【物理】物理二模试题分类汇编——法拉第电磁感应定律推断题综合附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【物理】物理二模试题分类汇编——法拉第电磁感应定律推断题综合附详细答

一、法拉第电磁感应定律
1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;
(2)金属杆速度为2.0m/s 时的加速度大小;
(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.
【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】
(1)由题图知,杆运动的最大速度为4/m v m s =,
有22sin sin m
B L v F mg F mg R
αα=+=+
安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安
得222222
212sin 182100.5
2/2/2
B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:2
11sin 2
Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】
本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.
2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的
金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220
B l t m
【解析】 【分析】 【详解】
(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②
当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③
联立①②③式可得:0F E Blt g m μ⎛⎫=-
⎪⎝⎭
④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E
R
⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦
联立④⑤⑥⑦式得: R =220
B l t m
3.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(3)2
22mgs mv Rt
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,
cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv I Rt -=
4.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:
(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.
(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m
【详解】
解:(1)初始时:0E BLv =
E
I R r
=
+ 对棒2:F 安BIL ma ==
解得:2220
10m/s B L v a R r
==+
(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =
(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆ 解得:8C mv
q BL
== (4)由E t φ∆=
∆ 、E I R r
=+、 q I t =∆ 联立解得:BL x
q R r R r
φ∆∆==++ 又mv q BL
=
解得:22
()
mv R r x B L
+∆=
则稳定后两棒的距离:22
()
2m mv R r d d x d B L
+'=-∆=-
=
5.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:
(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N
【分析】 【详解】
(1)根据热功率:P =I 2R ,
解得:3A I =
= (2)回路中产生的平均感应电动势:E n t
φ∆=∆ 由欧姆定律得:+E I R r
=
得电流和电量之间关系式:q I t n R r
φ
∆=⋅∆=+ 代入数据得: 4.5C BLd
q R r
=
=+ (3)此时感应电流I =3A ,由E BLv
I R r R r
==++ 解得此时速度:()6m/s I R r v BL
+=
=
由匀变速运动公式:v 2=2ax ,
解得:2
22m/s 2v a d
==
对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma , 即:F -BIL -mgsin30°=ma , 解得:F =ma +BIL +mgsin30°=2 N 【点睛】
本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点. 【考点】
动生电动势、全电路的欧姆定律、牛顿第二定律.
6.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;
(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。

【答案】(1)3V (2)0.5W (3)(1)(1)44
N F N π
π
-≤≤+ 【解析】 【分析】
本题考查的是导体棒切割磁感线的动力学问题,我们首先把导体棒的运动情况和受力情况分析清楚,然后结合相应规律即可求出相应参量。

【详解】
(1)匀速时,导体棒收到的安培力等于重力的下滑分力,可得:E
BL=mgsin θR+r
,求出电动势为E=4V ,所以金属棒匀速下滑时电阻R 两端的电压U=3V (2)设磁感应强度随时间变化的规律为B=kt ,则电路中产生的电动势为
ΔΦΔB E=n =S =kS Δt Δt ,安培力的大小为kS
F =kt L R+r
安,当t=2s 时,外力等于零,可得:kS
2k
L=mgsin θR+r
,解出k=0.5T/s ,最后可得P=I 2R=0.5W 。

(3)根据法拉第电磁感应定律可得:ΔΦΔB
E=
=S Δt Δt
,根据F =BIL 安可得,E F =BL
R+r 安,最后化简可得π
F =-sin200πt(N)4
安,所以外力F 的取值范围ππ
1-N F 1+N 44
≤≤()()
【点睛】
过程比较复杂的问题关键在于过程分析,对运动和受力进行分析。

7.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的
1
4
画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在
竖直向上的匀强磁场中。

现有一根阻值为R 2、质量为m 的金属杆,在水平拉力作用下,从图中位置ef 由静止开始做加速度为a 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。

开始运动后,经时间t 1,金属杆运动到cd 时撤去拉力,此时理想电压表的示数为U ,此后全属杆恰好能到达圆弧最高处ab 。

重力加速度为g 。

求:
(1)金属杆从ef 运动到cd 的过程中,拉力F 随时间t 变化的表达式; (2)金属杆从ef 运动到cd 的过程中,电阻R 1上通过的电荷量; (3)金属杆从cd 运动到ab 的过程中,电阻R1上产生的焦耳热。

【答案】(1)21222
11()U R R t F ma R at +=+;(2)11
2Ut q R =;(3)22
11121()2R Q ma h mgr R R =-+ 【解析】 【分析】
利用法拉第电磁感应定律和电流公式联合求解。

根据能量守恒定律求出回路产生的总焦耳热,再求出R 1上产生的焦耳热。

【详解】
(1) 金属杆运动到cd 时,由欧姆定律可得 11
U
I R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1
由法拉第电磁感应定律可得 E 1=BLv 1 解得:1211()
U R R B R Lat +=

由开始运动经过时间t ,则 v=at 感应电流12
BLv
I R R =
+
金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma
可得21222
11
()U R R t
F ma R at +=+; (2) 金属杆从 ef 运动到cd 过程中,位移2112
x at = 电阻R 1上通过的电荷量:
q I t =∆
12
E
I
R R
=
+
E
t
∆Φ
=

B S
∆Φ=∆
S xL
∆=
联立解得:1
1
2
Ut
q
R
=;
(3)金属杆从cd运动到ab的过程中,由能量守恒定律可得
2
1
2
Q mv mgr
=-
因此电阻R1上产生的焦耳热为
1
1
12
R
Q Q
R R
=
+
可得
22
1
1
12
1
()
2
R
Q ma h mgr
R R
=-
+。

【点睛】
此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。

8.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN和PQ,两导轨间距为l,电阻均可忽略不计。

在M和P之间接有阻值为R的定值电阻,导体杆ab质量为m、电阻为r,并与导轨接触良好。

整个装置处于方向竖直向上磁感应强度为B的匀强磁场中。

现给ab杆一个初速度v0,使杆向右运动。

(1)当ab杆刚好具有初速度v0时,求此时ab杆两端的电压U;a、b两端哪端电势高;(2)请在图2中定性画出通过电阻R的电流i随时间t变化规律的图象;
(3)若将M和P之间的电阻R改为接一电容为C的电容器,如图3所示。

同样给ab杆一个初速度v0,使杆向右运动。

请分析说明ab杆的运动情况。

【答案】(1)0
Bl R
U
R r
=
+
v;a端电势高(2)(3)当ab杆以初速度
v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆
在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。

当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。

【解析】 【分析】
(1)求解产生感应电动势大小,根据全电路欧姆定律求解电流强度和电压,根据右手定则判断电势高低;
(2)分析杆的受力情况和运动情况,确定感应电流变化情况,由此画出图象;
(3)杆在向右运动过程中速度逐渐减小、由此分析安培力的变化,确定运动情况;根据动量定理求解最后的速度大小。

【详解】
(1)ab 杆切割磁感线产生感应电动势: E = Bl v 0 根据全电路欧姆定律:E
I R r
=
+ ab 杆两端电压即路端电压:U IR = 解得0Bl R
U R r
=
+v ;a 端电势高。

(2)杆在向右运动过程中速度逐渐减小、感应电动势逐渐减小,根据闭合电路的欧姆定律可得感应电流逐渐减小,通过电阻R 的电流i 随时间变化规律的图象如图所示:
(3)当ab 杆以初速度v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。

当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。

【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键。

9.如图(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g.求:
图(a) 图(b)
(1)通过cd棒电流的方向和区域Ⅰ内磁场的方向;
(2)当ab棒在区域Ⅱ内运动时,cd棒消耗的电功率;
(3)ab棒开始下滑的位置离EF的距离;
(4)ab棒开始下滑至EF的过程中回路中产生的热量.
【答案】(1)电流方向由d到c,区域Ⅰ内的磁场方向为垂直于斜面向上;(2)
(3) (4)
【解析】
【详解】
(1)由右手定则可知通过cd棒电流的方向为d到c;再由左手定则可判断区域Ⅰ内磁场垂直于斜面向上.
(2)cd棒平衡,BIl=mg sin θ,

cd棒消耗的电功率P=I2R,

(3)ab棒在到达区域Ⅱ前做匀加速直线运动,
cd棒始终静止不动,ab棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab棒在区域Ⅱ中一定做匀速直线运动,可得,
所以.
ab棒在区域Ⅱ中做匀速直线运动的速度
则ab棒开始下滑的位置离EF的距离
(4)ab棒在区域Ⅱ中运动的时间
ab棒从开始下滑至EF的总时间:
ab棒从开始下滑至EF的过程中闭合回路中产生的热量:
故本题答案是:
(1)电流方向由d到c,区域Ⅰ内的磁场方向为垂直于斜面向上;(2) (3)
(4)
【点睛】
题目中cd棒一直处于静止状态,说明cd棒受到的安培力是恒力并且大小应该和导体棒的重力分量相等,要结合并把握这个条件解题即可。

10.如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L=1 m,底部接入一阻值为R=0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B=2 T.一质量为m=0.5 kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1 Ω,电路中其余电阻不计.现用一质量为M=2.86 kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0 m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g=10 m/s2.求:
(1)ab棒沿斜面向上运动的最大速度v m;
(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热Q R和流过电阻R的总电荷量q.
【答案】(1)3m/s.
(2)26.3J,8C
【解析】
【分析】
【详解】
(1)由题意知,由静止释放M后,ab棒在绳拉力T、重力mg、安培力F和轨道支持力N 及摩擦力f共同作用下做沿轨道向上做加速度逐渐减小的加速运动直至匀速运动,当达到最大速度时,由平衡条件有:
T﹣mgsinθ﹣F﹣f=0…①
N﹣mgcosθ=0…②
T=Mg…③
又由摩擦力公式得 f =μN …④
ab 所受的安培力 F =BIL …⑤
回路中感应电流 I m BLv R r =+⑥ 联解①②③④⑤⑥并代入数据得:
最大速度 v m =3m/s …⑦
(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及摩擦而转化的内能之和,有:
Mgh ﹣mghsin θ()212
m M m v =++Q+fh …⑧ 电阻R 产生的焦耳热 Q R R R r
=+Q …⑨ 根据法拉第电磁感应定律和闭合电路欧姆定律有:
流过电阻R 的总电荷量 q I =△t …⑩
电流的平均值 E
I R r =+⑪
感应电动势的平均值 E t Φ
=⑫
磁通量的变化量△Φ=B •(Lh )…⑬
联解⑧⑨⑩⑪⑫⑬并代入数据得:Q R =26.3J ,q =8C
11.如图甲所示是航空母舰上一种弹射装置的模型,“E”字形铁芯长为l 的三个柱脚的两条缝中存在正对的由B 指向A 、C 的磁场,该磁场任意时刻均可视为处处大小相等方向相同(如图乙所示),初始时缝中有剩余磁场,磁感应强度为B 0;绕在B 柱底部的多匝线圈P 用于改变缝中磁场的强弱,已知通过线圈P 加在缝中的磁场与线圈中的电流大小存在关系B=k 1I .Q 为套在B 柱上的宽为x 、高为y 的线圈共n 匝,质量为m ,电阻为R ,它在外力作用下可沿B 柱表面无摩擦地滑动,现在线圈P 中通以I=k 2t 的电流,发现Q 立即获得方向向右大小为a 的加速度,则
(1)线圈P 的电流应从a 、b 中的哪一端注入?t=0时刻线圈Q 中的感应电流大小I 0。

(2)为了使Q 向右运动的加速度保持a 不变,试求Q 中磁通量的变化率与时间t 的函数关系
(3)若在线圈Q从靠近线圈P处开始向右以加速度a匀加速直到飞离B柱的整个过程中,可将Q中的感应电流等效为某一恒定电流I,则此过程磁场对线圈Q做的功为多少?
【答案】(1)a入b出、I0=(2)(3)mal+I2R
【解析】
试题分析:1)a入b出
F=ma
F=2nI0LB0
得:I0=
2)E=I=
F=2nILB B=B0+k1k2t
可得:=
3)W=ΔE k+Q=mal+I2R
考点:考查了法拉第电磁感应定理
12.如图所示,一无限长的光滑金属平行导轨置于匀强磁场B中,磁场方向垂直导轨平面,导轨平面竖直且与地面绝缘,导轨上M、N间接一电阻R,P、Q端接一对沿水平方向的平行金属板,导体棒ab置于导轨上,其电阻为3R,导轨电阻不计,棒长为L,平行金属板间距为d.今导体棒通过定滑轮在一物块拉动下开始运动,稳定后棒的速度为v,不计一切摩擦阻力.此时有一带电量为q的液滴恰能在两板间做半径为r的匀速圆周运动,且速率也为v.求:
(1)速度v的大小;
(2)物块的质量m.
【答案】(1)gdr
L
2
2
2
B l dLr
R g
【解析】
【详解】
(1)设平行金属板间电压为U.液滴在平行金属板间做匀速圆周运动,重力与电场力必定平衡,则有:
U q mg d = 由2v qvB m r
= 得mv r qB
= 联立解得gdrB U v
= 则棒产生的感应电动势为: ·(3)4U gdrB B R R R v =
+= 由E BLv =棒,
得 4gdr v vL
=棒 (2)棒中电流为:U gdrB I R vR
== ab 棒匀速运动,外力与安培力平衡,则有 2
gdrLB F BIL vR
== 而外力等于物块的重力,即为 2
gdrLB mg vR
= 解得2
drLB m vR
=
13.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d=1m 、且足够长、不计电阻。

AC 、BD 区域光滑,其它区域粗糙且动摩擦因数μ=0.2,并在AB 的左侧和CD 的右侧存在着竖直向下的匀强磁场,磁感应强度B=2T 。

在导轨中央放置着两根质量均为m=1kg ,电阻均为R=2Ω的金属棒a 、b ,用一锁定装置将一弹簧压缩在金属棒a 、b 之间(弹簧与a 、b 不栓连),此时弹簧具有的弹性势能E=9J 。

现解除锁定,当弹簧恢复原长时,a 、b 棒刚好进入磁场,且b 棒向右运动x=0.8m 后停止,g 取10m/s 2,求:
(1)a 、b 棒刚进入磁场时的速度大小;
(2)金属棒b 刚进入磁场时的加速度大小
(3)整个运动过程中电路中产生的焦耳热。

【答案】(1)3m/s (2)8m/s 2(3)5.8J
【解析】
【分析】
对ab 系统,所受的合外力为零,则动量守恒,根据动量守恒定律和能量关系列式求解速度;(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,求解感应电流,根据牛顿第二定律求解b 刚进入磁场时的加速度;(3)由能量守恒求解产生的热量.
【详解】
(1)对ab 系统,由动量守恒:0=mv a -mv b 由能量关系:221122
P a b E mv mv =+ 解得v a =v b =3m/s
(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,则有:
E a =E b =Bdv a =6V 又:232a E I A R == 对b ,由牛顿第二定律:BId+μmg=ma b
解得a b =8m/s 2
(3)由动量守恒可知,ab 棒速率时刻相同,即两者移动相同距离后停止,则对系统,由能量守恒:E P =2μmgx+Q 解得Q=5.8J
【点睛】
此题是力、电磁综合题目,关键是分析两棒的受力情况和运动情况,运用动量守恒定律和能量守恒关系列式求解.
14.如图甲所示,倾角为
足够长的倾斜导体轨道与光滑水平轨道平滑连接。

轨道宽
度,电阻忽略不计。

在水平轨道平面内有水平向右的匀强磁场,倾斜轨道平面内有垂直于倾斜轨道向下的匀强磁场,大小都为B ,现将质量
、电阻的两个相同导体棒ab 和cd ,垂直于轨道分别置于水平轨道上和倾斜轨道的顶端,同时由静止释放。

导体cd 下滑过程中加速度a 和速度v 的关系如图乙所示。

cd 棒从开始运动到最大速度的过程中流过cd 棒的电荷量
(,,),
则:,
(1)cd 和倾斜轨道之间的动摩擦因数是多少;
(2)ab 和水平轨道之间的最大压力是多少;
(3)cd 棒从开始运动到速度最大的过程中ab 棒上产生的焦耳热是多少.
【答案】(1) ;(2) (3)
【解析】
【详解】
解:(1) 刚释放时,加速度: 对棒受力分析,由牛顿第二定律得: 解得:
(2)由图像可知,时棒速度达到最大,此时电路中的电流最大,此时速度:,
安培力达到最大,对地面压力也达到最大 对受力分析: 对棒受力分析:
解得:,
(3)安培力大小:
解得:
由:
解得: 从开始到速度最大的过程中,根据动能定理得:
产生的总焦耳热: 棒上产生的焦耳热:
15.如图所示,在磁感应强度B =0.2 T 、方向与纸面垂直的匀强磁场中,有水平放置的两平行导轨ab 、cd ,其间距l =50 cm ,a 、c 间接有电阻R .现有一电阻为r 的导体棒MN 跨放在两导轨间,并以v =10 m/s 的恒定速度向右运动,a 、c 间电压为0.8 V ,且a 点电势高.其余电阻忽略不计.问:
(1)导体棒产生的感应电动势是多大?
(2)通过导体棒电流方向如何?磁场的方向是指向纸里,还是指向纸外?
(3)R 与r 的比值是多少?
【答案】(1)1V ;(2)电流方向N→M ;磁场方向指向纸里;(3)4.
【解析】
【分析】
【详解】
试题分析:(1)1V E Blv ==
(2)根据右手定则,可以判断:电流方向N→M ;磁场方向指向纸里 (3)根据电路关系有:4R U r E U
==- 考点:法拉第电磁感应定律;右手定则及全电路欧姆定律.。

相关文档
最新文档