定州市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定州市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数在处取得最大值,则函数的图象( )
sin(2)y x ϕ=+6
x π
=cos(2)y x ϕ=+A .关于点对称
B .关于点对称
(
0)6
π
,(
0)3
π
,C .关于直线对称
D .关于直线对称
6
x π
=3
x π
=
2. 在
中,角、、所对应的边分别为、
、,若角、、依次成等差数列,且,
,则
等于( )
A .
B .
C .
D .2
3. 已知a 为常数,则使得成立的一个充分而不必要条件是(

A .a >0
B .a <0
C .a >e
D .a <e
4. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )
A .13
B .15
C
.12
D .11
5. 某几何体的三视图如图所示,则它的表面积为(

A .
B .
C .
D .
6. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )
A .3
B .5
C .6
D .10
7. 已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为,
M N 、2
4y x =F MN 2,则直线的方程为( )
||||10MF NF +=MN 班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B . 240x y +-=240x y --=
C .
D .20x y +-=20x y --=8. 不等式的解集为( )
A .或
B .
C .

D .
9. 命题“若α=,则tan α=1”的逆否命题是(

A .若α≠
,则tan α≠1B .若α=
,则tan α≠1
C .若tan α≠1,则α≠
D .若tan α≠1,则α=
10.一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =2
1
V V A .
B .
C .
D .不是定值,随点的变化而变化
4
1
3
1
2
1
M
11.在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )
A .
B .5
C .3
D .
12.设0<a <1,实数x ,y 满足
,则y 关于x 的函数的图象形状大致是( )
A .
B .
C .
D .
二、填空题
13.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中:①f (x )是周期函数;
②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数;⑤f (2)=f (0).正确命题的个数是 .
14.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是 .
15.已知f(x)=,则f(﹣)+f()等于 .
16.定义某种运算⊗,S=a⊗b的运算原理如图;则式子5⊗3+2⊗4= .
17.直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于 _________ 。

18.在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应
的复数为 .
三、解答题
19.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X1234
Y51484542
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
20.设,证明:
(Ⅰ)当x>1时,f(x)<(x﹣1);
(Ⅱ)当1<x<3时,.
21.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中
随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第
5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组
各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组
至少有一名志愿者被抽中的概率.
22.已知函数.
(1)求f(x)的周期和及其图象的对称中心;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.
23.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;
(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.
24.现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法? 
定州市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】A 【解析】∵,∴,
22,6
2
k k Z π
π
ϕπ⨯
+=+
∈2,6
k k Z π
ϕπ=+
∈∴,cos(2)cos(22cos(266
y x x k x π
π
ϕπ=+=++=+当时,,故选A .
6
x π
=
cos(2066
y π
π
=⨯
+=2. 【答案】C 【解析】因为角


依次成等差数列,所以
由余弦定理知,即
,解得
所以
, 故选C
答案:C
3. 【答案】C
【解析】解:由积分运算法则,得
=lnx
=lne ﹣ln1=1
因此,不等式即
即a >1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e 故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题. 
4. 【答案】A
【解析】解:设点P 到双曲线的右焦点的距离是x ,∵双曲线上一点P 到左焦点的距离为5,
∴|x ﹣5|=2×4∵x >0,∴x=13故选A . 
5. 【答案】 A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为,
圆锥的表面积S=S 底面+S 侧面=×π×12+×2×2+×π×=2+

故选A .
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量. 
6. 【答案】B
【解析】解:(3x 2+)n
(n ∈N +)的展开式的通项公式为T r+1=•(3x 2)
n ﹣r •2r •x ﹣3r =•x 2n ﹣5r

令2n ﹣5r=0,则有n=,
故展开式中含有常数项的最小的n 为5,
故选:B .
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 
7. 【答案】D
【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.
设,那么,,∴线段的中点坐标为
1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN .由,两式相减得,而
,∴,∴
(4,2)2114y x =2
224y x =121212()()4()y y y y x x +-=-12
22
y y +=12121y y x x -=-直线的方程为,即,选D .MN 24y x -=-20x y --=8. 【答案】A 【解析】令



其对应二次函数开口向上,所以解集为或
,故选A
答案:A
9. 【答案】C
【解析】解:命题“若α=,则tan α=1”的逆否命题是
“若tan α≠1,则α≠”.
故选:C . 
10.【答案】B 【



考点:棱柱、棱锥、棱台的体积.
11.【答案】D
【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,
∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,
∴(AC+BC)2﹣3AC•BC=3,
∴(AC+BC)2=11.
∴AC+BC=
故选:D
【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.
12.【答案】A
【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y
轴对称,
在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A.
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
二、填空题
13.【答案】 3个 .
【解析】解:∵定义在(﹣∞,+∞)上的偶函数f(x),∴f(x)=f(﹣x);
∵f(x+1)=﹣f(x),∴f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),f(﹣x+1)=﹣f(x)
即f(x+2)=f(x),f(﹣x+1)=f(x+1),周期为2,对称轴为x=1
所以①②⑤正确,
故答案为:3个
14.【答案】 4 .
【解析】解:由题意知,
满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有:
{2,3},{2,3,1},{2,3,4},{2,3,1,4},
故共有4个,
故答案为:4.
15.【答案】 4 .
【解析】解:由分段函数可知f()=2×=.
f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,
∴f()+f(﹣)=+.
故答案为:4.
16.【答案】 14 .
【解析】解:有框图知S=a⊗b=
∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14
故答案为14
【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义. 
17.【答案】
【解析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,
且点A与圆心O之间的距离为OA==,
圆的半径为r=,
∴sinθ==,
∴cosθ=,tanθ==,
∴tan2θ===,
故答案为:。

18.【答案】 2i .
【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为
(+i)(cos60°+isin60°)=(+i)()=2i
,故答案为2i.
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)(cos60°+isin60°),是解题的关键.
三、解答题
19.【答案】
【解析】
【专题】概率与统计.
【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;
(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.
【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株
数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;
(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列
∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)
∴只需求出P(X=k)(k=1,2,3,4)即可
记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3
由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==
∴所求的分布列为
Y5148 45 42
P
数学期望为E(Y)=51×+48×+45×+42×=46
【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.
20.【答案】
【解析】证明:(Ⅰ)(证法一):
记g (x )=lnx+﹣1﹣(x ﹣1),则当x >1时,g ′(x )=+﹣<0,
又g (1)=0,有g (x )<0,即f (x )<( x ﹣1);…4′
(证法二)由均值不等式,当x >1时,2<x+1,故<+.①
令k (x )=lnx ﹣x+1,则k (1)=0,k ′(x )=﹣1<0,故k (x )<0,即lnx <x ﹣1②
由①②得当x >1时,f (x )<( x ﹣1);
(Ⅱ)记h (x )=f (x )﹣
,由(Ⅰ)得,
h ′(x )=+﹣
=﹣<﹣=,令g (x )=(x+5)3﹣216x ,则当1<x <3时,g ′(x )=3(x+5)2﹣216<0,
∴g (x )在(1,3)内是递减函数,又由g (1)=0,得g (x )<0,
∴h ′(x )<0,…10′
因此,h (x )在(1,3)内是递减函数,又由h (1)=0,得h (x )<0,
于是,当1<x <3时,f (x )<
…12′ 
21.【答案】(1);(2)
.3,2,1710
【解析】111]
试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有种情况,10其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710
.
考点:1、分层抽样的应用;2、古典概型概率公式.
22.【答案】
【解析】解:(1)由,∴f(x)的周期为4π.
由,故f(x)图象的对称中心为.
(2)由(2a﹣c)cosB=bcosC,得(2sinA﹣sinC)cosB=sinBcosC,
∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,
∴.∴,
故函数f(A)的取值范围是.
23.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.
24.【答案】
【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.
(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种
【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.。

相关文档
最新文档