大学物理振动练习题有答案

合集下载

大学物理振动与波练习题与答案

大学物理振动与波练习题与答案
(3) 波速 c ? (4) t 3 秒时 x 3.5 厘米处的质点的振动速度 v ?
【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2

大学物理复习题答案(振动与波动)

大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为'T 1和'T 2。

则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。

2ω C 。

2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。

)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。

大学物理振动与波题库及答案

大学物理振动与波题库及答案

一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -A(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定x y O u(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2cos 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ. (B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动 周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x 2 的相位超前_______.56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =______________________,x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ . 64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量, 此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时, 波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---y (m)71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5×107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y = ____________________. (真空介电常量ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20×10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50×1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI).求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.z yxO103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为 4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .O P大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45. 2 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,; 58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略; 61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ;95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ;98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φcos m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI)或 x = 2.05×10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 (2) )318sin(1042π+π⨯π-==-t x v (SI))318cos(103222π+π⨯π-==-t x a (SI)(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J(4) 平均动能 ⎰=TK t m T E 02d 21)/1(v⎰π+π⨯π-=-T t t m T 0222d )318(sin )104(21)/1(= 3.95×10-5 J = E 21同理 E E P 21== 3.95×10-5 J106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI)107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。

大学物理 机械振动 试题(附答案)

大学物理 机械振动 试题(附答案)

w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。

解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。

2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。

若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。

弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。

3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。

则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。

大学物理复习题(附答案)

大学物理复习题(附答案)

第9章振动学基础复习题T 1.已知质点的振动方程为 x A cos( t ),当时间t —时(T 为周期),质点的振动速4度为:(A ) v A sin (B ) v A sin (C ) v A cos (D ) v A cos2 •两个分振动的位相差为 2n 时,合振动的振幅是: A.A 1+A 2;B.| A 1-A 2IC.在.A I +A 2 和 | A I -A 2|之间D.无法确定3•一个做简谐运动的物体,在水平方向运动,振幅为8cm ,周期为0.50s 。

t =0时,物体位于离平衡位置4cm 处向正方向运动,则简谐运动方程为 _______________ . 4.一质点沿x 轴作简谐振动,振动方程为x 4 10 2 cos(2 t ) m 。

从t = 0时刻起,3到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 _____________ .5•一个简谐振动在t=0时位于离平衡位置 6cm 处,速度v=0 ,振动的周期为2s ,则简谐振 动的振动方程为 ________________________ . 6.—质点作谐振动,周期为 T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 ____________ . 7.—个质量为0.20kg 的物体作简谐振动,其振动方程为x 0.6cos(5t -)m ,当振动动2能和势能相等时振动物体的位置在A •0.3 m B • 0.35 m C .0.42 mD . 010•一个作简谐振动的物体的振动方程为s 12cos(t 3)cm ,当此物体由s 12cm 处 回到平衡位置所需要的最短时间为 ________________________________________ 。

11. 一个质点在一个使它返回平衡位置的力的作用下,它是否一定作简谐运动? 12. 简谐振动的周期由什么确定?与初始条件有关吗?14. 两个同方向同频率的简谐振动合成后合振动的振幅由哪些因素决定? 15. 两个同方向不同频率的简谐振动合成后合振动是否为简谐振动?&某质点参与x 1 4cos(3 t ) cm 和x 24振动,其合振动的振幅为 ________________ 3cos(3 t -)cm 两个同方向振动的简谐49.某质点参与x 110 cos( 2 t ) cm 和x 12运动,其合振动的振幅为 ______________ ; 4cos(2t2)cm 两个同方向振动的简谐教材习题P/223: 9-1 , 9-2, 9-3, 9-4 9-10, 9-12, 9-18第9章振动学基础复习题答案3. x 8cos(4 t ) m .3 "4.5. ___ x 6cos t cm 。

大学物理振动习题含答案

大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

大学物理第七章习题及答案

大学物理第七章习题及答案

第七章 振动学基础一、填空1.简谐振动的运动学方程是 。

简谐振动系统的机械能是 。

2.简谐振动的角频率由 决定,而振幅和初相位由 决定。

3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。

4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。

5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。

7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。

8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。

二、简答1.简述弹簧振子模型的理想化条件。

2.简述什么是简谐振动,阻尼振动和受迫振动。

3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。

7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X 0=-A ;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;(4)过X=2A处向正向运动。

振动、波动部分答案(新)

振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

大学物理机械振动习题附答案要点

大学物理机械振动习题附答案要点

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

大学物理习题答案12简谐振动

大学物理习题答案12简谐振动

大学物理练习题十二一、选择题1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t=21T (T 为周期)时,质点的速度为 [ B ](A) φωsin A - (B) φωsin A(C) φωcos A - (D) φωcos A解: 当2/T t =,即π=π=ω=ω2/22/T t 时,()()=+-=+-==φπωφωωsin sin A t A dtdx v φωsin A2. 一物体作简谐振动,振动方程为)4/cos(πω+=t A x 。

在t=T/4(T 为周期)时刻,物体的加速度为 [ B ](A) 2212ωA - (B) 2212ωA(C) 2213ωA - (D) 2213ωA解: 当4/T t =,即2/4/24/T t π=π=ω=ω时, )4/cos(222πωω+-==t A dtxda=+-=)4/2/cos(2ππωA3. 劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 [ C ](A) 21212)(2k k k k m T +π= (B) )(221k k mT +π=(C) 2121)(2k k k k m T +π= (D) 2122k k mT +π=解: 由kx x k x k ==2211,21x x x +=可得21212111212111/1/1k k k k k k k x x k x x x k k +=+=+=+=,mk T /22ππ==ω4. 一质点沿x 轴作简谐振动,振动方程为()ππ3122cos 104+⨯=-t x (SI)。

从t=0时刻起,到质点位置在x= -2cm 处,且向X 轴正方向运动的最短时间间隔 (A) 1/8s (B) 1/4s (C) 1/2s (D) 1/3s (E) 1/6s [ C ]解: 由题意作知量图如右,πω=∆t,)(212s t ===∆ππωπ5.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]二、填空题1. 如图所示,一质量为m 的滑块,两边分别与倔强系数为k 1和k 2的轻弹簧连接,两弹簧的另外两端分别固定在墙上。

《大学物理学》(网工)简谐振动部分练习题(解答)

《大学物理学》(网工)简谐振动部分练习题(解答)

2
2
拓展题:一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的
(D)
1
1
3
3
(A) ;(B) ;(C) ;(D) 。
2
2
2
4
【考虑到动能为 Ek

1 m 2 2

1 2
kA2
sin2 ( t
) ,位移为振幅的一半时,有 t



3
,
2 3
,那么,
Ek 1 kA2 ( 3 )2 】
2
3
4
A
3
5
(4)当 x
且正向时,由旋转矢量知4 2
4
(或4
4
)。
A
A
2
1
2
2
2
2
由周期 T 知 ,有: x1 A cos( t ) ;( x1 A cos( t ) 也行)
T
T
T
2
2
2 3
x2 A cos( t ) ; x3 A cos( t ) ; x4 A cos( t ) 。
6
3
3
2
2 【可用旋转矢量考虑,两矢量的夹角应为 】
3
第九章机械振动-2
合肥学院《大学物理 B》自主学习材料
二、填空题 1.一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置取作坐标原点。若
t=0 时质点第一次通过 x=-2cm 处且向 X 轴负方向运动,则质点第二次通过 x=-2cm 处


(A)落后 ; (B)超前 ;
2
2
o t

振动 大学物理习题答案

振动 大学物理习题答案

,x

A12

A22
cos( t

tan 1
A1 ) A2
11-10 质量为 0.4kg 的质点同时参与相互垂直的两个谐振动:
x1

0.08 cos( 3
t

) 6

x2

0.06 cos( 3
t

) 3
求:(1)质点的轨迹方程;(2)质点在任一位置所受的力。
解:(1)设 x A1 cos( t 1 ) , y A2 cos( t 2 ) ,消去 t 得
0.05sin 3

4 3
0.05 cos
0.06sin 4
0.06 cos
11.00 , 84.8 1.48rad
4
4
(2)

3
1

2k
,3

2k

3 4
,k

0,1,2;


3
2

(2k
1)
,3

2k

5 4
,k
解:(1)由旋转矢量法知 , 2 2 , x 0.12 cos( t )
3
T2
3
(2) v d x 0.12 sin( t ) , a d v 0.12 2 cos( t )
dt
3
dt
3
t 0.5s , x 0.1039 m , v 0.1885 m/s , a 1.03m/s 2
dt2 m J / R2
(2)
k
,T 2 2 m J / R2

大学物理习题册答案

大学物理习题册答案

第15单元 机械振动[ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。

与其对应的振动曲线是:[ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。

若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B)s 32 (C) s 34(D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。

滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。

现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。

取坐标如图所示,则其振动方程为:⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210 ⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D)⎥⎦⎤⎢⎣⎡+=t mk k x x 210cos (E)[ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A)167 (B) 169 (C) 1611 (D) 1613(E) 1615 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相为:(A) π21(B)π(C) π23(D) 0二 填空题1. 一水平弹簧简谐振子的振动曲线如图所示,振子处在位移零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 b,f 点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力-kA 的状态,对应于曲线的 a,e点。

2两个同方向同频率的简谐振动,其合振动的振幅为20.cm,与第一个简谐振动的相位差为1ϕϕ-=π/6,若第一个简谐振动的振幅为103cm ,则第二个简谐振动的振幅为____10___cm ,第一、二个简谐振动的相位--(C)/A -A-差21ϕϕ-为2π-。

大学物理第一章习题参考答案

大学物理第一章习题参考答案

θ
+
v = vmax / 2
(B) (D)
v = 3v max / 2
v0 r A
O
v = 2v max / 2 v = v max / 2
o
t=0
解:如图画出已知所对应矢量 A,可知 A 与 x 轴正向的夹角 为 θ = 60 ,则根据简谐运动与旋转矢量的对应关系可得
7.5 x(cm)
v = ωA sin θ = 3v max / 2
4. 一弹簧振子作简谐振动,总能量为 E1 ,如果简谐振动振幅增加为原来的两倍,重物的 质量增加为原来的四倍,则它的总能量 E 变为 [ D ] (A) E1 /4 (B) E1 /2 解:原来的弹簧振子的总能量 E1 = (C) 2 E1 (D) 4 E1
1 1 2 2 2 kA1 = m1ω1 A1 ,振动增加为 A2 = 2 A1 ,质量增 2 2
1 π 3

解: 由矢量图可知,x1 和 x2 反相,合成振动的振幅
A = A1 − A2 = 0.05 − 0.03 = 0.02(m) ,初相 ϕ = ϕ1 =
四、计算题: 1.一定滑轮的半径为 R,转动惯量为 J,其上挂一轻绳,绳的一端 系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示。 设弹簧的倔强系数为 k, 绳与滑轮间无滑动,且忽略摩擦力及空气的 阻力。现将物体 m 从平衡位置拉下一微小距离后放手,证明物体作 简谐振动,并求出其角频率。 解:取如图 x 坐标,平衡位置为坐标原点,向下为正方向。 m 在平衡位置,弹簧伸长 x0, 则有 mg = kx0 ……………………(1) 现将 m 从平衡位置向下拉一微小距离 x, m 和滑轮 M 受力如图所示。 由牛顿定律和转动定律列方程, mg − T1 = ma ………………… (2)

大学物理练习册习题及答案5--振动学基础范文

大学物理练习册习题及答案5--振动学基础范文

习题及参考答案第四章 振动学基础参考答案思考题4-1什么是简谐振动?试分析以下几种运动是否是简谐振动? (1)拍皮球时球的运动;(2)一小球在半径很大的光滑凹球面底部的小幅度摆动;(3)一质点分别作匀速圆周运动和匀加速圆周运动,它在直径上的投影点的运动。

4-2如果把一弹簧振子和一个单摆拿到月球上去,振动的周期如何改变?4-3什么是振动的相位?一个弹簧振子由正向最大位移开始运动,这时它的相位是多少?经过中点,到达负向最大位移,再回到中点向正向运动,上述各处相应的相位各是多少?4-4一个简谐振动的振动曲线如图所示。

此振动的周期为( )(A)12s ; (B)10s ;(C)14s ; (D)1 1s 。

4-5一个质点作简谐振动,振幅为A , 在起始时刻质点的位移为 A /2,且向x 轴的 正方向运动;代表此简谐振动的雄转矢量 图为( )4-6一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,则其初位相应为( )(A)π/6;(B ) 5π/6;(C )-5π/6;(D )-π/6;4-7把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为( )(A)θ; (B) π; (C )0; (D π/2。

4-8如图所示,质量为m 的物体由倔强系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,则系统的振动频率为()(A )(B )(C )(D)xxxx思考题4-5图思考题4-6图v (m/s)t (s)思考题4-4图(A)2=ν(B)=ν(C)=ν(D )=ν4-9一倔强系数为k 的轻弹簧截成三等分,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。

则振动系统的频率为( )4-10一弹簧振子作简谐振动,总能量为E 1, 如果简谐振动振幅增加为原来的两倍,重物的 质量增为原来的四倍,则它的总能量E 1变为( )(A) E 1/4; (B) E 1/2; (C)2E 1; (D) 4 E 1。

大学物理振动习题含答案

大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时;若用余弦函数表示其运动方程,则该单摆振动的初相为A B /2 C 0 D2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同;第一个质点的振动方程为x 1 = A cos t + ;当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处;则第二个质点的振动方程为: A)π21cos(2++=αωt A x B )π21cos(2-+=αωt A x C)π23cos(2-+=αωt A x D )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为;若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 A 2 B ω2 C 2/ω D /24.3396:一质点作简谐振动;其运动速度与时间的曲线如图所示;若质点的振动规律用余弦函数描述,则其初相应为 A /6 B 5/6C -5/6D -/6E -2/35.3552:一个弹簧振子和一个单摆只考虑小幅度摆动,在地面上的固有振动周期分别为T 1和T 2;将它们拿到月球上去,相应的周期分别为1T '和2T ';则有A 11T T >'且22T T >'B 11T T <'且22T T <'C 11T T ='且22T T ='D 11T T ='且22T T >'6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x SI;从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 A s 81 B s 61 C s 41 D s 31 E s 217.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动;当重物通过平衡位置且向规定的正方向运动时,开始计时;则其振动方程为: A)21/(cos π+=t m k A x B )21/cos(π-=t m k A x C)π21/(cos +=t k m A x D )21/cos(π-=t k m A x E t m /k A x cos =v 213030图 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s,其平衡位置取作坐标原点;若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为A 1 sB 2/3 sC 4/3 sD 2 s9.5501:一物体作简谐振动,振动方程为)41cos(π+=t A x ω;在 t = T /4T 为周期时刻,物体的加速度为 A 2221ωA - B 2221ωA C 2321ωA - D 2321ωA10.5502:一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2T 为周期时,质点的速度为A φωsin A -B φωsin AC φωcos A -φωcos A 11.3030x 1的相位比x 2的相位A 落后/2B 超前C 落后D 超前 12.3042:一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为,T A s B sC sD s 15.5186:已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒;则此简谐振动的振动方程为: A)3232cos(2π+π=t x B )3232cos(2π-π=t x C )3234cos(2π+π=t x D )3234cos(2π-π=t x E)4134cos(2π-π=t x 16.3023:一弹簧振子,当把它水平放置时,它可以作简谐振动;若把它竖直放置或放在固定的光滑斜面上,A 竖直放置可作简谐振动,B 竖直放置不能作简谐振动,C 两种情况都可作简谐振动3270图 竖直放置放在光滑斜面上B x A CA/ -D 两种情况都不能作简谐振动17.3028:一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为A E 1/4B E 1/2C 2E 1D 4E 118.3393:当质点以频率作简谐振动时,它的动能的变化频率为A 4B 2CD ν2119;3560:弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为A kA 2B 221kAC 1/4kA 2D 020.5182:一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 A 1/4 B 1/2 C 2/1 D 3/4 E 2/3 21.5504:一物体作简谐振动,振动方程为)21cos(π+=t A x ω;则该物体在t = 0时刻的动能与t = T /8T 为振动周期时刻的动能之比为:A 1:4B 1:2C 1:1D 2:1E 4:1 22.5505:一质点作简谐振动,其振动方程为)cos(φω+=t A x ;在求质点的振动动能时,得出下面5个表达式: 1 )(sin 21222φωω+t A m 2)(cos 21222φωω+t A m3 )sin(212φω+t kA4 )(cos 2122φω+t kA5 )(sin 22222φω+πt mA T 其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期;这些表达式中A 1,4是对的B 2,4是对的C 1,5是对的D 3,5是对的E 2,5是对的 23.3008:一长度为l 、劲度系数为k 的均匀轻弹簧分割成长度分别为l 1和l 2的两部分,且l 1 = n l 2,n 为整数. 则相应的劲度系数k 1和k 2为 A 11+=n kn k , )1(2+=n k k B n n k k )1(1+=,12+=n k k C n n k k )1(1+=, )1(2+=n k k D 11+=n kn k , 12+=n k k 24.3562:图中所画的是两个简谐振动的振动曲线;若这两个简谐振动可叠加,则合成的余弦振动的初相为 A π23B πC π21D 0二、填空题:1.3009:一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示;若0=t 时,1 振子在负的最大位移处,则初相为______________;2 振子在平衡位置向正方向运动,则初相为__________;3 振子在位移为A /2处,且向负方向运动,则初相为______;2.3390:一质点作简谐振动,速度最大值v m = 5 cm/s,振幅A = 2 cm;若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________;3.3557:一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点;已知周期为T ,振幅为A ;1若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为 x =____________;2若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_______________;4.3816:一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 Hz;t = 0时,x = 0.37 cm 而速度等于零,则振幅是___________,振动的数值表达式为_____________________;5.3817:一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m,初速度为0.09 m/s,则振幅A =_____________ ,初相 =________________;6.3818:两个弹簧振子的周期都是 s,设开始时第一个振子从平衡位置向负方向运动,经过 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________;7.3819:两质点沿水平x 轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点;它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的相位差为___________;8.3820:将质量为 0.2 kg 的物体,系于劲度系数k = 19 N/m 的竖直悬挂的弹簧的下端;假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为__________,振幅为____________;9.3033:一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________; =________________; =_______________;移为,;其振动曲线如图所示;根据此图,它的周期T =___________,用余弦函数描述时初相 =_________________;别为 3033图 3041 t 3046 3398图 -t (s) -3399图 356714.3567:图中用旋转矢量法表示了一个简谐振动;旋转矢量的长度为0.04 m,旋转角速度 = 4 rad/s;此简谐振动以余弦函数表示的振动方程为x=__________________________SI;15.3029:一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________;设平衡位置处势能为零;当这物块在平衡位置时,弹簧的长度比原长长l ,这一振动系统的周期为________________________;16.3268一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零;在0≤t ≤T 21范围内,系统在t =________________时刻动能和势能相等;17.3561:质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________;18.3821:一弹簧振子系统具有 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率,则弹簧的劲度系数为___________,振子的振动频率为_________;19.3401:两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x SI , )5cos(10222t x -π⨯=- SI它们的合振动的振辐为_____________,初相为____________;20.3839:两个同方向的简谐振动,周期相同,振幅分别为A 1 = 0.05 m 和A 2 = 0.07 m,它们合成为一个振幅为A = 0.09 m 的简谐振动;则这两个分振动的相位差___________rad;21.5314:一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)41cos(05.01π+=t x ω SI, )129cos(05.02π+=t x ω SI其合成运动的运动方程为x = __________________________;22.5315:两个同方向同频率的简谐振动,其合振动的振幅为20 cm,与第一个简谐振动的相位差为 –1 = /6;若第一个简谐振动的振幅为310cm = 17.3 cm,则第二个简谐振动的振幅为___________________ cm,第一、二两个简谐振动的相位差1 2为____________;三、计算题:1.3017:一质点沿x 轴作简谐振动,其角频率 = 10 rad/s;试分别写出以下两种初始状态下的振动方程:1 其初始位移x 0 = 7.5 cm,初始速度v 0 = 75.0 cm/s ;2 其初始位移x 0 =7.5 cm,初始速度v 0 =-75.0 cm/s;2.3018:一轻弹簧在60 N 的拉力下伸长30 cm;现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止,再把物体向下拉10 cm,然 后由静止释放并开始计时;求:1 物体的振动方程;2 物体在平衡位置上方5 cm 时弹簧对物体的拉力;3 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间;3.5191:一物体作简谐振动,其速度最大值v m = 3×10-2 m/s,其振幅A = 2×10-2 m;若t = 0时,物体位于平衡位置且向x 轴的负方向运动;求:1 振动周期T ;2 加速度的最大值a m ;3 振动方程的数值式;4.3391:在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡;再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式;5.3835在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放;已知物体在32 s 内完成48次振动,振幅为5 cm;1 上述的外加拉力是多大2 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少6.3836在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长l = 1 cm 而平衡;经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求:1 小球的振动周期;2 振动能量;7.5506一物体质量m = 2 kg,受到的作用力为F = -8x SI;若该物体偏离坐标原点O 的最大位移为A = 0.10 m,则物体动能的最大值为多少8.5511 如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m,重物的质量m = 6 kg,重物静止在平衡位置上;设以一水平恒力F = 10 N 向左作用于物体不计摩擦,使之由平衡位置向左运动了0.05 m 时撤去力F ;当重物运动到左方最远位置时开始计时,求物体的运动方程;1.3001:C ;2.3002:B ;3C ;5.3552:D ;6.5178:E ; 7.5179:B ;8.5312:B ;9.5501:B ;10.5502:B ;11.3030:B ;12.3042:B ;13.3254:D ;14.3270:B ;15.5186:C ;16.3023:C ;17.3028:D ;18.3393:B ;19.3560:D ;20.5182:D ;21.5504:D ;22.5505:C ;23.3008:C ;24.3562:B ;二、填空题:1.3009: ; - /2;2.3390:)212/5cos(1022π-⨯=-t x 3.3557: )212cos(π-πT t A ;)312cos(π+πT t A 4.3816: 0.37 cm ; )21cos(1037.02π±π⨯=-t x5.3817: 0.05 m ; 或°6.3818:7.3819: 32π±8.3820: Hz ; 0.103 m9.3033: 10 cm /6 rad/s ; /310.3041: 0; 3 cm/s11.3046: /4;)4/cos(1022π+π⨯=-t x SI 12.3398: s ; -2/355065511图13.3399: )cos(1063π+π⨯=-t x a SI ;)2121cos(1063π+π⨯=-t x b SI 14.3567:)214cos(04.0π-πt 15.3029: 3/4; g l /2∆π16.3268: T /8; 3T /817.3561: 222/2T mA π18.3821: 2×102 N/m ; Hz19.3401: 4×10-2 m ; π21 20.3839:21.5314: )1223cos(05.0π+t ω SI 或 )121cos(05.0π-t ω SI22.5315: 10; π-21 三、计算题:1.3017:解:振动方程:x = A cos t +1 t = 0时 x 0 =7.5 cm =A cos ;v 0 =75 cm/s=-A sin解上两个方程得:A =10.6 cm----------------1分; = -/4-------------------1分∴ x =×10-2cos10t -/4 SI------------1分2 t = 0时 x 0 =7.5 cm =A cos ; v 0 =-75 cm/s=-A sin解上两个方程得:A =10.6 cm, = /4-------------------1分∴ x =×10-2cos10t +/4 SI-------------1分2.3018:解: k = f/x =200 N/m , 07.7/≈=m k ω rad/s----------2分(1) 选平衡位置为原点,x 轴指向下方如图所示(2) t = 0时, x 0 = 10A cos,v 0 = 0 = -A sin解以上二式得: A = 10 cm, = 分 ∴ 振动方程x 2 物体在平衡位置上方5 cm 时,弹簧对物体的拉力:f = mg 而: a = -2x = 2.5 m/s 2∴ f =4 - N= N----------------------------------------------3分 3 设t 1时刻物体在平衡位置,此时x = 0,即: 0 = A cos t 1或cos t 1 = 0∵ 此时物体向上运动,v < 0;∴ t 1 = /2,t 1= /2 =s------------------------1分再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即:-5 = A cos t 1,cos t 1 =-1/2∵ 0, t 2 = 2/3, t 2=2 /3 = s-----------------------------2分t = t 1-t 2 = - s = s-------------------------1分3.5191:解:1 v m = A ∴ = v m / A = s-1∴ T = 2/ s--------------------------------------------3分 2 a m = 2A = v m = ×10-2 m/s 2 ------------------------------2分 3 π=21φ , x = )215.1cos(π+t SI-----------3分 4.3391:解:设小球的质量为m ,则弹簧的劲度系数: 0/l mg k =选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得:220d /d )(t x m x l k mg =+- 将 0/l mg k =,代入整理后得:0//d d 022=+l gx t x ∴ 此振动为简谐振动,其角频率为-------------------3分 π===1.958.28/0l g ω------------------------2分 设振动表达式为:)cos(φω+=t A x由题意:t = 0时,x 0 = A=2102-⨯m,v 0 = 0,解得: = 0--------------------------------------------------1分∴)1.9cos(1022t x π⨯=--------------------------2分 5.3835:解一:1 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则:0)(0=+-+∆x l k mg F解得: F = kx 0-------------------------------2分由题意,t = 0时v 0 = 0;x = x 0 则:02020)/(x x A =+=ωv ----------2分又由题给物体振动周期4832=T s,可得角频率 T π=2ω, 2ωm k =∴444.0)/4(22=π==A T m kA F N --------------------------------------------1分2 平衡位置以下 1cm 处:)()/2(2222x A T -π=v ---------------------------2分 221007.121-⨯==v m E KJ-----------------------------------------------2分2222)/4(2121x T m kx E p π== = ×10-4 J-------------------------1分解二:1 从静止释放,显然拉长量等于振幅A 5 cm,kA F =----------------2分2224νωπ==m m k , =Hz--------------------------------------------2分∴ F =N-------------------------------------------------------1分l 0 mg x kl 0k (l +x ) mg2 总能量:221011.12121-⨯===FA kA E J-------------------2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25---------------2分∴ 21007.1)25/24(-⨯==E E K J,41044.425/-⨯==E E p J------------1分6.3836:解:1 )//(2/2/2l g m k m T ∆π=π=π=ω= s ------------------3分2 22)/(2121A l mg kA E ∆== = ×10-3 J ----------------------------------------2分7.5506:解:由物体受力F = -8x 可知物体作简谐振动,且和F = -kx 比较,知 k = 8 N/m,则:4/2==m k ωrad/s 2--------------------------------------------------2分 简谐振动动能最大值为:2221A m E Km ω== J----------------3分8.5511:解:设物体的运动方程为: )cos(φω+=t A x 恒外力所做的功即为弹簧振子的能量:F × = J---------------------------2分当物体运动到左方最远位置时,弹簧的最大弹性势能为 J,即:5.0212=kA J,∴ A = 0.204 m--------------------------------------------------------------------2分A 即振幅;4/2==m k ω rad/s 2 ⇒ = 2 rad/s---------------------------2分按题目所述时刻计时,初相为 = ------------------------------------------2分∴ 物体运动方程为: )2cos(204.0π+=t x SI----------------2分。

大学物理机械振动习题含答案

大学物理机械振动习题含答案

t (s )v (m.s -1)12m v m vo1.3题图题图 第三章 机械振动一、选择题1.质点作简谐振动,距平衡位置2。

0cm 时,加速度a=4.0cm 2/s ,则该质点从一端运动到另一端的时间为(一端运动到另一端的时间为( C )A:1.2s B: 2.4s C:2.2s D:4.4s 解:解:s T t T xax a 2.2422,2222,22===\=====p pw pw w2.一个弹簧振子振幅为2210m -´,当0t =时振子在21.010m x -=´处,且向正方向运动,则振子的振动方程是:[ A ] A :2210cos()m3x t p w -=´-;B :2210cos()m 6x t pw -=´-;C :2210cos()m 3xt pw -=´+ ;D :2210cos()m 6x t pw -=´+;解:由旋转矢量可以得出振动的出现初相为:3p-3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6p ;B :3p ;C :2p ;D :23p ;E :56p解:振动速度为:max 0sin()v v t w j =-+0t =时,01sin2j =,所以06p j =或056p j = 由知1.3图,0t =时,速度的大小是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06pj =是符合条件的。

符合条件的。

4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。

1秒,则此钟摆的摆长为(长为( B )A:15cm B:30cm C:45cm D:60cm 解:单摆周期解:单摆周期 ,2glT p=两侧分别对T ,和l 求导,有:求导,有:cm m m T dT dl l l dl T dT 3060)1.0(2121,21=-´-==\= 1.2题图题图xyoxy二、填空题1.有一放置在水平面上的弹簧振子。

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。

2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。

3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。

或:位移x 与加速度a 的关系为正比反向关系。

4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。

答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。

7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。

8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。

答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。

9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题、填空题
1.一质点作简谐振动,振动方程为x =Acos(ωt +ϕ) ,当时间t =T / 2(T 为周期) 时,质点的速度为B
A. -A ωsin ϕ .
B. A ωsin ϕ .
C. -A ωcos ϕ .
D. A ωcos ϕ.
2.两个质点各自作简谐振动,它们的振幅相同、周期相同, 第一个质点的振动方程为x 1=A cos(ω t +α). 当第一个质点从相对平衡位置的正位移处回到平衡位置时, 第二个质点正在最大位移处, 则第二个质点的振动方程为B
(A) x 2=A cos(ω t +α +π/2) . (B) x 2=A cos(ω t +α -π/2) . (C) x 2=A cos(ω t +α -3 π/2) . (D) x 2=A cos(ω t +α + π) .
3.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A/2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为图16.1中哪一图?B
4.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点. 已知周期为T ,振幅为A . (1)若t =0时质点过x =0处且朝x 轴正方向运动,则振动方程为x = . (2)若t =0时质点处于x =A /2处且朝x 轴负方向运动,则振动方程为x = .
5.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相ϕ=-π/3,则振动曲线为图17.2中哪一图?A
6.一质点作谐振动,振动方程为x=A cos(ωt +ϕ),在求质点振动动能时,得出下面5个表达式:C
(1) (1/2) m ω 2A 2sin 2 (ωt+ϕ); (2) (1/2) m ω2A 2cos 2 (ωt+ϕ);
(A)
图16.1
(A) (C) (B) (D)
图17.2
(3) (1/2) kA2 sin (ωt+ϕ);
(4) (1/2) kA2 cos 2 (ωt+ϕ);
(5) (2π2/T2) mA2 sin2 (ωt+ϕ).
其中m是质点的质量, k是弹簧的倔强系数,T是振动的周期,下面结论中正确的是
(A) (1) ,(4) 是对的;
(B) (2) ,(4) 是对的.
(C) (1) ,(5) 是对的.
(D) (3) ,(5) 是对的.
(E) (2) ,(5) 是对的.
7.一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为
x1=0.05cos(ω t+π/4) (SI)
x2=0.05cos(ω t+19π/12) (SI)
其合成运动的运动方程为x= .。

相关文档
最新文档