成华区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成华区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知全集为,集合,,则( )
R {}
|23A x x x =<->或{}2,0,2,4B =-()R A B = ðA .
B .
C .
D .{}2,0,2-{}2,2,4-{}2,0,3-{}
0,2,42. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是(

A .
B .
C .
D . 
3. 已知在△ABC 中,a=
,b=
,B=60°,那么角C 等于(

A .135°
B .90°
C .45°
D .75°
4. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.5. 执行如图的程序框图,则输出S 的值为(

A .2016
B .2
C .
D .﹣1
6. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是(

O
D
A
B
C
O A .
B .
C .
D .
π
1
π
21
π
1
21-π
2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.7. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=(

A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
8. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )
A .20
B .24
C .30
D .36
9. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( )A .x+y=0B .x+y=2C .x ﹣y=2D .x ﹣y=﹣210.在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为(

A .4
B .4
C .2
D .2
11.把“二进制”数101101(2)化为“八进制”数是( )
A .40(8)
B .45(8)
C .50(8)
D .55(8)12.以下四个命题中,真命题的是( )
A .,(0,)x π∃∈sin tan x x
=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件
ABC ∆sin sin cos cos A B A B +=+2
C π
=
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
二、填空题
13.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;
②函数y=[sinx]是周期为2π的周期函数;
③函数y=[sinx]﹣cosx 不存在零点;
④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.
其中正确的是 .(填上所有正确命题的编号)
14.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长
为 .
15.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
16.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;
()()0f x f x '+>(0)1f =()x
f x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;
()2()0xf x f x '+>1
(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()
()0f x f x x
'+
>(0)f e =()xf x 0⑤若,且,则函数在上递增.
()()x
e x
f x f x x
'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是 .
17.已知函数f (x )=sinx ﹣cosx ,则
= .
18.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
三、解答题
19.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a ,b ;
(2)解不等式ax 2﹣(ac+b )x+bc <0.
20.已知向量=(,1),=(cos ,),记f (x )=.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.
21.
(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;
(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.
22.计算:
(1)8+(﹣)0﹣;
(2)lg25+lg2﹣log29×log32.
23.已知函数的图象在y轴右侧的第一个最大值点
和最小值点分别为(π,2)和(4π,﹣2).
(1)试求f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.
24.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.
(Ⅰ)求证:BC⊥平面A1AC;
(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.
成华区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A
【解析】
考点:1、集合的表示方法;2、集合的补集及交集.
2.【答案】D
【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),
联立,得(2k2+1)x2+8k2x+8k2﹣2=0,
∵过点M(﹣2,0)的直线l与椭圆有公共点,
∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,
整理,得k2,
解得﹣≤k≤.
∴直线l的斜率k的取值范围是[﹣,].
故选:D.
【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.
3.【答案】D
【解析】解:由正弦定理知=,
∴sinA==×=,
∵a<b,
∴A<B,
∴A=45°,
∴C=180°﹣A﹣B=75°,
4. 【答案】C
【解析】根据分层抽样的要求可知在社区抽取户数为.
C 249
2
108180270360180108=⨯=++⨯5. 【答案】B
【解析】解:模拟执行程序框图,可得s=2,k=0
满足条件k <2016,s=﹣1,k=1满足条件k <2016,s=,k=2满足条件k <2016,s=2.k=3满足条件k <2016,s=﹣1,k=4满足条件k <2016,s=,k=5…
观察规律可知,s 的取值以3为周期,由2015=3*671+2,有满足条件k <2016,s=2,k=2016
不满足条件k <2016,退出循环,输出s 的值为2.故选:B .
【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s ,k 的值,观察规律得到s 的取值以3为周期是解题的关键,属于基本知识的考查. 
6. 【答案】C
【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为
,扇形
OA OC 112

的面积为,所求概率为.OAC ππ
π
π
1
2112
-=
-=P 7. 【答案】B
【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,由z
=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],
整理得a 2+b 2=2a+2(b ﹣1)i .则
,解得.
所以z=1+i .
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
8.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
9.【答案】D
【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.
【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),
∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,
∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,
∴•k=﹣1且=k•+b,
解得k=1,b=2,故直线方程为x﹣y=﹣2,
故选:D.
10.【答案】A
【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.
由于弦心距d==2,∴弦长为2=4,
故选:A.
【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.
11.【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).
再利用“除8取余法”可得:45(10)=55(8).
故答案选D.
12.【答案】D
二、填空题
13.【答案】 ②③④ 
【解析】解:①函数y=[sinx]是非奇非偶函数;
②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;
③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;
④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.
故答案为:②③④.
【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.
14.【答案】 4 .
【解析】解:由已知可得直线AF的方程为y=(x﹣1),
联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),
由抛物线定义可得:AF=x1+=3+1=4.
故答案为:4.
【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.
15.【答案】 ∃x 0∈R ,都有x 03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.
故答案为:∃x 0∈R ,都有x 03<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查. 
16.【答案】②④⑤
【解析】解析:构造函数,,在上递增,
()()x g x e f x =()[()()]0x
g x e f x f x ''=+>()g x R ∴,∴①错误;
()x
f x e
-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<构造函数,
,在上递增,∴,()()x f x g x e =()()
()0x
f x f x
g x e '-'=>()g x R (2015)(2014)g g >∴∴②正确;
(2015)(2014)f ef >构造函数,,当时,,∴2()()g x x f x =2
()2()()[2()()]g x xf x x f x x f x xf x '''=+=+0x >()0g x '>,∴,∴③错误;
1(2)(2)n n g g +>1(2)4(2)n n f f +>由得,即,∴函数在上递增,在上递()()0f x f x x '+>()()
0xf x f x x '+>()()0xf x x
'>()xf x (0,)+∞(,0)-∞减,∴函数的极小值为,∴④正确;
()xf x 0(0)0f ⋅=由得,设,则()()x e xf x f x x '+=2
()()x e xf x f x x
-'=()()x g x e xf x =-()()()x
g x e f x xf x ''=--,当时,,当时,,∴当时,,
(1)x x x
e e e x x x
=-=-1x >()0g x '>01x <<()0g x '<0x >()(1)0g x g ≥=即,∴⑤正确.
()0f x '
≥17
.【答案】 .
【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),

=
sin (﹣)=﹣
=﹣

故答案为:﹣

【点评】本题主要考查两角差的正弦公式,属于基础题. 
18.【答案】 6 .
【解析】解:双曲线的方程为4x2﹣9y2=36,即为:
﹣=1,
可得a=3,
则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,
且b>1.由根与系的关系得,解得,所以得.
(2)由于a=1且b=2,所以不等式ax2﹣(ac+b)x+bc<0,
即x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0.
①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};
②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};
③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.
综上所述:当c>2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|2<x<c};
当c<2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|c<x<2};
当c=2时,不等式ax2﹣(ac+b)x+bc<0的解集为∅.
【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.
20.【答案】
【解析】解:(1)∵向量=(,1),=(cos,),记f(x)=.
∴f(x)=cos+=sin+cos+=sin(+)+,
∴最小正周期T==4π,
2kπ﹣≤+≤2kπ+,
则4kπ﹣≤x≤4kπ+,k∈Z.
故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;
(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为
:y=g(x)=sin[(x﹣+)]+=sin(﹣)+,
∴则y=g(x)﹣k=sin(x﹣)+﹣k,
∵x∈[0,],可得:﹣≤x﹣≤π,
∴﹣≤sin(x﹣)≤1,
∴0≤sin(x﹣)+≤,
∴若函数y=g(x)﹣k在[0,]上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,
∴实数k的取值范围是[0,].
∴当k<0或k>时,函数y=g(x)﹣k在的零点个数是0;
当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;
当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.
【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.
21.【答案】
【解析】解:(1)证明:∵AE=AF,
∴∠AEF=∠AFE.
又B,C,F,E四点共圆,
∴∠ABC=∠AFE,
∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.
(2)由(1)与∠B=60°知△ABC为正三角形,
又EB=EF=2,
∴AF=FC=2,
设DE=x,DF=y,则AD=2-y,
在△AED中,由余弦定理得
DE 2=AE 2+AD 2-2AD ·AE cos A .
即x 2=(2-y )2+22-2(2-y )·2×,12∴x 2-y 2=4-2y ,①
由切割线定理得DE 2=DF ·DC ,
即x 2=y (y +2),
∴x 2-y 2=2y ,②
由①②联解得y =1,x =,∴ED =.
3322.【答案】
【解析】解:(1)8
+(﹣)0﹣=2﹣1+1﹣(3﹣e )
=e ﹣.
(2)
lg25+lg2﹣log 29×log 32
=
=
=1﹣2=﹣1.…(6分)
【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.
23.【答案】
【解析】(本题满分为12分)
解:(1)由题意知:A=2,…
∵T=6π,∴=6π得
ω=,…
∴f (x )=2sin (x+φ),
∵函数图象过(π,2),
∴sin (+φ)=1,∵﹣<φ+<,
∴φ+=,得φ=…
∴A=2,ω=,φ=,
∴f(x)=2sin(x+).…
(2)∵将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,
然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin[(x﹣)+]=2sin(﹣)的图象.
故y=g(x)的解析式为:g(x)=2sin(﹣).…
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了函数y=Asin(ωx+φ)的图象变换,函数y=Asin(ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,ω,φ值,得到函数的解析式是解答本题的关键.
24.【答案】
【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点
∴BC⊥AC …
又圆柱OO1中,AA1⊥底面圆O,
∴AA1⊥BC,即BC⊥AA1…
而AA1∩AC=A
∴BC⊥平面A1AC …
(Ⅱ)取BC中点E,连结DE、O1E,
∵D为AC的中点
∴△ABC中,DE∥AB,且DE=AB …
又圆柱OO1中,A1O1∥AB,且
∴DE∥A1O1,DE=A1O1
∴A1DEO1为平行四边形…
∴A1D∥EO1…
而A1D⊄平面O1BC,EO1⊂平面O1BC
∴A1D∥平面O1BC …
【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.。

相关文档
最新文档