黑龙江省大兴安岭地区数学中考一模试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省大兴安岭地区数学中考一模试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)若b<0,则a+b,a,a﹣b的大小关系为()
A . a+b>a>a﹣b
B . a﹣b>a>a+b
C . a>a﹣b>a+b
D . a﹣b>a+b>a
2. (2分)(2013·深圳) 某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()
A . 0.32×108
B . 3.2×106
C . 3.2×107
D . 32×106
3. (2分)如图所示物体的主视图是()
A .
B .
C .
D .
4. (2分)下列运算正确的是()
A .
B .
C .
D .
5. (2分)一组数据:3,2,1,2,2的众数,中位数,方差分别是()
A . 2,1,0.4
B . 2,2,0.4
C . 3,1,2
D . 2,1,0.2
6. (2分)(2020·百色模拟) 下列图形中,根据AB∥CD,能得到∠1=∠2的是()
A .
B .
C .
D .
7. (2分) (2019九下·南宁月考) 如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()
A . 80°
B . 50°
C . 30°
D . 20°
8. (2分)如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:
甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;
乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.
下列说法正确的是()
A . 甲、乙都正确
B . 甲、乙都错误
C . 甲正确,乙错误
D . 甲错误,乙正确
9. (2分) (2018九上·包河期中) 已知函数y= 使y=m成立的x的值有4
个时的取值范围是()
A . -8<m<1
B . m>-8
C . -8<m<0
D . -4<M<1
10. (2分) (2017九下·江都期中) 如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()
A . 点B
B . 点C
C . 点D
D . 点E
二、填空题 (共5题;共7分)
11. (1分)计算:+(﹣1)0=________
12. (1分)(2017·普陀模拟) 如果关于x的方程x2﹣3x+m=0没有实数根,那么m的取值范围是________.
13. (2分)(2017·青山模拟) 在一个不透明的袋子里,有5个除颜色外,其他都相同的小球.其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则有一次取到绿球的概率是________.
14. (1分) (2019八上·长兴月考) 如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D,DE⊥AB,垂足为E.若AC=3,AB=5,则DE的长为________。
15. (2分)(2017·全椒模拟) 如图,在矩形ABCD中,AD=6,AB=4,点E,G,H,F分别在AB,BC,CD,AD 上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE,PF,PG,PH,则△PEF和△PGH的面积和等于________.
三、解答题 (共8题;共71分)
16. (5分)先化简,后求值:• ÷ ,其中a=2,b=﹣1.
17. (2分)(2020·黄冈模拟) 学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生;
(2)请把折线统计图(图1)补充完整;
(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数;
(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.
18. (6分)(2015·宁波) 如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x轴,y 轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E (位于点M右下方),连结DE交OM于点K.
(1)若点M的坐标为(3,4),
①求A,B两点的坐标;
②求ME的长.
(2)若 =3,求∠OBA的度数.
(3)设tan∠OBA=x(0<x<1), =y,直接写出y关于x的函数解析式.
19. (15分) (2017九上·怀柔期末) 《雁栖塔》位于怀柔“北京雁栖湖国际会都中心”所处大岛西南部突出部位的半岛上,是“北京雁栖湖国际会都中心”的标志性建筑,也是整个雁栖湖风景区的标志性建筑.某校数学课外小组为了测量《雁栖塔》(底部可到达)的高度,准备了如下的测量工具:①平面镜,②皮尺,③长为1米的标杆,④高为1.5m的测角仪(测量仰角、俯角的仪器).第一组选择用②④做测量工具;第二组选用②③做测量工具;第三组利用自身的高度并选用①②做测量工具,分别画出如下三种测量方案示意图.
(1)请你判断如下测量方案示意图各是哪个小组的,在测量方案示意图下方的括号内填上小组名称.(2)选择其中一个测量方案示意图,写出求《雁栖塔》高度的思路.
20. (15分)(2019·道真模拟) 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O
上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.
(1)求证:△OBP与△OPA相似;
(2)当点P为AB中点时,求出P点坐标;
(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.
21. (15分)(2017·柘城模拟) 甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;
(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;
(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
22. (11分) (2017八下·黄山期末) 已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m 的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.
(1)
求证:OE=OF.
(2)
在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.
探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.
②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的 S.
23. (2分) (2018九下·市中区模拟) 如图,已知一条直线过点(0,4),且与抛物线y= x2交于A,B 两点,其中点A的横坐标是-2.
(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共8题;共71分)
16-1、
17-1、
17-2、
17-3、
17-4、
17-5、
18-1、
18-2、
18-3、19-1、
19-2、20-1、20-2、
21-1、21-2、21-3、22-1、
22-2、23-1、
23-2、23-3、。