青海省果洛藏族自治州2020年数学高二下学期理数期末考试试卷A卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青海省果洛藏族自治州2020年数学高二下学期理数期末考试试卷A卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2019高三上·番禺月考) 若集合,,则().
A .
B .
C .
D .
2. (2分)复数(i是虚数单位)在复平面上对应的点位于()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
3. (2分)从4名男生和2名女生中任选3人参加一项“智力大比拼”活动,则所选的3人中女生人数不超过1人的概率是()
A .
B .
C .
D .
4. (2分) (文)设是等差数列的前n项和,已知,,则等于()
A . 13
B . 35
C . 49
D . 63
5. (2分)某高二学生练习篮球,每次投篮命中率约30%,现采用随机模拟的方法估计该生投篮命中的概率;先用计算器产生0到9之间的整数值的随机数,指定0,1,2表示命中,4,5,6,7,8,9表示不命中;再以每三个随机数为一组,代表3次投篮的结果.经随机模拟产生了如下随机数:
807 956 191 925 271 932 813 458 569 683
431 257 393 027 556 488 730 113 527 989
据此估计该生3次投篮恰有2次命中的概率约为()
A . 0.15
B . 0.25
C . 0.2
D . 0.18
6. (2分) (2015高三上·保定期末) 下列四个判断:
①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学的平均分为;
②10名工人某天生产同一种零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③设从总体中抽取的样本为(x1 , y1),(x2 , y2),…,(xn , yn),若记 = , = yi ,则回归直线方程 =bx+a必过点(,);
④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.
其中正确判断的个数有()
A . 0个
B . 1个
C . 2个
D . 3个
7. (2分)设F1、F2是双曲线的两个焦点,P在双曲线上,且满足∠F1PF2=90°,则△PF1F2的面积是()
A . 1
B .
C . 2
D .
8. (2分)若锐角α满足cos(α+ )= ,则sin2α=()
A .
B .
C .
D .
9. (2分)某几何体的三视图及部分数据如图所示,则此几何体的体积是()
A .
B .
C . 2
D . 3
10. (2分)已知向量与不平行,且||=||≠0,则下列结论中正确的是()
A . 向量+与-垂直
B . 向量-与垂直
C . 向量+与垂直
D . 向量+与-平行
11. (2分)已知四面体P﹣ABC中,PA=4,AC=2 ,PB=BC=2 ,PA⊥平面PBC,则四面体P﹣ABC的外接球半径为()
A . 2
B . 2
C . 4
D . 4
12. (2分) (2019高一下·上海月考) 如图所示,为了测量某湖泊两侧间的距离,李宁同学首先选定了与不共线的一点,然后给出了三种测量方案:(的角所对的边分别记为):
① 测量② 测量③测量
则一定能确定间距离的所有方案的个数为()
A . 3
B . 2
C . 1
D . 0
二、填空题 (共4题;共5分)
13. (1分) (2018高二上·无锡期末) 以为准线的抛物线的标准方程是________.
14. (1分)(2017·自贡模拟) 已知n= x3dx,则(x﹣)n的展开式中常数项为________.
15. (1分)学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有________种.(用数字作答)
16. (2分)若变量x,y满足约束条件,目标函数z=2x+y的最大值为7,则目标函数取最小值时的最优解为________ ,实数m的值为________
三、解答题 (共6题;共65分)
17. (15分) (2016高一上·宁波期中) 已知定义在区间(﹣1,1)上的函数f(x)= 是奇函数,且f ()= ,
(1)确定f(x)的解析式;
(2)判断f(x)的单调性并用定义证明;
(3)解不等式f(t﹣1)+f(t)<0.
18. (10分)已知曲线C1的参数方程为(其中θ为参数),点P(﹣1,0),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ﹣ρsinθ+1=0.(1)分别写出曲线C1的普通方程与直线C2的参数方程;
(2)若曲线C1与直线C2交于A,B两点,求|PA|•|PB|.
19. (15分) (2017高二上·景德镇期末) 如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.
(1)若走L1路线,求最多遇到1次红灯的概率;
(2)若走L2路线,求遇到红灯次数X的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.
20. (10分)(2017·扬州模拟) 如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1.
(1)求两条异面直线AC1与D1E所成角的余弦值;
(2)求直线AC1与平面BED1F所成角的正弦值.
21. (5分)(2017·宁波模拟) 已知椭圆方程为 +y2=1,圆C:(x﹣1)2+y2=r2 .
(Ⅰ)求椭圆上动点P与圆心C距离的最小值;
(Ⅱ)如图,直线l与椭圆相交于A、B两点,且与圆C相切于点M,若满足M为线段AB中点的直线l有4条,求半径r的取值范围.
22. (10分) (2018·株洲模拟) 已知函数(其中).
(1)讨论的单调性;
(2)若,设是函数的两个极值点,若,且
恒成立,求实数的取值范围.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共5分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共65分) 17-1、
17-2、
17-3、
18-1、18-2、19-1、
19-2、19-3、
20-1、20-2、
21-1、22-1、
22-2、。

相关文档
最新文档