苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2016•苏州)分解因式:x2﹣1=.12.(3分)(2016•苏州)当x=时,分式的值为0.13.(3分)(2016•苏州)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.(3分)(2016•苏州)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.(3分)(2016•苏州)不等式组的最大整数解是.16.(3分)(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.(3分)(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC 上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.(3分)(2016•苏州)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC 向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.(5分)(2016•苏州)计算:()2+|﹣3|﹣(π+)0.20.(5分)(2016•苏州)解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.(6分)(2016•苏州)先化简,再求值:÷(1﹣),其中x=.22.(6分)(2016•苏州)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.(8分)(2016•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.(8分)(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.(8分)(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.(10分)(2016•苏州)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.(10分)(2016•苏州)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•苏州)的倒数是()A.B.C.D.【解答】解:∵×=1,∴的倒数是.故选A.2.(3分)(2016•苏州)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【解答】解:0.0007=7×10﹣4,故选:C.3.(3分)(2016•苏州)下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.(3分)(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.(3分)(2016•苏州)如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.(3分)(2016•苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.(3分)(2016•苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.(3分)(2016•苏州)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.(3分)(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.(3分)(2016•苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△AB C=•AB•AC=×2×2=4,∴S△ADC=2,∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△B EF=•EF•BH=×2×=,故选C.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2016•苏州)分解因式:x2﹣1=(x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.(3分)(2016•苏州)当x=2时,分式的值为0.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2.故答案为:2.13.(3分)(2016•苏州)要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是乙运动员.(填“甲”或“乙”)【解答】解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.14.(3分)(2016•苏州)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×=72°;故答案为:72.15.(3分)(2016•苏州)不等式组的最大整数解是3.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.16.(3分)(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.【解答】解:连接OC,∵过点C的切线交AB的延长线于点D,∴OC⊥CD,∴∠OCD=90°,即∠D+∠COD=90°,∵AO=CO,∴∠A=∠ACO,∴∠COD=2∠A,∵∠A=∠D,∴∠COD=2∠D,∴3∠D=90°,∴∠D=30°,∴∠COD=60°∵CD=3,∴OC=3×=,∴阴影部分的面积=×3×﹣=,故答案为:.17.(3分)(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC 上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.18.(3分)(2016•苏州)如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC 向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为(1,).【解答】解:∵点A、B的坐标分别为(8,0),(0,2)∴BO=,AO=8由CD⊥BO,C是AB的中点,可得BD=DO=BO==PE,CD=AO=4设DP=a,则CP=4﹣a当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP又∵EP⊥CP,PD⊥BD∴∠EPC=∠PDB=90°∴△EPC∽△PDB∴,即解得a1=1,a2=3(舍去)∴DP=1又∵PE=∴P(1,)故答案为:(1,)三、解答题(共10小题,满分76分)19.(5分)(2016•苏州)计算:()2+|﹣3|﹣(π+)0.【解答】解:原式=5+3﹣1=7.20.(5分)(2016•苏州)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:21.(6分)(2016•苏州)先化简,再求值:÷(1﹣),其中x=.【解答】解:原式=÷=•=,当x=时,原式==.22.(6分)(2016•苏州)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.23.(8分)(2016•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【解答】解:(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,所以点M落在如图所示的正方形网格内(包括边界)的概率==.24.(8分)(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.(8分)(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.【解答】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y=(x>0)的图象上,∴.解得:m=8,n=4.∴反比例函数的表达式为y=.∵m=8,n=4,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).将点P′(﹣4,1),B(2,4)代入直线的解析式得:,解得:.∴一次函数的表达式为y=x+3.26.(10分)(2016•苏州)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.27.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD===10,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴==,∴==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=6﹣5t,∴t=,故答案为.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴=,∴=,∴t=(s),∴t=s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴=,∴EC=(8﹣5t),ED=DC﹣EC=6﹣(8﹣5t)=t,∵DO=3t,∴DE﹣DO=t﹣3t=t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=(8﹣5t),DO=3t,∴OE=6﹣3t﹣(8﹣5t)=t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴=,∴=,∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8,∴MH=0.8(+1),由=得到HE=,由=得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=,∴0.8(+1)≠,矛盾,∴假设不成立.∴直线PM与⊙O不相切.28.(10分)(2016•苏州)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【解答】解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,过点M作ME⊥y轴于点E,交AB于点D,由题意知:M的坐标为(m,﹣m2+2m+3),∴D的纵坐标为:﹣m2+2m+3,∴把y=﹣m2+2m+3代入y=﹣3x+3,∴x=,∴D的坐标为(,﹣m2+2m+3),∴DM=m﹣=,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;(3)①由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°参与本试卷答题和审题的老师有:ZJX;sd2011;sks;王学峰;弯弯的小河;gsls;fangcao;zcx;张其铎;lantin;三界无我;wd1899;sjzx;szl;gbl210;1987483819;梁宝华;神龙杉(排名不分先后)菁优网2016年7月3日。

2016年江苏省苏州市中考数学试卷(解析版)

2016年江苏省苏州市中考数学试卷(解析版)

2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b 4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC 的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF 的面积为()A.2 B.C.D.3 二、填空题11.分解因式:x2﹣1=.12.当x=时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、E C.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD 并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016初三教学调研试卷
数 学 2016.04
一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上.) 1.1
3
-
的倒数是 A. 3- B. 13- C. 3 D. 13
2.下列计算正确的是
A. 224a a a +=
B. 235()a a =
C. 22a a -=
D. 222
()ab a b =
3.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:
则这30名同学每天使用的零花钱的众数和中位数分别是
A. 4, 3
B. 4, 3.5
C. 3.5,3.5
D. 3.5,4 4.已知2
310x x -+=,则21
x
x x -+的值是
A.
12 B. 2 C. 1
3
D. 3 5.如图,己知AB 、AD 是⊙O 的弦, 30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO
交于⊙O 于点D ,20D ∠=︒,则BAD ∠的度数是
A. 30︒ B . 40︒ C. 50︒ D. 60︒
6.某工厂进行技术创新,现在每天比原来多生产50台机器,并且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为: A.
6004505x x =+ B . 6004505x x =- C. 60045050x x =+ D. 600450
50
x x =-
7.已知二次函数2
y ax bx c =++的图象如图所示,顶点为(1,0-),下列结论:
①0abc <; ②2
40b ac -=; ③2a >; ④420a b c -+>
其中正确结论的个数是
A. 1
B. 2
C. 3
D. 4
8.对于正数x ,规定()1x f x x =+, 例如1
3311
3(3),()113434
13
f f ====++,计算
11111()()()()()(1)(2)(3)100099999832
f f f f f f f f ++⋯++++++⋯ (998)(999)(1000)f f f ++的结果是
A. 999
B. 999.5
C. 1000
D. 1000.5
9.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形(两组邻边分别相等的四边形),再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是
2
B.
cm 2
C. 2
D. 2
10.如图,OA 在x 轴上,OB 在y 轴上,4,3OA OB ==,点C 在边OA 上,1AC =,⊙P 的圆心P 在线段BC 上 ,且⊙P 与边AB ,AO 都相切.若反比例函数(0)k
y k x
=≠的图象经过圆心P ,则k 的值是 A. 54-
B. 53-
C. 5
2
- D. 2- 二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上. 11.分解因式2
a a -= . 12.
函数y =
x 的取值范围是 .
13.世界文化遗产长城总长约为6700000m ,若将6700000用科学记数法表示为 . 14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片己经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于
16
3
”的概率是 . 15.圆锥底面圆的半径为3m ,其侧面展开图的圆心角为120︒,则圆锥的母线长为 m. 16.如图,ABC ∆中,2,4AB AC ==,将ABC ∆绕点C 按逆时针方向旋转得到A B C ''∆,使AB //B C ',分别延长AB 、CA '相交于点D ,则线段BD 的长为 .
17.如图,CA AB ⊥,DB AB ⊥,己知2,6AC AB ==,点P 射线BD 上一动点,以CP 为直径作⊙O ,点P 运动时,若⊙O 与线段AB 有公共点,则BP 最大值为 .
18.如图(1)所示,E 为矩形ABCD 的边AD 上一点动点P 、Q 同时从点B 出发,
点P 以1cm/ 秒的速度沿折线BE ED DC --运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,BPQ ∆的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段),则下列结论: ① 05t <≤时,2
45
y t =
; ② 当6t =秒时,ABE ∆≌PQB ∆; ③ 4cos 5
CBE ∠=; ④ 当29
2
t =
秒时,ABE ∆∽QBP ∆; ⑤ 段NF 所在直线的函数关系式为:
496y x =-+.
其中正确的是 .(填序号)
三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明
.)
19.(本题5分)计算
:13
01()(2)3(9
2
-+-+-- 20.(本题5分)解不等式组:
1
3x +≤
34(1)1x --<
21.(本题5分)先化简,再求值:22121
()222
a a a a a a -++÷---,其中1a = 22. (本题5分)解分式方程:—
3323
x x x x --=- 23.(本小题满分7分)如图,在ABC ∆中,90BAC ∠=︒,AD 是中线,E 是AD 的中点,
过点A 作AF //BC 交BE 的延长线于点F ,连接CF . (1)求证:AD AF =;
(2)如果AB AC =,试判断四边形ADCF 的形状,并
证明你的结论.
24.(本小题满分7分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家.为了解学生最喜欢哪一项校本课程,随机抽取 了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有____人; (2)请你将条形统计图补充完整;
(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名
同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).
25.(本小题满分6分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角 仪测得塔顶D 的仰角为30︒,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上)
用测角仪测得塔顶D 的仰角为75︒,且AB 间的距离为40m. (1)求点B 到AD 的距离; (2)求塔高CD (结果精确到0.1m.) (
1.414 1.732≈≈).
26.(本小题满分7分)如图,在直角坐标系xOy 中,一直线2y x b =+经过点(1,0)A -,与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OD OB =,过D 点作DC x ⊥轴交直线2y x b =+于C 点,反比例函数(0)k
y x x
=>经过点C . (1)求,b k 的值; (2)求BDC ∆的面积; (3)在反比例函数(0)k
y x x
=
>的图像上 找一点P (异于点C ),使BDP ∆与 BDC ∆的面积相等,求出P 点坐标.
27.(本小题满分7分)如图,己知MN 是⊙O 的直径,P 为⊙O 上一点,NP 平分MNQ ∠,且NQ PQ ⊥.
(1)求证:直线PQ 是⊙O 的切线;
(2)若⊙O
的半径2,R NP ==,求NQ 的长.
28.(本小题满分10分)如图,二次函数2
3
(0)2
y ax x c a =+
+≠的图像与x 轴交于A 、B 两 点,与y 轴交于点C ,己知点(1,0)A -,点(0,2)C (1)求抛物线的函数解析式;
(2)若点D 是抛物线在第一象限的部分上的一动点,当四边形OCDB 的面积最大时,求点
D 的坐标;
(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以,,,B C E F 为顶点的四边 形是平行四边形时,写出满足条件的所有点E 的坐标.
29.(本小题满分12分)如图①,四边形ABCD 中,AD // BC ,DC BC ⊥, 6AD =cm ,
8DC =cm ,12BC =cm.动点M 在CB 上运动,从C 点出发到B 点,速度每秒2cm;
动点N 在BA 上运动,从B 点出发到A 点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;
(2)当t 为何值时,MN //CD ?
(3)设三角形DMN 的面积为S ,求S 与t 之间的函数关系式;
(4)如图②,连接BD ,是否存在某一时刻t ,使MN 与BD 互相垂直?若存在,求出这时 的t 值;若不存在,请说明理由.。

相关文档
最新文档