电磁场与微波技术(第1章)

合集下载

微波技术第1章 传输线理论1-电报方程

微波技术第1章 传输线理论1-电报方程
图13任意tem传输线上的电磁场导体间电流导体间电流导体间电压导体间电压单位长线上的时间平均磁储能单位长线上的时间平均磁储能单位长线上的时间平均电储能单位长线上的时间平均电储能分布参数分布参数单位长线的电阻单位长线的电阻单位长度功率损耗导体的表面电阻导体的表面电阻分布参数分布参数单位长线的电导单位长线的电导单位长线的电导单位长线的电导ds由电磁场和电路理论知在有损耗介质中单位长线的时间平均功率损耗为
2r
假如导体的表面电阻为Rs,而导体间填充介质具 有的复数介电常数为
j
导磁率为: 试确定传输线参量。
0r
解 同轴线参量为
L ( 2 )2
2
0
b a
1 r2
rdrd
2
ln b
a
C
2 b 1 rdrd 2
(ln b a )2 0 a r 2
lnb a
ቤተ መጻሕፍቲ ባይዱ
R
Rs
(2 )2
(
2 0
1 a2
ad
2 0
1 b2
bd
)
RS
2
1 1 a b
G
(ln b a
)2
2
0
b a
1 r2
rdrd
2
lnb a
内外导体具有表面电阻R s的同轴线
y

a
x
b Rs
注意
表1.1 列出了同轴线、双线和平行板传输线的参量。 从下一章将看到,大部分传输线的传播常数,特性阻抗和衰 减是直接由场论解法导出的。 该例题先求等效电路参数(L,C,R,G)的方法,只适用于 相对较简单的传输线。虽然如此,它还是提供了一种有用的直 观概念,将传输线和它的等效电路联系起来。

电磁场与微波技术

电磁场与微波技术

一、电场基本理论1.电荷守恒定律:在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。

2.库仑定律:库伦经过实验发现,真空中两个静止点电荷(q1, q2)之间的作用力与他们所带电荷的电量成正比,与他们之间的距离r平方成反比,作用的方向沿他们之间的连线,同性电荷为斥力,异性电荷为引力。

ε0为真空介电常数,一般取其近似值ε0=8.85×10-12C•N-1•m-2。

ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。

库仑反比定律也由越来越精确的实验得到验证。

目前δ<10-16。

库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。

3.电场强度:真空中电荷与电荷之间相互以电场相互发生作用。

若试探电荷q0在电场r处受电场力为F0(r), 则电场强度为E(r)。

4.静电场的高斯定理:由于静电场的电力线起始于正电荷,终止于负电荷,不会相交也不会形成封闭曲线,这就决定通过静电场内某一封闭曲面S的电通量为此封闭曲面所包围的电荷的1/ε0。

表明电场是个有源场。

5.静电场的环路定理:由于电荷的电力线或呈辐射状,或呈会聚状,不会出现具有涡旋形状的闭合曲线,表明静电场是个无旋场,既。

此处L为静电场内任一闭合曲线。

静电场的环路定理又可以写成微分形式:∇*E=0 。

表面电场是个无旋场。

6.静电场与物质的相互作用:由于各种物质内原子对电子的束缚各不相同,根据束缚强弱的不同可分为导体,绝缘体和半导体。

在静电场中的导体在达到静电平衡时内部电场强度处处为零(应用于电屏蔽),而绝缘体(既所谓电介质)内部的电场强度为外加的1/ε倍。

此处ε为电介质的相对介电常数。

电位移矢量 D=εE,起始于正电荷,终止于负电荷,不受极化电荷影响。

电磁场与微波技术第一二三章课后习题及部分答案

电磁场与微波技术第一二三章课后习题及部分答案

第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。

解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。

设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。

2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。

解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。

解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =, 则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。

4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。

解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。

电磁场与微波技术

电磁场与微波技术

电磁场与微波技术电磁场是指存在于空间中的电荷或电流所产生的物理场。

它是一个基本的物理概念,在生活中随处可见。

电磁场与微波技术的研究和应用,已经在科学和工业领域取得了重要的进展。

这篇文章将介绍电磁场和微波技术的基本概念、应用和未来发展趋势。

一、电磁场的基本概念电磁场最基本的特征是电场和磁场。

电场是指电荷对周围带电或未带电粒子所产生的力的作用。

与之相对的是磁场,它是由电荷所产生的电流产生的力所形成的,用特定的单位表示为韦伯(Wb)。

电磁场的强度和方向是由电荷密度和电流决定的。

电荷密度是指在某一区域单位体积内的电荷数量,通常用库仑/立方米(C/m³)表示。

电流是指单位时间内通过一个导体横截面的电量,通常用安培(A)表示。

电磁场还有一个重要的特征是其频率和波长。

频率是指电磁波每秒钟震荡的次数,用赫兹(Hz)表示。

波长是指电磁波一个震荡周期所覆盖的距离,用米(m)表示。

二、微波技术的基本概念微波技术是指运用微波频段(300MHz-300GHz)的电磁波进行信息传输、测量、加热等方面的技术。

微波技术具有传输速度高、信号质量好、噪声小等优点,因此在通信、雷达、天文学、生命科学等领域得到了广泛应用。

微波技术主要是由微波器件和微波传输系统构成的。

微波器件包括发射器、接收器、功率放大器、射频滤波器、振荡器等。

微波传输系统包括微波波导、微波传输线和微波天线等。

微波技术通过这些器件和传输系统实现了微波信号的调制、放大、传输和接收等功能。

三、电磁场和微波技术的应用1. 通信通信是电磁场和微波技术的重要应用领域之一。

无线通信的基本原理就是利用电磁波进行信息传输。

无线通信技术已经在移动通信、卫星通信、广播电视等方面得到了广泛应用。

2. 雷达雷达是指利用电磁波进行物体探测和测量的技术。

它广泛应用于军事、民用、科学研究等领域。

雷达技术已经变得越来越先进,可以探测到更小的物体,监测更广泛的区域,因此在海上、空中、陆地各种环境下都有广泛的应用。

电磁场与微波技术

电磁场与微波技术

电磁场与微波技术电磁场与微波技术引言电磁场和微波技术是现代科学与技术领域中重要的研究方向。

电磁场是由电磁波构成的物理现象,其在无线通信、电磁隔离、能量传输等方面具有广泛应用。

微波技术作为电磁波的一种,其频率范围在0.3 GHz到300 GHz之间,被广泛应用于通信、雷达、医疗、材料处理等领域。

本文将探讨电磁场的基本概念、特性以及微波技术在不同领域中的应用。

第一部分电磁场的基本概念与特性1. 电磁场的概念电磁场,顾名思义,是由电场和磁场组成的物理现象。

电场是由电荷引起的一种物理现象,磁场则是由电流引起的物理现象。

当电流变化时,会产生磁场。

电磁场可以通过电磁波的方式传播,包括无线电波、微波、可见光等。

2. 电磁场的特性电磁场具有许多特性,包括电磁波的强度、频率、相位等。

电磁波的强度代表了电磁辐射的能量大小,频率代表了电磁波的振动次数,相位则表示了电磁波在空间中的相对位置。

此外,电磁波还具有传导性、辐射性以及相对论效应等特性。

第二部分微波技术的应用领域1. 通信领域微波技术在通信领域中有着重要应用,尤其是无线通信和卫星通信。

无线通信利用微波进行信号传输,实现了人与人之间的远程通信,比如手机通话、无线网络等。

卫星通信则利用微波将信号从地面传输到卫星,再由卫星传输到其他地方,实现了全球通信的覆盖。

2. 医疗领域微波技术在医疗领域中也有广泛应用。

微波能够穿透物体,因此可以用于医学影像学中的透视、断层扫描等技术。

此外,微波技术还可以用于治疗,比如微波物理疗法、微波治疗仪等,可以用于疼痛治疗、肿瘤治疗等。

3. 雷达技术雷达技术是微波技术的重要应用之一。

雷达是利用微波进行距离测量和目标探测的装置。

它通过向目标发射微波信号,并接收其反射信号来实现目标的探测和定位。

雷达在军事、民航、气象等领域中起着重要作用,比如飞机导航、天气预报等。

4. 材料处理微波技术还可以用于材料处理,包括物体加热、干燥、焙烧等。

微波加热可以快速、均匀地加热物体,用于食品加热、橡胶硫化等。

电磁场与微波技术(基本)

电磁场与微波技术(基本)

(1) 点电荷产生的电场强度
Ep(r)
F qt
q
4 0r2
eˆr
V/m
(2) n个点电荷产生的电场强度(注意:矢量叠加)
E(r)
1
4 0
N k 1
qk r rk ' 2
r rk ' r rk '
1
4 0
N k 1
qk Rk 2
eˆk
V/m
(3) 连续分布电荷产生的电场强度
dE(r) 1
29
2.3 磁场的基本规律
2.3.1 安培定律
1820年, 法国物理学家安培从实验中总结出电流回路之 间相互作用力的规律,称为安培力定律 (Ampere’s force Law )。
电流 I ' 的回路对
电流I回路的作用力F
F 0
4
Idl (I 'dl' eˆR )
l l'
R2
式中真空中的磁导率
的线积分表示为
b
b
E dl Edl cos
a
a
对于闭合曲线,可得
rb Edr
ra
rb ra
qt
4 0r 2
dr
qt
4 0
1 ra
1 rb
b
a
E.dl l
a E.dl1
b
E.dl2
b
b
a E.dl1 a E.dl2 0
即 E.dl 0 l
静电场环路定律积分形式
25
l 4
o
(
1 L22 y2
1) L12 y2
Ey
L2
l
L1 4 o (x2 y2 )

电磁场与微波技术2篇

电磁场与微波技术2篇

电磁场与微波技术电磁场与微波技术(第一篇)导引电磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。

微波技术作为一种应用电磁场的技术,也在现代社会中得到广泛应用和发展。

本文将探讨电磁场的基本概念、性质以及微波技术的原理、应用和发展趋势。

电磁场的基本概念与性质电磁场是一种具有电场和磁场相互耦合而成的物理场。

电场是由电荷构成的粒子在空间中产生的力场,具有电荷之间相互作用的性质。

磁场则是由电流在空间中产生的力场,具有磁性物质与外磁场相互作用的性质。

电磁场具有许多基本性质。

首先,电磁场具有连续性。

在空间中任何一点,电磁场的数值和方向都是连续变化的,不存在突变。

其次,电磁场具有叠加性。

即多个电荷或电流所产生的电磁场可以叠加在一起,形成一个合成的电磁场。

此外,电磁场的传播速度是有限的,即光速。

根据麦克斯韦方程组的推导,电磁波在真空中传播的速度为光速,约为每秒300000公里。

微波技术的原理与应用微波技术是一种应用电磁场的技术,其原理基于电磁波的特性和传播规律。

微波指的是频率介于300MHz至300GHz之间的电磁波,其具有波长短、穿透力强等特点。

微波技术具有广泛的应用。

首先,微波技术在通信领域中有重要的应用。

无线电通信、卫星通信等都离不开微波技术的支持。

其次,微波技术在雷达和无线电导航系统中也有广泛应用。

雷达通过发送和接收微波信号来测量目标的距离和速度,实现目标探测和定位。

此外,微波技术还应用于微波炉、无线电频率识别等领域。

微波技术的发展趋势随着科技的进步和需求的不断增长,微波技术正在不断发展和创新。

未来,微波技术将朝着以下几个方向发展。

首先,微波技术的频率范围将进一步扩展。

随着物联网和5G通信的兴起,对更高频率的微波技术需求增加。

因此,微波技术将向毫米波甚至太赫兹波段发展,以满足更高速率、更大容量的通信需求。

其次,微波技术将越来越多地与其他技术结合。

例如,微波与纳米技术的结合,可以实现更小尺寸、更高性能的微波器件。

微波技术第1章-传输线理论1

微波技术第1章-传输线理论1
S
电磁波传播问题概述
• 时域一般波动方程
r r r 2 r ∂E ∂ E 1 ∂J 2 ∇ E − µε − µε 2 = ∇ρ + µ ∂t ∂t ε ∂t r r 2 r r ∂H ∂ H 2 ∇ H − µε − µε 2 = −∇ × J ∂t ∂t
(9)
一阶时间偏导数代表损耗,二阶代表波动。 一阶时间偏导数代表损耗,二阶代表波动。
(5)
r r r r D = εE , B = µH
短路面(理想导体边界)
r r n×E = 0 S r r r n×H =α S r r n•D =σ S r r n•B =0
S

Et
S
= 0,
Hn S = 0 Ht
S
En S ≠ 0,
≠0
(6)
切向电场为零, 切向电场为零,切向磁场不为零的界 电壁)均可视为等效短路面 等效短路面。 面(电壁)均可视为等效短路面。
第1章 微波传输线
§1.1 引言
*传输系统:把微波能量从一处传到另一处的装置。 传输系统:把微波能量从一处传到另一处的装置。
传输系统也叫导波结构或导波系统。 传输系统也叫导波结构或导波系统。 微波中常用传输系统: 微波中常用传输系统: 传输线:由两根或两根以上平行导体构成。 *传输线:由两根或两根以上平行导体构成。 通常工作在其主模( 通常工作在其主模(TEM波或准TEM波) 。 故又称为TEM波传输线。(含平行双线、同轴线和微带线等) 波传输线。 含平行双线、同轴线和微带线等) 波导管:由单根封闭柱形导体空腔构成。 *波导管:由单根封闭柱形导体空腔构成。 电磁波在管内传播,简称波导。 电磁波在管内传播,简称波导。 表面波波导:由单根介质或敷介质层导体构成。 *表面波波导:由单根介质或敷介质层导体构成。 电磁波沿其表面传播。 电磁波沿其表面传播。

电磁场与微波技术

电磁场与微波技术

电磁场与微波技术电磁场及其在微波技术中的应用引言:电磁场是现代科学研究中不可或缺的重要概念之一。

它不仅在基础物理学中有着重要地位,而且在应用技术领域中也发挥着巨大的作用。

微波技术作为其中的一个分支,基于电磁场的特性,广泛应用于通信、雷达、无线能量传输和生物医学等领域。

本文将重点讨论电磁场与微波技术的关系和在实际应用中的具体应用场景。

电磁场的基本概念:电磁场是由电磁场源产生的一种物理现象。

它是由电场和磁场组成的,并在空间中以波的形式传播。

电磁场的特性由麦克斯韦方程组描述,包括电场和磁场的分布与变化规律。

电场与磁场相互耦合,通过相互作用产生电磁波,进而实现信息的传输和能量的传导。

微波技术的基本原理:微波技术是一种利用微波电磁场进行信息传输和信号处理的技术。

微波波段一般指频率在300MHz到300GHz之间的电磁波。

与其他频段相比,微波波段具有传输损耗小、传输带宽大等优点,因此在通信和雷达领域得到广泛应用。

微波技术的基本原理是利用微波波段的高频电磁场特性,通过天线的辐射和接收实现信号的传输与处理。

微波通信技术:微波通信技术是微波技术的一个重要应用领域。

通过利用微波频段的高频特性,可以实现长距离、高质量的通信。

微波通信系统由发送端和接收端组成,通过天线发射和接收微波信号。

微波通信可以分为点对点通信和广播通信两种模式,广泛应用于卫星通信、移动通信和无线电广播等领域。

微波雷达技术:微波雷达技术是利用微波频段的高频特性实现目标探测与跟踪的一种技术。

微波雷达可以通过发射接收微波信号,利用目标散射和干涉原理实现对目标的定位和距离测量。

微波雷达的应用领域广泛,包括航空、军事、气象等领域。

它可以实现对目标的精确探测和跟踪,为人们提供重要的信息支持。

无线能量传输技术:无线能量传输技术是利用微波电磁场将能量传输到远距离的一种技术。

通过发射端产生微波信号,并通过电磁波传输将能量传递到接收端,实现无线能量传输。

该技术在无线充电、无线电源等方面有着广泛的应用前景。

电磁场与微波技术

电磁场与微波技术

电磁场与微波技术电磁场与微波技术1. 引言电磁场是一个包含电场和磁场的物理场,广泛应用于科学、工程和日常生活中。

微波技术是一种利用电磁波传输能量和信息的技术,具有广泛的应用领域。

本文将探讨电磁场与微波技术的基本原理、应用以及对于社会发展的影响。

2. 电磁场基本原理电磁场是由电场和磁场相互作用形成的。

电场是由带电粒子产生的,而磁场则是由电流或者磁铁产生的。

电磁场在空间中以电磁波的形式传播,具有粒子和波动性质。

3. 微波技术原理微波是一种波长较短、频率较高的电磁波。

微波技术利用微波的特性,通过天线将电能转化为电磁能,并进行传输。

微波技术可以应用于通信、雷达、热处理、无线电焊接等领域。

4. 电磁场与微波技术的应用4.1 通信领域微波技术在通信领域中起到了至关重要的作用。

无线通信、卫星通信、移动通信等都利用了微波技术传输信息。

微波通信可以实现远距离高速传输,极大地方便了人们的日常生活。

4.2 雷达技术雷达是利用电磁波传播的特性,通过接收和发送信号来测量和探测目标物体的位置、速度和方向。

雷达技术广泛应用于导航、遥感、气象预报等领域。

借助微波技术,雷达技术不仅可以探测大气层的异常变化,还能在航空、航海等领域,提供精确的目标检测和定位。

4.3 热处理技术微波热处理技术利用微波的加热效果,可以快速、均匀地加热材料。

这种技术被广泛应用于食品加热、胶粘剂固化、陶瓷制品烧结等领域。

与传统的加热方式相比,微波热处理技术具有更高的效率和更短的处理时间。

5. 电磁场与微波技术对社会发展的影响电磁场与微波技术的应用已经深入到我们的生活中,改变了我们的生产和生活方式。

通信技术的发展使得人与人之间的沟通更加方便和快捷,推动了经济和社会的发展。

雷达技术的发展提高了目标检测和定位的准确性,广泛应用于军事、民用航空等领域,提高了安全性和效率。

微波热处理技术的应用使得加热过程更加高效和节能,促进了制造业的发展。

6. 结论电磁场与微波技术是现代科学和技术的重要组成部分。

电磁场与微波技术第一章

电磁场与微波技术第一章
二.标量场的增量 1.前提条件:标量函数一阶连续可微。 2.增量表示
t t0时刻, 令f ( p, t0 ) f (u1 , u2 , u3 , t0 ) f 0
f0为常量,给f 一个微小增量df ,
面S
, u2 , u3 , t0 ) f 0 df f ( p, t0 ) f (u1
(3)方向导数最大值及对应方向; (4) 方向导数最小值及对应方向。
2 2 ˆ ˆ ˆz 在空间点 例3.求矢量场F x 4 x y 2 xy z p( , , z) p(2 2 ,

4
,3)处的散度。
r ˆ ˆA r , 试求在球体V:r a,0 , 例3. 已知A 2 r r 0 2 , 及其界面r a,0 ,0 2上验证 高斯定理。
t0),场值相等的点的集合称
导体等势面
为等值面。
温度场: 等温面
热源
2.由于空间任意点与场值是一一对应关系,故标量场的函
数是单值函数,各等值面是互不相交的。
3. 标量函数f(u1 ,u 2 ,u 3 ,t), 等值面方程为: f(u1 ,u 2 ,u 3 ,t0 ) f 0 ( f 0 为常量)。
, t0 ) f ( p1 , t0 ) df f ( p1
f (u1 du1 , u2 du2 , u3 du3 , t0 ) f (u1 , u2 , u3 , t0 )
3 f f f f du1 du2 du3 dui u1 u2 u3 i 1 ui
3 广义坐标系中,任意方向线元 dl u ˆi hi dui
3 f 3 1 f df dui u ˆi hi dui ˆi u i 1 i 1 hi ui i 1 ui

电磁场与微波技术3篇

电磁场与微波技术3篇

电磁场与微波技术第一篇:电磁场概述电磁场是指由电荷或电流产生的在空间中存在的物理场,也是一种能量形式。

电磁场是三维空间中的矢量场,其中包括电场和磁场两个部分。

电场是指在电荷周围存在的一种力场,具有方向和大小。

电场的强度取决于电荷的大小和距离关系。

在电场中,电荷之间互相作用,这种作用力是通过电场传递的。

磁场是由电流产生的一种力场,也具有方向和大小。

当电流流过导体时,磁场也会随之而产生。

磁场的强度取决于电流的大小和距离关系。

在磁场中,电流上的电子会受到磁场的力的作用,导致其运动路径发生曲线运动。

电磁场广泛应用于电磁波通信、雷达探测、电磁辐射治疗等领域。

电磁场还可以分析复杂的电磁问题和设计电子元器件等。

电磁场的形式化描述是由麦克斯韦方程组组成的。

麦克斯韦方程组由四个方程式组成,涵盖了电场和磁场的所有基本规律和相互关系。

总之,电磁场在现代物理中有着重要的应用和研究价值,对于电子技术和通信技术的发展起到了重要的推动作用。

第二篇:微波技术概述微波是指一种电磁波,波长在1毫米到1米之间,频率在300兆赫到300吉赫之间。

微波技术是指利用微波进行通信、雷达探测、天线设计、微波加热等方面的技术手段。

微波技术的优点包括传输速度快、带宽大、穿透力强、信息保密性和可靠性高等。

常见的微波应用包括移动通信、卫星通信、无线局域网、雷达探测、天线设计和微波加热等领域。

微波技术应用广泛,例如在通信领域,通过无线终端通过微波信号与基站相连完成通信连接,从而实现了无线通信。

在雷达探测领域,利用微波信号进行距离测量,在航空、军事、气象等领域用于观测地球和增强安全。

微波技术的研究不断发展,利用微波进行数据通信和传输的技术变得越来越重要。

下一代移动通信和无线网络也在使用微波技术进行传输,这也将进一步推动微波技术的发展。

总之,微波技术是一种应用广泛的技术手段,对于电子通信、雷达探测、医疗和生产技术等领域有着举足轻重的作用。

未来的研究和发展将在微波技术的应用和底层研究方面继续取得进展。

电磁场与微波技术实验教案

电磁场与微波技术实验教案

电磁场与微波技术实验教案第一章:电磁场基本概念1.1 电磁场的基本性质电场和磁场的基本概念电磁场的分布和边界条件电磁场的能量和动量1.2 电磁波的产生和传播电磁波的数学描述电磁波的产生和发射电磁波在自由空间和介质中的传播特性第二章:电磁场计算方法2.1 静电场的计算静电场的基本方程格林函数法求解静电场有限差分法求解静电场2.2 稳恒磁场的计算磁场的基本方程安培环路定律的应用毕奥-萨伐尔定律的应用第三章:微波技术基本概念3.1 微波的基本特性微波的频率范围和波长微波的传播特性微波的波动方程3.2 微波传输线传输线的分类和特性传输线方程和阻抗匹配传输线的设计和应用第四章:微波电路和组件4.1 微波放大器放大器的基本原理和分类放大器的稳定性和平衡性放大器的频率特性和线性度4.2 微波振荡器振荡器的基本原理和分类振荡器的稳定性和频率控制振荡器的应用和实例第五章:微波测量技术和设备5.1 微波功率测量功率测量的基本原理和仪器功率计的使用和校准功率测量的误差分析5.2 微波频率测量频率测量的基本原理和仪器频谱分析仪的使用和操作频率测量的误差分析第六章:微波天线基本原理6.1 微波天线的分类和特性天线的基本概念和参数偶极子天线、log-periodic 天线和Yagi-Uda 天线等常见天线的设计和性能天线方向图的分析和计算6.2 天线阵列和波束形成天线阵列的基本原理和分类波束形成技术及其在通信系统中的应用MIMO 技术中的天线阵列设计与优化第七章:微波通信系统7.1 微波通信基本原理微波通信的优点和缺点微波通信系统的组成和工作原理调制解调技术在微波通信中的应用7.2 微波通信链路设计与优化链路预算和信号传输分析馈线、塔放和天线的选择与配置抗干扰技术和信道编码的应用第八章:微波滤波器与振荡器8.1 微波滤波器设计滤波器的基本原理和分类微波滤波器的设计方法和技巧滤波器的频率特性和插入损耗的测量8.2 微波振荡器设计振荡器的基本原理和分类晶体振荡器和表面声波振荡器等高频振荡器的特性振荡器的频率稳定性和相位噪声第九章:微波电路仿真与设计软件9.1 微波电路仿真软件概述微波电路仿真软件的分类和功能ADS、CST 和HFSS 等微波电路仿真软件的使用方法和技巧微波电路仿真与实际测量结果的对比和分析9.2 微波电路设计与优化实例微波放大器、振荡器和滤波器等电路的设计与优化微波天线和通信系统等应用案例的分析与实践第十章:实验操作与安全注意事项10.1 实验操作流程实验前的准备工作与实验操作流程实验数据采集与处理方法10.2 实验室安全注意事项实验室电器设备的使用与维护实验室化学品的安全存放与处理实验室事故应急预案与处理措施重点和难点解析重点环节1:电磁波的产生和传播电磁波的数学描述:需要理解麦克斯韦方程组对电磁波描述的重要性,以及如何根据边界条件和初始条件求解电磁波的分布。

第1章-射频微波工程基础介绍

第1章-射频微波工程基础介绍

第1章 射频/微波工程介绍 表1-1
第1章 射频/微波工程介绍
以上这些波段的划分并不是惟一的,还有其他许多 不同的划分方法,它们分别由不同的学术组织和政府机 构提出,甚至还在相同的名称代号下有不同的范围,因 此波段代号只是大致的频谱范围。其次,以上这些波段 的分界也并不严格,工作于分界线两边临近频率的系统 并没有质和量上的跃变,这些划分完全是人为的,仅是 一种助记符号。
电路,取得一个比较好的折中方案。
第1章 射频/微波工程介绍
1.3 射频/
1.3.1 由于频率、 阻抗和功率是贯穿射频/微波工程的
三大核心指标,故将其称为射频铁三角。它能够形象地 反映射频/微波工程的基本内容。这三方面既有独立特 性,又相互影响。三者的关系可以用图1-2表示。
第1章 射频/微波工程介绍
第1章 射频/微波工程介绍
1.2.2 射频/ 由上述基本特性可归纳出射频/微波与普通无线电相
比有以下优点: (1) 频带宽。可传输的信息量大。 (2) 分辨率高。连续波多普勒雷达的频偏大,成像更
清晰,反应更灵敏。 (3) 尺寸小。电路元件和天线体积小。 (4) 干扰小。不同设备相互干扰小。 (5) 速度快。数字系统的数据传输和信号处理速度
第1章 射频/微波工程介绍
(3) 导航系统: 微波着陆系统(MLS),GPS,无线信标,防撞系统, 航空、 航海自动驾驶等。 (4) 遥感: 地球监测,污染监测,森林、 农田、 鱼汛监测,矿 藏、 沙漠、 海洋、 水资源监测,风、 雪、 冰、 凌监 测,城市发展和规划等。
第1章 射频/微波工程介绍
4. 射频/微波频带比普通的中波、 短波和超短波的 频带要宽几千倍以上,这就意味着射频/微波可以携带 的信息量要比普通无线电波可能携带的信息量大的多。 因此,现代生活中的移动通信、 多路通信、 图像传输、 卫星通信等设备全都使用射频/微波作为传送手段。 射频/微波信号还可提供相位信息、 极化信息、 多普勒频移信息等。这些特性可以被广泛应用于目标 探测、 目标特征分析、 遥测遥控、 遥感等领域。

电磁场习题答案

电磁场习题答案

1-25 已知圆球坐标系中矢量为 A = a R (2 cos ϕ R 3 ) + a θ sin θ ,求该矢量在直角坐标系中
的表达式。
3
答案: A = ax Ax + a y Ay + az Az 其中, Ax = (
2 x2 x +y
2 2
+ x3 z + xy 2 z + xz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
1-9 已知一标量函数 φ = sin (πx 2) sin (πy 3) e − z ,求:① 点 p( 1, 2, 3) 处 φ 增加速率最
快的方向及大小; ② 点 p( 处向坐标原点方向 φ 增加速率 1, 2, 3) (方向导数) 的大小。 答案:① am =
-1
π 2 + 27
=
(π ay + 3 3az ), ∇u =
Ay = (
2 xy
x +y
2 2
+ x 2 yz + y 3 z + yz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
Az = (
2 xz
x +y
2 2
− x4 − 2 x2 y 2 − x2 z 2 − y 2 z 2 − y 4 ) ( x2 + y 2 + z 2 )2 。
1-26 球 坐 标 系 中 的 两 个 矢 径 r1 和 r2 的 终 点 p1 和 p 2 的 坐 标 分 别 为 ( R1 ,θ 1 , ϕ 1 ) 和
1 (ax + 2a y − 3az ) ;② A − B = 53 ;③ A • B = −11 ; 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos ,cos ,cos 为 l 的方向余弦
4 . 标量场的梯度
场在某点处沿不同方
l 2
M
l1
向变化快慢程度(方
向性导数)不同,必
l
u
u u u l2 l1 l
存在变化最快的方向
标量场梯度(矢量场): 标量场在空间变化最快的方向及数值
u u u u ˆ ˆ ˆ ˆ u n | ex ey ez l max x y zxLeabharlann 2 y 2 Fx zy |
x x
x 2 y 2
z
y y
Fy zx | Fz yx |
z 2
y y 2
y y
z zz 2
zz
z 2
Fx Fy Fz x y z xyz Fx Fy Fz divF F x y z
5. 梯度的性质
☻标量场的梯度是矢量场,它在 空间某点的方向为该点场变化 最快的方向,其数值为变化最 大方向上场的空间变化率
☻标量场在某个方向上的方向导 数,是梯度在该方向上的投影
☻ 标量场的梯度函数 建立了标量场与矢 量场的联系,这一 联系使得某一类矢 量场可以通过标量 函数来研究,或者 说标量场可以通过 矢量场的来研究。
u u u ˆ ˆ ˆ u eq1 eq2 eq3 h1q1 h2 q2 h3q3
§1.4 矢量场的散度
1. 矢量场与矢量线
在确定空间区域上的 每一点有确定矢量与 对应,称该空间区域 上定义了一个矢量场
为描述矢量场的方向和数值,除直接用矢量的数值和 方向来表示矢量场外,还用矢量线来描述矢量场分布
i 1,2,3
称为度规(或称Lame)系数
§1.2
1.矢量的概念
矢量的表示及其运算
矢量 3 A A1e1 A2 e2 A3e3 Ai ei
i 1 3 B B1e1 B2 e2 B3e3 Bi ei
A, B
4. 三矢量乘积
A B C B C A C A B A B C A B C A B C BA C C A B
方向性导数可以描述标量场 在空间某个方向上变化情况
M r
M r l
方向性导数表示场沿 l 方向的空间变化率
u u u u u 1 |M 0 lim l x dx y dy z dz dl l l 0 ˆ ˆ ˆ u u u ex dx ey dy ez dz ˆ ˆ ˆ ex ey ez y z dl x u u u cos cos cos x y z
div F x, y, z lim
V 0
F x, y, z ds
s
V
为矢量场的散度。散度是矢量通过包含该点的任 意闭合小曲面的通量与曲面元体积之比的极限
Fx, y, z ds
S
Fx zy | Fy zx | Fz yx |
x x
(混合积)
5. 并矢
AB 二阶张量 3 AB Ai B j ei e j
i 1, j 1
§1.3 标量场的梯度
1.场的概念 任何物理过程总是在一定空间上发生,对应 的物理量在空间区域按特定的规律分布。如 电荷在其周围空间激发电场的分布 电流在周围空间激发磁场的分布 地球上太阳及其他原因激发温度的分布 在空间区域上每一点有确定物理量与之对应, 称在该区域上定义了该物理量的场
根据通量的物理意义,矢量场相对于小体 积元的通量与体积元内的通量源成正比:
V 0
lim
F x, y,z ds x, y,z V
s
其中 x , y , z 为通量源密度。于是有:
div F= F x , y , z = x , y , z
κ 为比例常数,一般由实验获得。
只有数值的大小而没有方向的场称为标量场 既有数值的大小又有方向的场称为矢量场 如果场与时间无关,称为静态场,反之为时变场
静态标量场用 u x, y,z 时变场标量场用 u x, y,z,t
静态矢量场 F x, y,z 时变矢量场 F x, y,z,t
福建省
台 湾 岛
电磁场与微波技术
Electromagnetic and Microwave Technology
江汉大学 柯璇
第一章
电磁场理论的数学基础
主要内容:
正交曲线坐标系及其转换 矢量的表示及其运算 场论基础(梯度、散度和旋度)
矢量场的Helmholtz定理
常用坐标系
§1.1正交曲线坐标系及其转换
所谓矢量线是这样的曲线, 其上每一点的切线方向为 该点矢量场的方向。
dx,dy,dz
F ,F ,F
x y z
dx dy dz Fx x, y, z Fy x, y, z Fz x, y, z
2. 矢量场的通量
ˆ dψ F x, y, z ns
矢量线不能定量描述矢量场 的大小,但过单位曲面积的 ds F x , y , z 矢量线的根数描述了矢量线 的多少。引入通量的概念。 在场区域的某点选取面元, 穿过该面元矢量线的总数称 ˆ dψ F x, y, z lim n 为矢量场对于面积元 ds 的 s 0 ds Max 通量。
0 Q F x, y, z ds= 0 s 0
流入流出闭合曲面矢 量线相等或没有矢量 线流入和流出 发散和汇聚力线源相 等或没有产生力线源
有净的矢量线流出 有产生发散力线源 有净的矢量线流入 有产生汇聚力线源
3 矢量场的散度
考虑空间任意点(包含该点在内的小体积元)单位 体积闭合曲面矢量场发散和汇聚力线强度,利用极 限方法得到:
矢量场对于曲面 s 的 通量为曲面 s 上所有 小面积元通的叠加:
ˆ dψ=F x, y, z ns
ψ dψ= F x, y, z ds
如果曲面 s 是闭合的,并规定曲面
法矢由闭合曲面内指向外,矢量场 对闭合曲面的通量是:
0 Q F x, y, z ds= 0 s 0
2 2 2
3.正交曲线坐标系中的弧长 在直角坐标系中,空间任意点的坐标变量 的微小变化,变化前后的弧长是:
ds dx dy dz
2 2
2
在正交曲线坐标系中,坐标变量的微小变 化 qi qi dqi ,对应的弧长改变量?
ds
ds
dqi
dx 2 dy 2 dz 2
2 2 2

标量场的梯度垂直 于通过该点的等值 面(或切平面)
6. 梯度运算的基本公式
c 0 cu cu u v u v uv uv vu f u f ' u u
7. 正交曲线坐标系中梯度的表达式
u u u ˆ ˆ ˆ u eq1 eq2 eq3 s1 s2 s3 ds1 h1dq1 , ds2 h2 dq2 , ds3 h3dq3
(2)
A B 36 cos 0.80 2 2 2 2 2 2 | A|| B | 3 4 2 2 4 7
(3)
A B Ax Bx
ex
ey Ay By
ez Az Bz
= ex(4×7-2×4) + ey(2×2 - 3×7) + ez(3×4 - 4×2) = ex20 - ey17 + ez4
ˆ ˆ ˆ e , e , e
x y z
ˆ e

ˆ ˆ , e , ez
qi=qi x , y , x C
曲面单位法矢量:
ˆ eqi 曲面单位法矢量
ˆ eqi
qi x, y, x qi x, y, x qi x, y, x ˆ ˆ ˆ ex ey ez x y z qi x, y, x qi x, y, x qi x, y, x x y z
ei :
i 1
基矢
2.矢量的加减
3 A B Ai Bi ei
i 1
图1.1 矢量加减法
3.矢量的乘法
a.点乘,标量积,内乘 3 A B Ai Bi A B cos
i 1
图1.2 点积的图示
b.叉乘,外乘,结果为矢量 方向:右手螺旋 A B A ex A B A1
P , , z
三维空间中同一点可以用不同的 正交曲线坐标系描述。不同坐标 系之间存在相互变换关系,这种 变换关系只能是一一对应的
在任何正交曲线坐标系有一组 与坐标轴对应的单位矢量。如 直角坐标系和圆柱坐标系等。 坐标变量单位矢量特点: 空间某点坐标变量的单位 矢量的方向为对应坐标变 量为常数的曲面的法矢
B sin e y ez A2 A3 B3
B1 B2 A B B A
图1.3
叉积的图示及右手螺旋
例1.1 已知A=ex3+ey4+ez2,B=ex2+ey4+ez7,求: (1)A·B; (2)A与B的夹角; (3)A×B。 解(1)
A ·B = AxBx+AyBy+AzBz = 3×2+4×4+2×7 = 36
x
x 2
F
0 Fx Fy Fz div F x, y, z 0 x y z 0
散度的三个结果的物理原因是什么?
4. 散度与源的关系
相关文档
最新文档