浙江省衢州市2019-2020学年第四次中考模拟考试数学试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省衢州市2019-2020学年第四次中考模拟考试数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
2.在下面的四个几何体中,左视图与主视图不相同的几何体是()
A.B.C.D.
3.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()
A.9πB.10πC.11πD.12π
4.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且»BC,»CD,»DE所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()
A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出D.立交桥总长为150m
5.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是()
A.9.5 B.13.5 C.14.5 D.17
6.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
A.有两个相等的实数根B.有两个异号的实数根
C.有两个不相等的实数根D.没有实数根
7.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()
A.平均数变小,方差变小B.平均数变小,方差变大
C.平均数变大,方差变小D.平均数变大,方差变大
8.下列分式中,最简分式是()
A.
2
2
1
1
x
x
-
+
B.
2
1
1
x
x
+
-
C.
22
2
2
x xy y
x xy
-+
-
D.
236
212
x
x
-
+
9.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于1
2
AC的长为半径作弧,
两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是()
A .7
B .10
C .11
D .12
10.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是( ) A .16 B .13 C .12 D .23
11.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )
A .20°
B .40°
C .60°
D .80°
12.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )
A .30和 20
B .30和25
C .30和22.5
D .30和17.5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若关于x 的方程2222x m m x x
++=--的解是正数,则m 的取值范围是____________________ 14.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
15.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .
16.已知直线m ∥n ,将一块含有30°角的直角三角板ABC 按如图方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=20°,则∠2=_____度.
17.一个扇形的面积是125πcm ,半径是3cm ,则此扇形的弧长是_____. 18.如图,二次函数y=a (x ﹣2)2+k (a >0)的图象过原点,与x 轴正半轴交于点A ,矩形OABC 的顶点C 的坐标为(0,﹣2),点P 为x 轴上任意一点,连结PB 、PC .则△PBC 的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 长为半径的圆恰好与BC 相切于点D ,分别交AC ,AB 于点E ,F .
(1)若∠B=30°,求证:以A ,O ,D ,E 为顶点的四边形是菱形;
(2)填空:若AC=6,AB=10,连接AD ,则⊙O 的半径为 ,AD 的长为 .
20.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求:
①对角线BD 长度的最大值;
②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)
(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)
21.(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
22.(8分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.
23.(8分)计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.
24.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC 于点G,交AB的延长线于点F.
(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.
26.(12分)如图,在△ABC中,
(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
(2)在(1)条件下,求证:AB2=BD•BC.
27.(12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.D
【解析】
【分析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
【详解】
根据图中信息,某种结果出现的频率约为0.16,
在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为
2
3
≈0.67>0.16,故A选项不符合题意,
从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为13
27
≈0.48>0.16,故B选项不符合题意,
掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是1
2
=0.5>0.16,故C选项不符合题意,
掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是1
6
≈0.16,故D选项符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
2.B
【解析】
【分析】
由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.
【详解】
A、正方体的左视图与主视图都是正方形,故A选项不合题意;
B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;
C、球的左视图与主视图都是圆,故C选项不合题意;
D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;
故选B.
【点睛】
本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
3.B
【解析】
【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.
【详解】由题意可得此几何体是圆锥,
底面圆的半径为:2,母线长为:5,
故这个几何体的侧面积为:π×2×5=10π,
故选B .
【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.
4.C
【解析】
分析:结合2个图象分析即可.
详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确.
B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确.
C.分析图2可知甲车从G 口出,乙车从F 口出,故错误.
D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确.
故选C.
点睛:考查图象问题,观察图象,读懂图象是解题的关键.
5.B
【解析】
【分析】
由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.
【详解】
∵在△ABC 中,CD ⊥AB 于点D ,E ,F 分别为AC ,BC 的中点,
∴DE=
12AC=4.1,DF=12BC=4,EF=12
AB=1, ∴△DEF 的周长=12(AB+BC+AC )=12×(10+8+9)=13.1. 故选B .
【点睛】
考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.
6.A
【解析】
【分析】
根据抛物线的顶点坐标的纵坐标为4,判断方程ax 2+bx+c ﹣4=0的根的情况即是判断函数y =ax 2+bx+c 的图象与直线y =4交点的情况.
【详解】
∵函数的顶点的纵坐标为4,
∴直线y =4与抛物线只有一个交点,
∴方程ax 2+bx+c ﹣4=0有两个相等的实数根,
故选A .
【点睛】
本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 7.A
【解析】
分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188, 方差为
S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣
⎦=683; 换人后6名队员身高的平均数为x =
1801841881901861946
+++++=187, 方差为S 2=
()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣
⎦=593 ∵188>187,683>593, ∴平均数变小,方差变小,
故选:A.
点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(
x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 8.A
【解析】
试题分析:选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A.
考点:最简分式.
9.B
【解析】
∵四边形ABCD 是平行四边形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直线MN 是线段AC 的垂直平分线,
∴AE=CE ,
∴AE+DE=CE+DE=AD ,
∴△CDE 的周长=CE+DE+CD=AD+CD=4+6=1.
故选B .
10.B
【解析】
考点:概率公式.
专题:计算题.
分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,
故概率为2/ 6 ="1/" 3 .
故选B .
点评:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )="m" /n .
11.C
【解析】
【分析】
根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.
【详解】
∵//AB CD ,40ABF ︒∠=,
∴180140CFB B ︒︒∠=-∠=,
∵:3:4CFE EFB ∠∠=, ∴3607
CFE CFB ︒∠=∠=, ∵//AB CD ,
∴60BEF CFE ︒∠=∠=,
故选C .
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.12.C
【解析】
【分析】
将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.
【详解】
将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,
所以该组数据的众数为30、中位数为=22.5,
故选:C.
【点睛】
此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.m<4且m≠2
【解析】
解方程
2
2
22
x m m
x x
+
+=
--
得x=4-m,由已知可得x>0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m<4且m≠2.
14.1 【解析】【分析】【详解】
∵骑车的学生所占的百分比是126
360
×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
15.(3
【解析】
【分析】
过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
【详解】
解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,
∵坝顶部宽为2m ,坝高为6m , ∴DC=EF=2m ,EC=DF=6m , ∵α=30°, ∴BE=
63tan30EC
=︒
(m ),
∵背水坡的坡比为1.2:1, ∴
1.2 1.2
1
DF AF AF ==, 解得:AF=5(m ),
则3(3m , 故答案为(3m . 【点睛】
本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解. 16.1 【解析】 【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可. 【详解】
解:∵直线m ∥n ,
∴∠2=∠ABC+∠1=30°+20°=1°, 故答案为:1. 【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 17.85
π 【解析】 【分析】
根据扇形面积公式1
S 2l r 扇形=⋅⋅求解即可 【详解】
根据扇形面积公式1
S 2
l r 扇形=
⋅⋅.
可得:
121
352
l π=⨯⨯, 8
5
l π=,
故答案:8
5
π.
【点睛】
本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式1
S 2
l r 扇形=⋅⋅即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式. 18.4 【解析】 【分析】
根据二次函数的对称性求出点A 的坐标,从而得出BC 的长度,根据点C 的坐标得出三角形的高线,从而得出答案. 【详解】
∵二次函数的对称轴为直线x=2, ∴点A 的坐标为(4,0),∵点C 的坐标为(0,-2), ∴点B 的坐标为(4,-2), ∴BC=4,则BCP 4224S =⨯÷=V . 【点睛】
本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1) 见解析;(2)15
,354
【解析】 【分析】
(1) 先通过证明△AOE 为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE 是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证. (2) 利用在Rt △OBD 中,sin ∠B=
=可得出半径长度,在Rt △ODB中BD=
,可求得B
D的长,由CD=CB ﹣BD 可得CD的长,在RT△ACD中,AD=,即可求出AD 长度.
【详解】
解:(1)证明:
连接OE 、ED 、OD , 在Rt △ABC 中,∵∠B=30°,
∴∠A=60°,
∵OA=OE,∴△AEO是等边三角形,∴AE=OE=AO
∵OD=OA,
∴AE=OD
∵BC是圆O的切线,OD是半径,
∴∠ODB=90°,又∵∠C=90°
∴AC∥OD,又∵AE=OD
∴四边形AODE是平行四边形,
∵OD=OA
∴四边形AODE是菱形.
(2)
在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8
∵BC是圆O的切线,OD是半径,
∴∠ODB=90°,
在Rt△OBD中,sin∠B==,
∴OB=OD
∵AO+OB=AB=10,
∴OD+OD=10
∴OD=
∴OB=OD=
∴BD=
=5
∴CD=CB﹣BD=3
∴AD=
=
=3.
【点睛】
本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
20.(1)①22a +b ;②22+2ab
4
a b +;(2)1503+4752+475.
【解析】 【分析】
(1)①由条件可知AC 为直径,可知BD 长度的最大值为AC 的长,可求得答案;②连接AC ,求得AD 2+CD 2,利用不等式的性质可求得AD•CD 的最大值,从而可求得四边形ABCD 面积的最大值; (2)连接AC ,延长CB ,过点A 做AE ⊥CB 交CB 的延长线于E ,可先求得△ABC 的面积,结合条件可求得∠D =45°,且A 、C 、D 三点共圆,作AC 、CD 中垂线,交点即为圆心O ,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D',交AC 于F ,FD'即为所求最大值,再求得 △ACD′的面积即可. 【详解】
(1)①因为∠B =∠D =90°,所以四边形ABCD 是圆内接四边形,AC 为圆的直径,则BD 长度的最大值为AC ,此时BD =22a +b ,
②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =
12AD ⋅CD≤14(AD 2+CD 2)=1
4
(a 2+b 2
),所以四边形ABCD 的最大面积=14(a 2+b 2
)+12ab =22+2ab 4
a b +;
(2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =1
2
AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =
22+AE EC =1019,因为∠ABC =120°
,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,
当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =
2AC
=19=3819S △ACD’=12
AC ⋅D’F =19
(475,所以S max =S △ABC +S △ACD =+475. 【点睛】
本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
21.(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚. 【解析】
【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;
(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得; (3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入,
则1020015150k b k b +=⎧⎨
+=⎩,解得10
300k b =-⎧⎨
=⎩
, ∴10300y x =-+,
∵蜜柚销售不会亏本,∴x 8≥,
又0y >,∴103000x -+≥ ,∴30x ≤, ∴ 830x ≤≤ ; (2) 设利润为w 元, 则 ()()810300w x x =--+ =2103802400x x -+- =2210(19)1210x x --+,
∴ 当19x = 时, w 最大为1210,
∴ 定价为19元时,利润最大,最大利润是1210元; (3) 当19x = 时,110y =, 110×40=4400<4800, ∴不能销售完这批蜜柚.
【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
22.(1)50名;(2)16名;见解析;(3)56名.
【解析】
试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.
试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.
(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.
补全图形如图所示:
(3)700×(4÷50)=56(名)
答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.
考点:统计图.
23.1.
【解析】
【分析】
根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【详解】
解:原式2﹣1+3﹣4×
2
2
=1.
【点睛】
本题考查实数的运算及特殊角三角形函数值.24.(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,»»»
1
2
BF DF BD
==,再由圆周角定理可得
BOE A
∠=∠,从而得到∠ OBE+∠ DBC=90°,即90
OBC
∠=︒,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,»»»
1
2
BF DF BD
==,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°. ∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE +∠ DBC =90°,∴∠ OBC =90°,即BC ⊥OB ,∴ BC 是⊙ O 的切线.
(2)解:∵ OB =6,BC =8,BC ⊥OB ,∴2210OC OB BC =+= , ∵1122OBC S OC BE OB BC =
⋅=⋅V ,∴68
4.810
OB BC BE OC -⨯=== , ∴29.6BD BE ==.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法. 25.(3)证明见试题解析;(3)3. 【解析】
试题分析:(3)先得出OD ∥AC ,有∠ODG=∠DGC ,再由DG ⊥AC ,得到∠DGC=90°,∠ODG=90°,得出OD ⊥FG ,即可得出直线FG 是⊙O 的切线.
(3)先得出△ODF ∽△AGF ,再由cosA=,得出cos ∠DOF=;然后求出OF 、AF 的值,即可求出AG 、CG 的值.
试题解析:(3)如图3,连接OD ,∵AB=AC ,∴∠C=∠ABC ,∵OD=OB ,∴∠ABC=∠ODB ,∴∠ODB=∠C ,∴OD ∥AC ,∴∠ODG=∠DGC ,∵DG ⊥AC ,∴∠DGC=90°,∴∠ODG=90°,∴OD ⊥FG ,∵OD 是⊙O 的半径,∴直线FG 是⊙O 的切线;
(3)如图3,∵AB=AC=30,AB 是⊙O 的直径,∴OA=OD=30÷3=5,由(3),可得:OD ⊥FG ,OD ∥AC ,∴∠ODF=90°,∠DOF=∠A ,在△ODF 和△AGF 中,∵∠DOF=∠A ,∠F=∠F ,∴△ODF ∽△AGF ,∴
,∵cosA=,∴cos ∠DOF=,∴OF=
==,∴AF=AO+OF=
=,∴
,解得
AG=7,∴CG=AC ﹣AG=30﹣7=3,即CG 的长是3.
考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.
26.(1)作图见解析;(2)证明见解析;
【解析】
【分析】
(1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
【详解】
(1)如图,∠BAD为所作;
(2)∵∠BAD=∠C,∠B=∠B
∴△ABD∽△CBA,
∴AB:BC=BD:AB,
∴AB2=BD•BC.
【点睛】
本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
27.(1)15人;(2)补图见解析.(3)1 2 .
【解析】
【分析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:
2
15
×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=31 62 .
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.。

相关文档
最新文档