2020-2021中考数学—相似的综合压轴题专题复习含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学—相似的综合压轴题专题复习含详细答案
一、相似
1.在△ABC中,∠ABC=90°.
(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;
(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.
【答案】(1)解:∵AM⊥MN,CN⊥MN,
∴∠AMB=∠BNC=90°,
∴∠BAM+∠ABM=90°,
∵∠ABC=90°,
∴∠ABM+∠CBN=90°,
∴∠BAM=∠CBN,
∵∠AMB=∠NBC,
∴△ABM∽△BCN
(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.
∵∠BAP+∠1=∠CPM+∠1=90°,
∴∠BAP=∠CPM=∠C,
∴MP=MC
∵tan∠PAC=,
设MN=2m,PN=m,
根据勾股定理得,PM=,
∴tanC=
(3)解:在Rt△ABC中,sin∠BAC= = ,
过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,
∵∠DEB=90°,
∴CH∥AG∥DE,
∴ =
同(1)的方法得,△ABG∽△BCH
∴,
设BG=4m,CH=3m,AG=4n,BH=3n,
∵AB=AE,AG⊥BE,
∴EG=BG=4m,
∴GH=BG+BH=4m+3n,
∴,
∴n=2m,
∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,
在Rt△CEH中,tan∠BEC= =
【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;
(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由
tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得
从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出
再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;
(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出
,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。
2.综合题
(1)【探索发现】
如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.
(2)【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)
(3)【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
(4)【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且
tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.
【答案】(1)解:∵EF、ED为△ABC中位线,
∴ED∥AB,EF∥BC,EF= BC,ED= AB,
又∠B=90°,
∴四边形FEDB是矩形,
则;
(2)解:∵PN∥BC,
∴△APN∽△ABC,
∴,即,
∴PN=a- PQ,
设PQ=x,
则S矩形PQMN=PQ•PN=x(a- x)=- x2+ax=- (x- )2+ ,
∴当PQ= 时,S矩形PQMN最大值为 .
(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,
由题意知四边形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI= =24,
∵BI=24<32,
∴中位线IK的两端点在线段AB和DE上,
过点K作KL⊥BC于点L,
由【探索发现】知矩形的最大面积为×BG• BF= ×(40+20)× (32+16)=720,答:该矩形的面积为720;
(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,
∵tanB=tanC= ,
∴∠B=∠C,
∴EB=EC,
∵BC=108cm,且EH⊥BC,
∴BH=CH= BC=54cm,
∵tanB= = ,
∴EH= BH= ×54=72cm,
在Rt△BHE中,BE= =90cm,
∵AB=50cm,
∴AE=40cm,
∴BE的中点Q在线段AB上,
∵CD=60cm,
∴ED=30cm,
∴CE的中点P在线段CD上,
∴中位线PQ的两端点在线段AB、CD上,
由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,
答:该矩形的面积为1944cm2.
【解析】【分析】(1)由三角形的中位线定理可得ED∥AB,EF∥BC,EF= BC,ED= AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB是平行四边形,而∠B=90°,根据一个角是直角的平行四边形是矩形可得四边形FEDB是矩形,所以
;
(2)因为PN∥BC,由相似三角形的判定可得△APN∽△ABC,则可得比例式,即,解得,设PQ=x,则S矩形PQMN=PQ•PN=x()
,因为0,所以函数有最大值,即当PQ=时,
S矩形PQMN有最大值为;
(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由矩形的判定可得四边形ABCH是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△AEF≌△HED,所以AF=DH=16,同理可得
△CDG≌△HDE,则CG=HE=20,所以=24,BI=24<32,所以中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由(1)得矩形的最大面积为×BG• BF=
×(40+20)×(32+16)=720;
(4)延长BA、CD交于点E,过点E作EH⊥BC于点H,因为tanB=tanC,所以∠B=∠C,
则EB=EC,由等腰三角形的三线合一可得BH=CH=BC=54cm;由tanB可求得EH=BH=
×54=72cm,在Rt△BHE中,由勾股定理可得BE=90cm,所以AE=BE-AB=40cm,所以BE的中点Q在线段AB上,易得CE的中点P在线段CD上,由(2)得矩形PQMN的最大面积为
BC•EH=1944cm2。
3.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.
(1)如图1,当点M在线段ED上时,求证:MN= EM;
(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.
【答案】(1)证明::∵ °, ° ,
∴ °
∵ ,
∴
∵∥ ,
∴
∴ °,
∴
过点作于点 ,则 .
在中,
∴
∴
(2)解:在中,,
∴
∵
a.当点在线段上时,过点作于点 ,
在中,
由(1)可知:
,
∴
∴
∴
b.当点在线段延长线上时,过点作于点在中, ,
在中, ,
∴ ,
∴
(3)解:连接 ,交于点 .
∵为的中点
∴ ,
∴ .
∵ ,
∴ ,
∴ ,
∴ ,
∴ .
∵∥
∴ ,
∴ ,
,
∵ ,
∴ ,
又∵ ,
∴∽ ,
∴,即 ,
∴
【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;
(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;
②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可
求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性
质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G
根据所得的比例式即可求解.
,
4.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。
(1)求证:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.
【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,
∴,∴DC2=CE·AC;
(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,
DC= k,连接OC,OD,
∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,
∵AB是⊙O的直径,∴在Rt△ACB中,,
∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴
(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,
过C作CG⊥AB于G,
设EC=k,∵∠CAB=30°,∴,
又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,
∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;
(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;
(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。
5.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为,sinA= ,求BH的长.
【答案】(1)证明:如图,
∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线
(2)证明:连接AC,如图2所示:
∵OF⊥BC,
∴,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴,
∴CE2=EH•EA
(3)解:连接BE,如图3所示:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为,sin∠BAE= ,
∴AB=5,BE=AB•sin∠BAE=5× =3,∴EA= =4,
∵,
∴BE=CE=3,
∵CE2=EH•EA,
∴EH= ,
∴在Rt△BEH中,BH= .
【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。
由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°;
(2)连接AC,要证CE2=EH•EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解;
(3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。
6.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路
线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.
(1)此时两人相距多少米(DE的长)?
(2)张华追赶王刚的速度是多少?
【答案】(1)解:在Rt△ABC中:
∵AB=40,BC=30,
∴AC=50 m.
由题意可得DE∥AC,
∴Rt△BDE∽Rt△BAC,
∴ = ,
即 = .
解得DE= m.
答:此时两人相距 m.
(2)解:在Rt△BDE中:
∵DB=2,DE=,
∴BE=2 m.
∴王刚走的总路程为AB+BE=42 m.
∴王刚走这段路程用的时间为 =14(s).
∴张华用的时间为14-4=10(s),
∵张华走的总路程为AD=AB-BD=40-2=37(m),
∴张华追赶王刚的速度是37÷10≈3.7(m/s).
答:张华追赶王刚的速度约是3.7m/s.
【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.
(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,
再根据速度=路程÷时间解之即可得出答案.
7.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:________.
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.
【答案】(1)PA=PB
(2)解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:
如图②,过C作CE⊥n于点E,连接PE,
,
∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,
∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,
∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,
在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=PB
(3)解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,
,
∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;
在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,
∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•AB.
【解析】【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P 为线段CD的中点,
∴PA=PB.
【分析】(1)根据直角三角形斜边上的中线等于斜边上的一半;
(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,根据直角三角形斜边上的中线等于斜边上的一半得出PD=PE=PC,根据等边对等角得出∠CDE=∠PEB,根据二直线平行,内错角相等得出∠CDE=∠PCA,故∠PCA=∠PEB,根据夹在两平行线间的平行线相等得出AC=BE,然后利用SAS判断出△PAC∽△PBE,根据全等三角形的对应边相等得出PA=PB;
(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,根据平行线分线段成比例定理得出AP=PF,根据线段垂直平分线上的点到线段两个端点的距离相等得出BF=AB;然后判断出△AEF∽△BPF,根据相似三角形的对应边成比例即可得出AF•BP=AE•BF,根据等量代换得出2PA•PB=2k.AB,即PA•PB=k•AB.
8.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为________时,四边形AOCE是菱形;
②若AE=6,BE=8,则EF的长为________.
【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.
∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.
∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)
(2)60;
【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;
理由是:连接AO、OC.
∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.
∵∠ABC=60,∴∠AEC=120°=∠AOC.
∵OA=OC,∴∠OAC=∠OCA=30°.
∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.
∵∠ACB=∠CAD+∠D.
∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.
∵OA=OC,∴▱AOCE是菱形;
②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.
∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .
∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= = .
故答案为:①60°;② .
【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;
(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;
②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.
9.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).
(1)用含有x的代数式表示CE的长;
(2)求点F与点B重合时x的值;
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值. 【答案】(1)解:∵∠C=90°,PD⊥BC,
∴DP∥AC,
∴△DBP∽△ABC,四边形PDEC为矩形,
CE=PD..
∴ .
∴CE=6x;
(2)解:∵∠CEF=∠ABC,∠C为公共角,
∴△CEF∽△CBA,
∴ .
∴ .
当点F与点B重合时,
CF=CB,9x=20.
解得 .
(3)解:当点F与点P重合时,BP+CF=CB,4x+9x=20,
解得 .
当时,
=-51x2+120x.当<x≤ 时,
= (20-4x)2.
(或)
(4)解:①如图③,当PD=PF时,6x=20-13x,解得:x= ;△B′DE为拼成的三角形;
②如图④当点F与点P重合时,4x+9x=20,解得:x= ;△BDC为拼成的三角形;
③如图⑤,当DE=PB,20-4x=4x,解得:x= ,△DPF为拼成的三角形.
【解析】【分析】(1)首先证明△ABC∽△DBP∽△FEC,即可得出比例式进而得出表示CE的长;(2)根据当点F与点B重合时,FC=BC,即可得出答案;(3)首先证明
Rt△DOE∽Rt△CEF,得出,即可得出y与x之间的函数关系式;(4)根据三角形边长相等得出答案.
10.如图,抛物线与坐标轴交点分别为,,,作直线BC.
(1)求抛物线的解析式;
(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;
(3)条件同,若与相似,求点P的坐标.
【答案】(1)解:把,,代入得:,
解得:,,,
抛物线的解析式为
(2)解:设点P的坐标为(t,- t×2+ t+2),
∵A(-1,0),B(3,0),
∴AB=4,
∴S=
(3)解:当∽时,,即,
整理得:,
解得:或舍去,
,,
点P的坐标为;
当∽,则,即,
整理得,
解得:或舍去,
,,
点P的坐标为,
综上所述点P的坐标为或
【解析】【分析】(1)利用待定系数法,将点A、B、C三点坐标分别代入函数解析式,建立方程组,就可求出a、b、c的值,即可解答;或设函数解析式为交点式,即y=a (x+1)(x-3),再将点C的坐标代入可解答。
(2)点P为抛物线上第一象限内一动点,因此利用二次函数解析式,由P的横坐标为t表示出点P的坐标,利用三角形的面积公式,就可得出s与t的函数解析式。
(3)分两种情况讨论:当△ ODP ∽△ COB 时;当△ ODP ∽△ BOC ,分别利用相似三角形的性质,分别得出对应边成比例,建立关于t的方程,求出t的值,就可得出点P的坐标。
11.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG 与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH;
①求证:△CBH∽△OBC;
②求OH+HC的最大值.
【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,
∴∠ACB=90°
∵OA=OC,
∴∠CAB=∠OCA,
∴∠OCA+∠OCB=90°,
∵∠GAF=∠GCE,
∴∠GCE+∠OCB=∠OCA+∠OCB=90°,
∵OC是⊙O的半径,
∴直线CG是⊙O的切线;
(2)证明:①∵CB=CH,
∴∠CBH=∠CHB,
∵OB=OC,
∴∠CBH=∠OCB,
∴△CBH∽△OBC
解:②由△CBH∽△OBC可知:
∵AB=8,
∴BC2=HB•OC=4HB,
∴HB= ,
∴OH=OB-HB=
∵CB=CH,
∴OH+HC=
当∠BOC=90°,
此时BC=
∵∠BOC<90°,
∴0<BC<
令BC=x
∴OH+HC= = =
当x=2时,
∴OH+HC可取得最大值,最大值为5
【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,
从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:
,所以HB= ,
由于BC=HC,所以OH+HC=
利用二次函数的性质即可求出OH+HC的最大值.
12.如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).
(1)当t等于多少s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)解:若四边形EBFB′为正方形,则BE=BF,BE=5﹣t,BF=3t,
即:5﹣t=3t,
解得t=1.25;
故答案为:1.25
(2)解:分两种情况,讨论如下:
①若△EBF∽△FCG,
则有,即,
解得:t=1.4;
②若△EBF∽△GCF,
则有,即,
解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+ .
∴当t=1.4s或t=(﹣7+ )s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.
(3)解:假设存在实数t,使得点B′与点O重合.
如图,过点O作OM⊥BC于点M,
则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=3﹣3t,OM=2.5,
由勾股定理得:OM2+FM2=OF2,
即:2.52+(3﹣3t)2=(3t)2
解得:t=;
过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,
由勾股定理得:ON2+EN2=OE2,
即:32+(2.5﹣t)2=(5﹣t)2
解得:t= .
∵≠ ,
∴不存在实数t,使得点B′与点O重合
【解析】【分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在。