高考物理高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A
,一比荷
q
m
=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;
(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】
(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t
2
122L qE t m = 解得E=16N/C
(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0
tan v qE t m
θ=
可得θ=450粒子射入磁场时的速度大小为2v 0
粒子在磁场中做匀速圆周运动:2
v qvB m r
=
由几何关系可知2r L = 解得B=1.6×10-2T
(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为
32π
,带负电的粒子转过的圆心角为2
π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r m
T v qB
ππ==; 带正电的粒子在磁场中运动的时间为:413
5.910s 4
t T -==⨯; 带负电的粒子在磁场中运动的时间为:421
2.010s 4
t T -=
=⨯ 带电粒子在AC 两点射入电场的时间差为4
12 3.910t t t s -∆=-=⨯
2.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
P 是圆外一点,OP =3r 。
一质量为m 、电荷量为q (q >0)的粒子从P 点在纸面内垂直于OP 射出。
己知粒子运动轨迹经过圆心O ,不计重力。
求 (1)粒子在磁场中做圆周运动的半径; (2)粒子第一次在圆形区域内运动所用的时间。
【答案】(1)(2)
【解析】 【分析】
本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。
【详解】
(1)找圆心,画轨迹,求半径。
设粒子在磁场中运动半径为R,由几何关系得:①
易得:②
(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有
③
进入圆形区域,带电粒子做匀速直线运动,则
④
联立②③④解得
3.在如图甲所示的直角坐标系中,两平行极板MN垂直于y轴,N板在x轴上且其左端与坐标原点O重合,极板长度l=0.08m,板间距离d=0.09m,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y轴上(0,d/2)处有一粒子源,垂直于y轴连续
不断向x轴正方向发射相同的带正电的粒子,粒子比荷为q
m
=5×107C/kg,速度为
v0=8×105m/s.t=0时刻射入板间的粒子恰好经N板右边缘打在x轴上.不计粒子重力及粒子间的相互作用,求:
(1)电压U0的大小;
(2)若沿x轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;
(3)若在第四象限加一个与x轴相切的圆形匀强磁场,半径为r=0.03m,切点A的坐标为
(0.12m,0),磁场的磁感应强度大小B=2
3
T,方向垂直于坐标平面向里.求粒子出磁场后
与x轴交点坐标的范围.
【答案】(1)4
0 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥
【解析】 【分析】 【详解】
(1)对于t =0时刻射入极板间的粒子:
0l v T = 7110T s -=⨯
211()22T y a =
2y T v a
= 22
y
T y v = 122
d
y y =+ Eq ma =
U E d
=
解得:4
0 2.1610V U =⨯
(2)2T
t nT =+
时刻射出的粒子打在x 轴上水平位移最大:032
A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0
tan y v v β=
37β=
cos37v v
=
6110m/s v =⨯
即:所有的粒子射出极板时速度的大小和方向均相同.
2
v qvB m R
=
0.03m R r ==
由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.
由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A R
x x ︒
=+
0.1425m C x =.
由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥
4.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为
q
m
=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
(1)求粒子打到荧光屏上的位置到A 点的距离;
(2)若撤去磁场在荧光屏左侧某区域加竖直向上匀强电场,电场左右宽度为2r ,场强大小E=1.0×103V/m ,粒子仍打在荧光屏的同一位置,求电场右边界到屏幕MN 的距离。
【答案】(1)0.267m (2)0.867m 【解析】 【详解】
(1)粒子射入O 点时的速度v ,由动能定理得到:2
12
qU m v =
进入磁场后做匀速圆周运动,2
qvB m R
v =
设圆周运动的速度偏向角为α,则联立以上方程可以得到:1
tan
2
2
r R α
=
=,故4tan 3
α=
由几何关系可知纵坐标为y ,则tan y r
α= 解得:4
0.26715
y m m =
=;
(2)粒子在电场中做类平抛运动,Eq ma =,2r vt =,2
112
y at =,y v at = 射出电场时的偏向角为β
,tan y v v
β=
磁场右边界到荧光屏的距离为x ,由几何关系1
tan y y x
β-=
,解得:0.867x m =。
5.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为
2
R
,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:
(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqR
v m
=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
【答案】(1)4BqR v m ≤(2)1523
R ++ 【解析】 【详解】
(1)粒子在磁场中做匀速圆周运动,有:2
v Bqv m r
=
如图所示,若所有离子均不能射出圆形磁场区域,则4
R r ≤ 故4BqR
v m
≤
(2)当离子速率大小02BqR v m =
时,由(1)式可知此时离子圆周运动的轨道半径2
R
r = 离子经过最高点和最低点的运动轨迹如图,
由几何关系知:2
2214R h R ⎛⎫+= ⎪⎝⎭
得115h R = 由几何关系知:223
sin 6022R R h ︒+=
+=
故最高点与最低点的高度差1215
23
4
h h h R ++=+=
6.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.
求:(1)电场强度的大小.
(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.
【答案】22
B qL
E m
=;2B E t t π= 【解析】 【分析】 【详解】
(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,
则有2
0v qv B m R
= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为1
4
圆周,故有2
R =
以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212
E R at =
竖直方向上:0E R v t =
由以上各式,得 22
B qL E m
=且E m
t qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为1
4
圆周,即142B
t T m qB π== 所以
2
B E t t π=
7.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.
(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;
(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3
)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.
【答案】(1) (2) (3) (n=1,2,3…)
(n=1,2,3…) 【解析】
(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.
由速度关系可得:
解得:
由速度关系得:v y =v 0tanθ=v 0
在竖直方向:
而水平方向:
解得:
(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L
根据牛顿第二定律:
解得:
根据几何关系得电子穿出圆形区域时位置坐标为(,-)
(3)电子在在磁场中最简单的情景如图2所示.
在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;
在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于
2r.
综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)
而:
解得:(n=1,2,3…)
应满足的时间条件为: (T0+T′)=T
而:
解得(n=1,2,3…)
点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合
要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.
8.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.
(1)求第I 象限内磁场的磁感应强度B 1;
(2)计算说明速率为5v 、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mv
B qL
=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL
=
-2(17317)'4mv
B qL +=),垂直坐标平面向外
【解析】 【详解】
(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①
由牛顿运动定律得2
1v qvB m R
=②
得1mv B qL
=
③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式
222()R L y R -+=④
得这两种粒子在y 轴上的交点到O 的距离分别为3L 17L ⑤ 故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥
(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有
15172917L L R L L
-= 又221
(9)9v q vB m R ⋅=⑨
解得2217(517)mv B qL
=
-(或2(51717)4mv
B qL =)⑩
若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里
同理:21732917L L
R L L
-=
2
22
(9)9'v q vB m R ⋅=
解得2217'(173)m B qL
=
-2(17317)'mv
B +=)
9.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标
06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度
51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方
向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴
上方180°范围内的各个方向发射比荷为
81.010/q
C kg m
=⨯的带正电的粒子,已知粒子的发射速率6
0 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:
(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】
(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动
2
0v qv B m r
=
解得:0
5mv r cm qB
=
= (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.
(3)假设粒子没有射出电场就打到荧光屏上,有
000x v t =
2
012
h at =
qE a m
=
解得:18210h cm R cm =>=,
说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则
0x v t =
212
y at =
代入数据解得2x y =
设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,
000
tan 2y qE x v m v y
v v θ===,
所以()()
00tan 22H x x x y y θ=-=-,
由数学知识可知,当()
022x y y -=时,即 4.5y cm =时H 有最大值,
所以max 9H cm =
10.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:
(1)a 粒子在电、磁场分开后,再次打到荧光屏O 点时的动能; (2)b ,c 粒子中打到荧光屏上的点与O 点间的距离(用x 、L 、d 表示); (3)b ,c 中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.
【答案】(1) 2
4
2
2
2
2
22
2a k L B d q m U E mB d = (2) 1()2x y d L =+ (3) 1
1224==5Uq
y W d Uq W y d
【解析】 【详解】
据题意分析可作出abc 三个粒子运动的示意图,如图所示.
(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.
U
q Bqv d
=, Bd
U v =
, L LBd t v U
=
=, 222122a Uq L B qd
y t dm mU ==
, 21()2a a k U U qy E m d Bd
=- 242222
22
2a k L B d q m U E mB d
= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.
设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得
12=122
d
y L L x +,
1()2
x y d L =+
(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2
如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 2
2111·2Uq y t md =,11y Uq v t md =
122
221·2y Uq t m y t d
v +=,
2
2158qU y t md
=
, 124=5
y y , 1
1224==5
Uq
y W d Uq W y d
11.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
(1)求此电场的场强大小E ;
(2)若粒子能在OL 与x 轴所围区间内返回到虚线OL 上,求粒子从M 点出发到第二次经过OL 所需要的最长时间。
【答案】(1) ; (2)
.
【解析】
试题分析:根据粒子只受电场力作用,沿电场线方向和垂直电场线方向建立坐标系,利用类平抛运动;根据横向位移及纵向速度建立方程组,即可求解;由(1)求出在电场中运动
的时间及离开电场时的位置;再根据粒子在磁场中做圆周运动,由圆周运动规律及几何关系得到最大半径,进而得到最长时间;
(1)粒子在电场中运动,不计粒子重力,只受电场力作用,;
沿垂直电场线方向X和电场线方向Y建立坐标系,
则在X方向位移关系有:,所以;
该粒子恰好能够垂直于OL进入匀强磁场,所以在Y方向上,速度关系有
,
所以,,则有.
(2)根据(1)可知粒子在电场中运动的时间;
粒子在磁场中只受洛伦兹力的作用,在洛伦兹力作用下做圆周运动,设圆周运动的周期为T
粒子能在OL与x轴所围区间内返回到虚线OL上,则粒子从M点出发到第二次经过OL在磁场中运动了半个圆周,所以,在磁场中运动时间为;
粒子在磁场运动,洛伦兹力作为向心力,所以有,;
根据(1)可知,粒子恰好能够垂直于OL进入匀强磁场,速度v就是初速度v0在X方向上的分量,即;
粒子在电场中运动,在Y方向上的位移,所以,粒子进入磁场的位置在OL上距离O点;根据几何关系,
可得,即;
所以;
所以,粒子从M点出发到第二次经过OL所需要的最长时间
.
12.如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y 正方向;在第Ⅳ象限的正三角形abc区域内有匀强电场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行。
一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力。
求:
(1)电场强度E的大小;
(2)粒子到达a 点时速度的大小和方向; (3)abc 区域内磁场的磁感应强度B 的最小值。
【答案】(1)2
2mv E qh
=;(2)02v v =,方向与x 轴的夹角为45°;(3)02mv B qL =
【解析】 【详解】
(1)设粒子在电场中运动的时间为t , 则有x=v 0t=2h ,
2
12
y h at ==
qE=ma ,
联立以上各式可得20
2mv E qh
= ;
(2)粒子达到a 点时沿负y 方向的分速度为v y =at=v 0,
所以22
002y v v v v =+=
,
方向指向第IV 象限与x 轴正方和成45o 角;
(3)粒子在磁场中运动时,有2mv qvB r
= ,
当粒子从b 点射出时,磁场的磁感应强度为最小值,此时有2
2
r L = , 所以磁感应强度B 的最小值0
2mv B qL
=
13.如图,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为0v 的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:
(1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积. 【答案】见解析 【解析】
(1)设匀强磁场的磁感应强度的大小为B .令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道.电子所受到的磁场的作用力
0f ev B =
应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a 按照牛顿定律有
20
2
v f m =
联立①②式得
mv B ea
=
(2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射电子在A 点沿DA 方向射出,且自BC 边上其它点垂直于入射的电子的运动轨道只能在BAEC 区域中.因而,圆弧AEC 是所求的最小磁场区域的一个边界.
为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设02
π
θ≤<
)的情形.该电子的运动轨迹qpA 如右图所示.
图中,圆AP 的圆心为O ,pq 垂直于BC 边,由③式知,圆弧AP 的半径仍为a ,在D 为原点、DC 为x 轴,AD 为y 轴的坐标系中,P 点的坐标(,)x y 为
sin [(cos )]cos x a y a z a a θθθ==---=-④
⑤
这意味着,在范围02
π
θ≤≤
内,p 点形成以D 为圆心、a 为半径的四分之一圆周AFC ,
它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.
因此,所求的最小匀强磁场区域时分别以B 和D 为圆心、a 为半径的两个四分之一圆周
AEC 和AFC 所围成的,其面积为2
221122()4
22
S a a a ππ-=-
=
14.右图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为B 0,方向与金属板面平行并垂直于纸面朝里,图中右边有一半径为R 、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里.一电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,
沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出,已知弧所对应的圆心角为.不计重力,求:
(1)离子速度的大小;
(2)离子的质量.
【答案】(1)
(2)
【解析】
【分析】
【详解】
试题分析:带电粒子在磁场中的运动轨迹分析如图所示
(1)由题设知,离子在平行金属板之间做匀速直线运动,则
①
又②
由①②式得③
(2)在圆形磁场区域,离子做匀速圆周运动.则
④
由几何关系有⑤
解得
考点:带电粒子在磁场中的运动
点评:本题是速度选择器和带电粒子在匀强磁场中运动的组合问题,可以列出带电粒子在
磁场中做圆周运动洛伦兹力做向心力的表达式求解,根据几何关系求半径是解题关键.
15.
磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)
(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.
(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2
【答案】见解析
【解析】
【详解】
(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x
圆周运动
2
q B m R υυ=
α粒子的动能
212
E m υ= 2x R = 由以上三式可得22mE x =
所以
1x ∆=
化简可得1x E qBE
∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动
2
q B m R υυ=
α粒子的动能212
E m υ= 由几何关系得
)2222cos 1cos 2φx R R φφqB qB ∆=-=
-=。