A+K流量计算书中英文对照
汽车数据流英汉对照表
VehicleSpeed车辆速度EngineSpeed发动机转速CalculateLoad计算负荷VehicleLoad车辆荷载MassAirFlowSensor质量空气流量传感器AtmosphericPressure大气压力EngineOilTemperatureSensor发动机机油温度传感器CoolantTemperature冷却液温度IntakeAirTemperature进气温度IntakeAirTemperatureB1S1(Turbo)进气温度b1s1(涡轮)EngineRunTime发动机运行时间IG-ONCoolantTemperatureig-on冷却液温度InitialEngineCoolantTemperature初始发动机冷却液温度IG-ONIntakeAirTemperatureig-on进气温度InitialEngineIntakeAirTemperature发动机进气温度BatteryVoltage电池电压BATTVoltage电瓶电压EngineOilPressure发动机机油压力AcceleratorPosition加速器位置AcceleratorPositionSensorNo.1Voltage% 油门位置传感器1电压AcceleratorPositionSensorNo.2Voltage% 加速器位置传感器2电压% AcceleratorPositionSensorNo.1Voltage 油门位置传感器1号AcceleratorPositionSensorNo.2Voltage加速器位置传感器2电压AcceleratorPositionSensorNo.1FullyClosedLearnValue 油门位置传感器1号全封闭学习值AcceleratorPositionSensorNo.2FullyClosedLearnValue 油门位置传感器2号全封闭学习值EngineStartingTorqueControlCount发动机起动转矩控制计数ThrottlePositionSensorNo.1Voltage%节气门位置传感器1电压% ThrottlePositionSensorNo.2Voltage%节气门位置传感器SystemGuard系统防护OpenSideMalfunction开侧故障ThrottleRequestPosition节气门位置ThrottleSensorPosition节气门传感器位置ThrottlePositionSensorNo.1Voltage节气门位置传感器ThrottlePositionSensorNo.2Voltage节气门位置传感器ThrottlePositionCommand油门位置指令ThrottlePositionSensorOpenPositionNo.1节气门位置传感器开启位置1 ThrottlePositionSensorOpenPositionNo.2节气门位置传感器开启位置ThrottleMotorCurrent节气门电机电流ThrottleMotorDutyRatio节气门马达占空比ThrottleMotorDutyRatio(Open)节气门电机占空比(开)ThrottleMotorDutyRatio(Close)节气门电机占空比(近)ThrottlePositionSensorFullyClosedLearnValue节气门位置传感器全封闭学习值+BMVoltage+骨髓电压ActuatorPowerSupply执行器电源ThrottleAirFlowLearnValue(Area1)节流空气流量学习值(面积1)ThrottleAirFlowLearnValue(Area2)节流空气流量学习值(面积2)ThrottleAirFlowLearnValue(Area3)节流空气流量学习值(面积3)ThrottleAirFlowLearnValue(CalculatedValue)节流空气流量学习值(计算值)ThrottleAirFlowLearnValue(AtmospherePressureOffsetValue) 节流空气流量学习值(大气压力偏移值)WastegateValveControlDutyRatio废气旁通阀控制占空比LowRevolutionControl低转速控制NRangeStatus氮范围状态EngineStallControlF/BFlow发动机档位控制ISCF/BLearnTorqueISC的F/B学习扭矩ISCTotalAUXSTorqueISC总auxs扭矩ISCF/BTorqueISC的F/B扭矩SumofISCF/BTorque(Recent)和F/BISC扭矩(最近的)ISCAUXSTorque(Alternator)ISCauxs扭矩(发电机)ISCAUXSTorque(AirConditioner)ISCauxs扭矩(空调)ThrottleAirFlowF/BValue节气门空气流量TargetFuelPressure(High)目标燃油压力(高)TargetFuelPressure(Low)目标燃油压力(低)FuelPressure(High)燃油压力(高)FuelPressure(Low)燃油压力(低)FuelPumpControlDutyRatio燃油泵控制占空比InjectorCylinder#1(Port)注射器筒#1(港)InjectionVolumeCylinder#1注射量缸#1 TargetFuelPressureOffset目标燃油压力偏移InjectionVolume注入量LowFuelPressureSensor低燃油压力传感器FuelPressureTargetDischarge燃油压力目标放电FuelPressureDischarge燃油压力放电HighFuelPressureSensor高压燃油压力传感器HighPressureFuelPumpDutyRatio(D4) 高压燃油泵占空比(D4)HighPressureFuelPumpDischargeRate 高压燃油泵流量InjectionMode注入方式InjectionSwitchingStatus注入切换状态InjectionTimingCylinder#1(D4)喷油定时气缸#1(D4)InjectionTimeCylinder#1(D4)注射时间缸#1(D4)CurrentFuelType当前燃料类型EVAP(Purge)VSVEVAPVSV(净化)TargetAir-FuelRatio目标空燃比A/F(O2)LambdaSensorB1S1A/F(O2)λ传感器b1sA/F(O2)SensorVoltageB1S1A/F(O2)传感器电压b1s1A/F(O2)SensorCurrentB1S1A/F(O2)传感器电流b1s1A/F(O2)SensorHeaterDutyRatioB1S1 A/F(O2)传感器加热器占空比b1s1 O2SensorVoltageB1S2氧传感器电压b1s2O2SensorImpedanceB1S2氧传感器的阻抗b1s2O2SensorHeaterB1S2氧传感器加热器b1s2O2SensorHeaterCurrentValueB1S2氧传感器加热器的电流值b1s2ShortFTBank1短尺1LongFTBank1长1英尺的银行TotalFTBank1金融总银行1FuelSystemStatusBank1燃油系统状态库1IgnitionTimingCylinder#1点火正时,气缸#1KnockF/BValue敲楼值KnockCorrectLearnValue正确的学习价值IdleSparkAdvanceControlCylinder#1怠速点火提前控制气缸#1 IdleSparkAdvanceControlCylinder#2怠速点火提前控制气缸#2 IdleSparkAdvanceControlCylinder#3怠速点火提前控制气缸#3 IdleSparkAdvanceControlCylinder#4怠速点火提前控制气缸#4 IntercoolerWaterPumpSpeed中间水泵转速IntercoolerWaterPump中冷器水泵MassAirFlowCircuit空气流量电路VVTAdvanceFailVVT提前失败IntakeVVTHoldCorrectLearnValueBank1(Area1) 进气VVT持有正确的学习价值银行1(1区)IntakeVVTHoldCorrectLearnValueBank1(Area2) 进气VVT持有正确的学习价值银行1(2区)IntakeVVTOCVControlDutyRatioBank1进气VVTOCV控制占空比银行1 ExhaustVVTOCVControlDutyRatioBank1排气VVTOCV控制占空比银行1 IntakeVVTTargetAngleBank1进气VVT目标角度银行1ExhaustVVTTargetAngleBank1排气VVT目标角度银行1TargetBoostPressure目标升压压力BoostPressureSensor增压压力传感器CatalystTemperatureB1S1催化剂温度b1s1CatalystTemperatureB1S2催化剂温度b1s2StarterSW起动软件NeutralPositionSW中立位置StopLightSW停止光ImmobiliserCommunication防盗通信TCTerminal终端MILONRunDistancemil运行距离RunningTimefromMILON运行时间从万美元TimeAfterDTCCleared在DTC清除时间DistancefromDTCCleared距离DTC清除WarmupCycleClearedDTC热身周期清除DTC DistanceTraveledfromLastBatteryCableDisconnect 从去年的电池电缆断开的距离IGOFFElapsedTime用过的时间TotalDistanceTraveled总距离IgnitionTriggerCount点火触发计数MisfireCountCylinder#1#1缸失火计数MisfireCountCylinder#2#2缸失火计数MisfireCountCylinder#3#3缸失火计数MisfireCountCylinder#4#4缸失火计数AllCylindersMisfireCount所有气缸失火计数MisfireRPM失火的转速MisfireLoad工作负荷MisfireMargin失火的边缘CatalystOTMisfireFuelCut催化剂不熄火断油CatalystOTMisfireFuelCutHistory催化剂OT失火燃料切断历史CatalystOTMisfireFuelCutCylinder#1 催化剂不停油气缸失火#1 CatalystOTMisfireFuelCutCylinder#2 催化剂不停油气缸失火#2 CatalystOTMisfireFuelCutCylinder#3 催化剂不停油气缸失火#3 CatalystOTMisfireFuelCutCylinder#4 催化剂不停油气缸失火#4 EngineSpeed(StarterOff)发动机转速(起动)StarterCount起动器计数RunDistanceofPreviousTrip上一次旅行的距离EngineStartingTime发动机起动时间EngineStartHesitation发动机起动犹豫LowRevolutionforEngineStart发动机起动低转速FuelCutElapsedTime燃油切断时间A/FLearnValueIdleBank1一个学习价值的空闲银行1A/FLearnValueLowBank1学习价值低的银行1A/FLearnValueMidNo.1Bank1一个学习价值中第一银行1A/FLearnValueMidNo.2Bank1一个学习价值中第二银行1A/FLearnValueHighBank1学习价值高的银行1A/FLearnValueLow(Dual)Bank1学习值低(双)银行1A/FLearnValueMid(Dual)No.1Bank1 学习价值中(双)第一银行1A/FLearnValueMid(Dual)No.2Bank1 学习价值中(双)第二银行1A/FLearnValueHigh(Dual)Bank1学习价值高(双)银行1 CompressionLeakageCount压缩泄漏计数RoughIdleStatus粗怠速状态PluralCylindersRoughIdle多缸粗怠速RoughIdleCylinder#1怠速气缸#1RoughIdleCylinder#2怠速气缸#2RoughIdleCylinder#3怠速气缸#3RoughIdleCylinder#4怠速气缸#4 CoolingFanDutyRatio冷却风机占空比BrakeOverrideSystem制动控制系统ImmobiliserFuelCutStatus防盗燃油切断状态ImmobiliserFuelCutHistory防盗燃油切断历史KeyUnlockSignal钥匙开锁信号EngineSpeedCylinder#1发动机转速#1缸EngineSpeedCylinder#2发动机转速#2缸EngineSpeedCylinder#3发动机转速#3缸EngineSpeedCylinder#4发动机转速#4缸AverageEngineSpeedofAllCylinder 平均发动机转速ReceivedMILfromECT从收到的MIL等OutputAxisSpeed输出轴转速NTSensorSpeed速度传感器ShiftSWStatus(PRange)转向西南状态(磷范围)ShiftSWStatus(RRange)转向西南状态(转)ShiftSWStatus(NRange)移软件状态(氮范围)ShiftSWStatus(N,PRange)转变西南状态(氮,磷的范围)SportShiftUpSW运动转换SportShiftDownSW运动下降ShiftSWStatus(SRange)转向西南状态(范围)SnowModeSW雪模式ShiftSWStatus(DRange)转向西南状态(三维)A/TOilTemperatureNo.1油温1号LockUpStatus锁定状态ShiftStatus移位状态Snowor2ndStartModeStatus雪或第二启动模式状态StopandStartSystemEngineStatus 停止和启动系统引擎状态AirBypassValveControl空气旁通阀控制。
常用单位转换中英互译
单位转换1 in=2.54厘米(cm),1 lb=0.454千克(kg)=0.454*9.807N换算公式面积换算1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2)1公顷(ha)=10000平方米(m2)=2.471英亩(acre)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2)1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2)体积换算1美吉耳(gi)=0.118升(1) 1美品脱(pt)=0.473升(1)1美夸脱(qt)=0.946升(1) 1美加仑(gal)=3.785升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal) 1英亩•英尺=1234立方米(m3)1立方英寸(in3)=16.3871立方厘米(cm3) 1英加仑(gal)=4.546升(1)10亿立方英尺(bcf)=2831.7万立方米(m3) 1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3) 1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)长度换算1千米(km)=0.621英里(mile) 1米(m)=3.281英尺(ft)=1.094码(yd)1厘米(cm)=0.394英寸(in) 1英寸(in)=2.54厘米(cm)1海里(n mile)=1.852千米(km) 1英寻(fm)=1.829(m)1码(yd)=3英尺(ft) 1杆(rad)=16.5英尺(ft)1英里(mile)=1.609千米(km) 1英尺(ft)=12英寸(in)1英里(mile)=5280英尺(ft) 1海里(n mile)=1.1516英里(mile)质量换算1长吨(long ton)=1.016吨(t) 1千克(kg)=2.205磅(lb)1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g)1短吨(sh.ton)=0.907吨(t)=2000磅(lb)1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton)密度换算1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3) API度=141.5/15.5℃时的比重-131.51磅/英加仑(lb/gal)=99.776千克/米3(kg/m3) 1波美密度(B)=140/15.5℃时的比重-1301磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3) 1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3)1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3)运动粘度换算1斯(St)=10-4米2/秒(m2/s)=1厘米2/秒(cm2/s)1英尺2/秒(ft2/s)=9.29030×10-2米2/秒(m2/s)1厘斯(cSt)=10-6米2/秒(m2/s)=1毫米2/秒(mm2/s)动力粘度换算动力粘度 1泊(P)=0.1帕•秒(Pa•s) 1厘泊(cP)=10-3帕•秒(Pa•s)1磅力秒/英尺2(lbf•s/ft2)=47.8803帕•秒(Pa•s)1千克力秒/米2(kgf•s、m2)=9.80665帕•秒(Pa•s)力换算1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf) 1千克力(kgf)=9.81牛(N)1磅力(lbf)=4.45牛顿(N) 1达因(dyn)=10-5牛顿(N)温度换算K=5/9(°F+459.67) K=℃+273.15 n℃=(5/9•n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃(温度差)压力换算压力 1巴(bar)=105帕(Pa) 1达因/厘米2(dyn/cm2)=0.1帕(Pa)1托(Torr)=133.322帕(Pa) 1毫米汞柱(mmHg)=133.322帕(Pa)1毫米水柱(mmH2O)=9.80665帕(Pa) 1工程大气压=98.0665千帕(kPa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2) =0.0098大气压(atm)1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm)1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar)传热系数换算1千卡/米2•时(kcal/m2•h)=1.16279瓦/米2(w/m2)1千卡/(米2•时•℃)〔1kcal/(m2•h•℃)〕=1.16279瓦/(米2•开尔文)〔w/(m2•K)〕1英热单位/(英尺2•时•°F)〔Btu/(ft2•h•°F)〕=5.67826瓦/(米2•开尔文)〔(w/m2•K)〕1米2•时•℃/千卡(m2•h•℃/kcal)=0.86000米2•开尔文/瓦(m2•K/W)热导率换算1千卡(米•时•℃)〔kcal/(m•h•℃)〕=1.16279瓦/(米•开尔文)〔W/(m•K)〕1英热单位/(英尺•时•°F)〔But/(ft•h•°F) =1.7303瓦/(米•开尔文)〔W/(m•K)〕比容热换算1千卡/(千克•℃)〔kcal/(kg•℃)〕=1英热单位/(磅•°F)〔Btu/(lb•°F)〕=4186.8焦耳/(千克•开尔文)〔J/(kg•K)〕热功换算1卡(cal)=4.1868焦耳(J) 1大卡=4186.75焦耳(J) 1千克力米(kgf•m)=9.80665焦耳(J)1英热单位(Btu)=1055.06焦耳(J) 1千瓦小时(kW•h)=3.6×106焦耳(J)1米制马力小时(hp•h)=2.64779×106焦耳(J) 1英尺磅力(ft•lbf)=1.35582焦耳(J)1英马力小时(UKHp•h)=2.68452×106焦耳1焦耳=0.10204千克•米=2.778×10-7千瓦•小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时(Btu/h)=0.293071瓦(W) 1千克力•米/秒(kgf•m/s)=9.80665瓦(w)1卡/秒(cal/s)=4.1868瓦(W) 1米制马力(hp)=735.499瓦(W)速度换算1英里/时(mile/h)=0.44704米/秒(m/s) 1英尺/秒(ft/s)=0.3048米/秒(m/s)渗透率换算1达西=1000毫达西 1平方厘米(cm2)=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米(℃/m)1℃/公里=2.9°F/英里(°F/mile)=0.055°F/100英尺(°F/ft)油气产量换算1桶(bbl)=0.14吨(t)(原油,全球平均)1万亿立方英尺/日(tcfd) =283.2亿立方米/日(m3/d)=10.336万亿立方米/年(m3/a)10亿立方英尺/日(bcfd)=0.2832亿立方米/日(m3/d) =103.36亿立方米/年(m3/a)1百万立方英尺/日(MMcfd)=2.832万立方米/日(m3/d)=1033.55万立方米/年(m3/a)1千立方英尺/日(Mcfd)=28.32立方米/日(m3/d)=1.0336万立米/年(m3/a)1桶/日(bpd)=50吨/年(t/a)(原油,全球平均)1吨(t)=7.3桶(bbl)(原油,全球平均)气油比换算1立方英尺/桶(cuft/bbl)=0.2067立方米/吨(m3/t)热值换算1桶原油=5.8×106英热单位(Btu) 1吨煤=2.406×107英热单位(Btu)1立方米湿气=3.909×104英热单位(Btu) 1千瓦小时水电=1.0235×104英热(Btu)1立方米干气=3.577×104英热单位(Btu)(以上为1990年美国平均热值)热当量换算1桶原油=5800立方英尺天然气(按平均热值计算) 1立方米天然气=1.3300千克标准煤1千克原油=1.4286千克标准煤◆容积单位换算表公升Liter 公秉Kiloliter 美制加仑U.S.Gallon 英制加仑Imp.Gallon 美桶Barrel 立方寸Cubic Feet 立方尺◆重量单位换算表Kilogram 公吨Metric ton 磅Pound 短吨Short ton 长吨1市斤=0.5000公斤=1.1023磅◆长度单位换算表公里km 公尺m 公分cm 公厘mm 公寸in 英尺ft 英里mile1(英海)=1.150776英里=6076英尺=1.852公尺,1市尺=1.0936英尺◆面积单位换算表平方公尺m2 平方寸in2 平方尺ft2 英亩acre 平方英里sq-mile 平方公分cm2 平方公厘mm21公顷=100公亩=10.000平方公尺=2.471英亩=1.0310里 1里=96.99194公亩=2.3967英亩=2.934坪◆主要力量单位换算表(国际标准单位与公制单位壶算)力量名称国际单位-公制单位公制单位-国际单位空气压力 1MPa=10.2kgf/cm2 1kgf/cm2=0.098MPa荷重力1N•m=0.102kgf•m 1kgf=9.8N扭力1N •m=0.102kgf 1kgf•m=9.8N•m真空压力 -1KPa=-7.5mmHg -1mmHg=-0.133KPa惯性力距1Kg•m2=10.2kgf•cm•s 1kg•cm•s=0.098Kgf•m2◆压力单位换算表◆流量单位换算表◆容积单位换算表◆重量单位换算表◆长度单位换算表◆面积单位换算表◆主要力量单位换算表(国际标准单位与公制单位壶算)常用中英对照数学 mathematics, maths(BrE), math(AmE)公理 axiom定理 theorem计算 calculation运算 operation证明 prove假设 hypothesis, hypotheses(pl.)命题 proposition算术 arithmetic加 plus(prep.), add(v.), addition(n.)被加数 augend, summand加数 addend和 sum减 minus(prep.), subtract(v.), subtraction(n.)被减数 minuend减数 subtrahend差 remainder乘 times(prep.), multiply(v.), multiplication(n.)被乘数 multiplicand, faciend乘数 multiplicator积 product除 divided by(prep.), divide(v.), division(n.)被除数 dividend除数 divisor商 quotient等于 equals, is equal to, is equivalent to大于 is greater than小于 is lesser than大于等于 is equal or greater than小于等于 is equal or lesser than运算符 operator平均数mean算术平均数arithmatic mean几何平均数geometric mean n个数之积的n次方根倒数(reciprocal) x的倒数为1/x有理数 rational number无理数 irrational number实数 real number虚数 imaginary number数字 digit数 number自然数 natural number整数 integer小数 decimal小数点 decimal point分数 fraction分子 numerator分母 denominator比 ratio正 positive负 negative零 null, zero, nought, nil十进制 decimal system二进制 binary system十六进制 hexadecimal system权 weight, significance进位 carry截尾 truncation四舍五入 round下舍入 round down上舍入 round up有效数字 significant digit无效数字 insignificant digit代数 algebra公式 formula, formulae(pl.)单项式 monomial多项式 polynomial, multinomial系数 coefficient未知数 unknown, x-factor, y-factor, z-factor 等式,方程式 equation一次方程 simple equation二次方程 quadratic equation三次方程 cubic equation四次方程 quartic equation不等式 inequation阶乘 factorial对数 logarithm指数,幂 exponent乘方 power二次方,平方 square三次方,立方 cube四次方 the power of four, the fourth power n次方 the power of n, the nth power开方 evolution, extraction二次方根,平方根 square root三次方根,立方根 cube root四次方根 the root of four, the fourth root n次方根 the root of n, the nth rootsqrt(2)=1.414sqrt(3)=1.732sqrt(5)=2.236常量 constant变量 variable坐标系 coordinates坐标轴 x-axis, y-axis, z-axis横坐标 x-coordinate纵坐标 y-coordinate原点 origin象限quadrant截距(有正负之分)intercede(方程的)解solution几何geometry点 point线 line面 plane体 solid线段 segment射线 radial平行 parallel相交 intersect角 angle角度 degree弧度 radian锐角 acute angle直角 right angle钝角 obtuse angle平角 straight angle周角 perigon边 side高 height三角形 triangle锐角三角形 acute triangle直角三角形 right triangle直角边 leg斜边 hypotenuse勾股定理 Pythagorean theorem 钝角三角形 obtuse triangle不等边三角形 scalene triangle 等腰三角形 isosceles triangle 等边三角形 equilateral triangle 四边形 quadrilateral平行四边形 parallelogram矩形 rectangle长 length宽 width周长 perimeter面积 area相似 similar全等 congruent三角 trigonometry正弦 sine余弦 cosine正切 tangent余切 cotangent正割 secant余割 cosecant反正弦 arc sine反余弦 arc cosine反正切 arc tangent反余切 arc cotangent反正割 arc secant反余割 arc cosecant补充:集合aggregate元素 element空集 void子集 subset交集 intersection补集 complement映射 mapping函数 function定义域 domain, field of definition 值域 range单调性 monotonicity奇偶性 parity周期性 periodicity图象 image数列,级数 series微积分 calculus微分 differential导数 derivative极限 limit无穷大 infinite(a.) infinity(n.)无穷小 infinitesimal积分 integral定积分 definite integral不定积分 indefinite integral复数 complex number矩阵 matrix行列式 determinant圆 circle圆心 centre(BrE), center(AmE) 半径 radius直径 diameter圆周率 pi弧 arc半圆 semicircle扇形 sector环 ring椭圆 ellipse圆周 circumference轨迹 locus, loca(pl.)平行六面体 parallelepiped立方体 cube七面体 heptahedron八面体 octahedron九面体 enneahedron十面体 decahedron十一面体 hendecahedron十二面体 dodecahedron二十面体 icosahedron多面体 polyhedron旋转 rotation轴 axis球 sphere半球 hemisphere底面 undersurface表面积 surface area体积 volume空间 space双曲线 hyperbola抛物线 parabola四面体 tetrahedron五面体 pentahedron六面体 hexahedron菱形 rhomb, rhombus, rhombi(pl.), diamond 正方形 square梯形 trapezoid直角梯形 right trapezoid等腰梯形 isosceles trapezoid五边形 pentagon六边形 hexagon七边形 heptagon八边形 octagon九边形 enneagon十边形 decagon十一边形 hendecagon十二边形 dodecagon多边形 polygon正多边形 equilateral polygon相位 phase周期 period振幅 amplitude内心 incentre(BrE), incenter(AmE)外心 excentre(BrE), excenter(AmE)旁心 escentre(BrE), escenter(AmE)垂心 orthocentre(BrE), orthocenter(AmE)重心 barycentre(BrE), barycenter(AmE)内切圆 inscribed circle外切圆 circumcircle统计 statistics平均数 average加权平均数 weighted average方差 variance标准差 root-mean-square deviation, standard deviation 比例 propotion百分比 percent百分点 percentage百分位数 percentile排列 permutation组合 combination概率,或然率 probability分布 distribution正态分布 normal distribution非正态分布 abnormal distribution图表 graph条形统计图 bar graph柱形统计图 histogram折线统计图 broken line graph曲线统计图 curve diagram扇形统计图 pie diagramabscissa 横坐标absolute value 绝对值acute angle 锐角adjacent angle 邻角addition 加algebra 代数altitude 高angle bisector 角平分线arc 弧area 面积arithmetic mean 算术平均值(总和除以总数)arithmetic progression 等差数列(等差级数)arm 直角三角形的股at 总计(乘法)average 平均值base 底be contained in 位于...上bisect 平分center 圆心chord 弦circle 圆形circumference 圆周长circumscribe 外切,外接clockwise 顺时针方向closest approximation 最相近似的combination 组合common divisor 公约数,公因子common factor 公因子complementary angles 余角(二角和为90度)composite number 合数(可被除1及本身以外其它的数整除)concentric circle 同心圆cone 圆锥(体积=1/3*pi*r*r*h)congruent 全等的consecutive integer 连续的整数coordinate 坐标的cost 成本counterclockwise 逆时针方向cube 1.立方数2.立方体(体积=a*a*a 表面积=6*a*a)cylinder 圆柱体decagon 十边形decimal 小数decimal point 小数点decreased 减少decrease to 减少到decrease by 减少了degree 角度define 1.定义 2.化简denominator 分母denote 代表,表示depreciation 折旧distance 距离distinct 不同的dividend 1. 被除数 2.红利divided evenly 被除数divisible 可整除的division 1.除 2.部分divisor 除数down payment 预付款,定金equation 方程equilateral triangle 等边三角形even number 偶数expression 表达exterior angle 外角face (立体图形的)某一面factor 因子fraction 1.分数 2.比例geometric mean 几何平均值(N个数的乘积再开N次方)geometric progression 等比数列(等比级数)have left 剩余height 高hexagon 六边形hypotenuse 斜边improper fraction 假分数increase 增加increase by 增加了increase to 增加到inscribe 内切,内接intercept 截距integer 整数interest rate 利率in terms of... 用...表达interior angle 内角intersect 相交irrational 无理数isosceles triangle 等腰三角形least common multiple 最小公倍数least possible value 最小可能的值leg 直角三角形的股length 长list price 标价margin 利润mark up 涨价mark down 降价maximum 最大值median, medium 中数(把数字按大小排列,若为奇数项,则中间那项就为中数,若为偶数项,则中间两项的算术平均值为中数。
载流量计算书
电缆载流量计算书电缆有限公司技术部2019/9/211.载流量计算使用条件及必要系数:1. 导体交流电阻 R的计算R=R'(1+y s+y p)R'=R0[1+α20(θ-20)]其中:其中:对于分割导体ks=0.435。
其中:d c:导体直径 (mm)s:各导体轴心之间距离 (mm) 对于分割导体ks=0.37。
2.介质损耗W d的计算W d=ωCU02tgδ其中:ω=2πfC:电容 F/mU:对地电压(V)其中:εD i为绝缘外径 (mm)d c为内屏蔽外径 (mm)3.金属屏蔽损耗λ1的计算λ1=λ1'+λ1〃其中:λ1'为环流损耗λ1〃为涡流损耗λ1〃的计算:其中:ρ:金属护套电阻率 (Ω·m)R:金属护套电阻 (Ω/m)t:金属护套厚度 (mm)D oc:皱纹铝套最大外径 (mm) D it:皱纹铝套最小内径 (mm)a.三角形排列时2b.平行排列时1)中心电缆△2=03)外侧滞后相4.铠装损耗λ2的计算λ2=05热阻的计算5.1热阻T1的计算热阻式中:ρT1 — 绝缘材料热阻系数 (k·m/w)d c — 导体直径 (mm)t 1 — 导体和护套之间的绝缘厚度 (mm)5.2热阻T 2的计算 热阻T 2=05.3外护套热阻T 3的计算其中:t s -外护套厚度 ρT3-外护套(非金属)热阻系数5.4外部热阻T 4计算5.4.1空气中敷设其中:D e *:电缆外径 (mm)h: 散热系数当空气中敷设时,回路数对载流量基本没有影响。
5.4.2土壤中敷设5.4.2.1管道敷设,有水泥槽。
5.4.2.1.1电缆和管道之间的热阻T4′:其中:U、V和Y是与条件有关的常数。
D e 为电缆外径。
θm 为电缆与管道之间介质的平均温度。
5.4.2.1.2管道本身的热阻其中:D o 为管道外径。
D d 为管道内径。
ρT4为管道材料的热阻系数。
5.4.2.1.3管道外部热阻ρe 管道周围土壤的热阻系数。
A+K平衡流量计
— 中心节流
介 质 流 向
在锥体的下游产生高频低幅的小旋涡
美国A+FlowTek中国技术服务中心
/Reps.htm
节流元件的变革
第一代
第二代
边缘节流
中心节流 分散(平衡)节流?
第三代
美国A+FlowTek中国技术服务中心
/Reps.htm
/Reps.htm
孔板的优势
• • • • • 利用差压原理进行流量测量的代表产品; 历史悠久,应用范围广泛; 结构简单、安全可靠; 用户对它的安装、使用和检修非常熟悉; 初投入成本低。
美国A+FlowTek中国技术服务中心
/Reps.htm
美国A+FlowTek中国技术服务中心
/Reps.htm
安装最简单
双向 流测量
双向流测量 连接示意 图
介 质流 向 介 质流 向
美国A+FlowTek中国技术服务中心
/Reps.htm
美国A+FlowTek中国技术服务中心
美国A+FlowTek中国技术服务中心
/Reps.htm
提高测量精度的意义
示例1 :石油工业
Dg=200mm输油管线,流量为600US gal/min,如果测 量精度提高0.4%,则日耗量减少3456USgal, 以每Usgal价格50美分计,则每年可因精度提高而节省 62万美元。
美国A+FlowTek中国技术服务中心
/Reps.htm
马歇尔航空飞行中心
航天飞机主发动机尾部
美国A+FlowTek中国技术服务中心
/Reps.htm
美国航天技术、2006年美国发明大奖
美国A+FlowTek中国技术服务中心
中英文对照
CORR.VOL. FLOW 标况体积流量 UNIT.VOL. FLOW 体积流量单位
DENSITY 密度 UNIT VOLUME 体积单位
REFERENCE DENSITY 参考密度 UNIT CORR.VOL. FLOW 标况体积流量单位
ห้องสมุดไป่ตู้
TEMPERATURE 温度 UNIT CORR. VOLLUME 标况体积单位 UNIT DENSITY 密度单位 UNIT REF. DENSITY UNIT TEMPERATURE 参考密度单位 温度单位 UNIT LENGTH 长度单位
DEVICE ID 设备号 EPD VALUE HIGH EPD上限 EPD RESP.TIME EPD EXC.CURRENT EPD反应时间 FIXED REFERENCE DENSITY ZERO PT.ADJ. 固定参考密度值 零点标定
中英文对照文件
#|段_Se ction__\r\n+|正的_pos itive__\r\n<|低于_<__\r\n<|小于_<__\r\n>|大于_>__\r\n0_SE Q|零序_zero_seque nce__\r\n1ST E XTR|一段抽汽_1st_ex tract ion__\r\n3 PH|全相_al l_pha ses__\r\nA_PW|有功功率_activ e_pow er__\r\nA BNM|异常_abn ormal__\r\nAC|交流_al terna ting_curre nt__\r\nA CCD|事故_acc ident__\r\nACK|确认_a cknow ledge__\r\nACT|动作_a ct__\r\nA CTIVE|激励_a ctive__\r\nADJ|调整_a djust ing__\r\nAIR|空气_Air__\r\nAIR FLOW|风量_A ir_fl ow__\r\nA IR_S|空侧_ai r_sid e__\r\nAL|漏风_A il_le ak__\r\nA LM|报警_alar m__\r\nAL M WIN|光字牌_alarm_wind ow__\r\nA PH|空预器_air_preh eater__\r\nARE A|分区_area__\r\nAREA|区_ar ea__\r\nA SH HO P|灰斗_ash_h opper__\r\nATM|雾化_a tomiz ing__\r\nATM R EL VL V|对空排汽门_at mosph eric_relie f_val ve__\r\n A UTO|自动_aut omati c__\r\nAU X|辅助_Auxil iary__\r\nAXIDISP|轴向位移_axial_disp lacem ent__\r\nBA|后_Back__\r\nBATT ERY|蓄电池_st orage_batt ery__\r\nBB|轴承箱_Bea ring_box__\r\nBBIN|筒体_bo bbin__\r\nBCHT Z|瓦斯_buchh oltz__\r\nBEAR|轴承_b earin g__\r\nBE AR VB RT|轴振_Bear ing_v ibrat ion__\r\nBELT|皮带_be lt__\r\nB FPT|小汽机_bo iler_feede r_wat er_pu mp_tu rbine__\r\nBFV|蝶阀_b utter fly_v alve__\r\nBH|在…的后面_behin d__\r\nBI G|PLT N_D__\r\nBIN|粉仓_bin,_pul veriz ed_co al_bu nker__\r\nBIN|煤粉仓_b in__\r\nB LDN|排污_Blo wdown__\r\nBLO CK|堵塞_bloc king__\r\nBLR|(锅)炉_boile r__\r\nBL R|锅炉_Boile r__\r\nBL R HAL L|锅炉房_boil er_ha ll__\r\nB NR|燃烧器_Bur ner__\r\nBODY|本体_bo dy__\r\nB OWL|磨碗_bow l__\r\nBO X|盒_b ox__\r\nB P|前置泵_boos ter_p ump__\r\nBRCH|分支_Br anch__\r\nBRCH|支路_b ranch__\r\nBRK R|断路器_brea ker__\r\nBRNHT|燃尽_b urnin g_exh aust__\r\nBTM|底_Bot tom__\r\nBUS|母线_bus__\r\nBUS H|轴瓦_Bush__\r\nBYPS|旁路_b ypass__\r\nCAB|柜_ca binet__\r\nCAB|机柜_C abine t__\r\nCA L|计算_calcu latio n__\r\nCA TION|阳离子_c ation__\r\nCCT|电路_C ircui t__\r\nCD|关命令_close_dema nd__\r\nC D|已关,关状态_C losed__\r\nCHA NL|通道_Chan nel__\r\nCHARG E|充电_Charg e__\r\nCH EM-WT R-X|化水变_Ch emist_wate r_xfm r__\r\nCH F|总_C hief__\r\nCHK|校正_Ch eck__\r\nCHK V|逆止门_check_valv e,_no n-ret urn_v alve__\r\n CIR|循环_ci rcula ting__\r\nCIRWTR|循环水_ci rcula ting_water__\r\nCL|闭式_cl osed__\r\nCL|关_clos e__\r\nCL CIRWTR|闭式循环水_close d_cir culat ing_w ater__\r\n CL S WTH|合闸_clo se_sw itch__\r\nCLCT|收集_C ollec tion__\r\nCLEA N|净_c lean__\r\nCLFR|粗粉分离器_cla ssifi er__\r\nC LG|冷却_cool ing__\r\nCLG A IR FA N|冷却风机_coo ling_air_(blowe r)_fa n__\r\n CL NG|顶棚_ceil ing__\r\nCLR|冷却器_co oler__\r\nCMPS|合成_c ompos e__\r\nCN D|凝结_conde nsate__\r\nCND P|凝结水泵_co ndens ate_p ump__\r\nCND W TR|凝结水_con densa ted_w ater__\r\nCNSR|凝汽器_conde nser__\r\nCNTR|连通管_conne ctor__\r\nCNVG|汇流_c onver ge__\r\nC OAL B LOCK|堵煤_co al_bl ockin g__\r\nCO AL CV R|输煤机_coal_conv eyer__\r\nCOAL FDR|给煤机_(coal_)_fee der__\r\nCOG|齿_cog__\r\nCOG|齿部_co g__\r\nCO IL|线圈_coil__\r\nCOL D AIR|冷风_c old_a ir__\r\nC OLLAR|轭部_c ollar__\r\nCOM|公用_C ommon__\r\nCOM BNR|组件_Com biner__\r\nCOM P|复合_Compl ex__\r\nC ONDT|导电度_c onduc tivit y__\r\nCO OL RH T|冷再热_cool_rehe at__\r\nC ORE|铁芯_(_i ron_\r\nC P|关状态_Clos ed_po sitio n__\r\nCP LR|耦合器_cou pler__\r\nCPRE SS AI R|压缩空气_com press ed_ai r__\r\nCR NR|角_corne r__\r\nCR RT|电流_curr ent__\r\nCRVC|夹层_cr evice__\r\nCRV C|间隙_crevi ce__\r\nC S|石子_Cobbl eston e__\r\nCS EP|细粉分离器_c yclon e_sep arato r__\r\nCS V|联合汽门_com bined_stea m_val ve__\r\nC TL|控制_Cont rol__\r\nCTL B OX|控制箱_con trol_box__\r\nCTL D MD|控制命令(对调节阀)_C ontro l_dem and__\r\nCTL R OOM|控制室_co ntrol_room__\r\nCTN BLDN|连排_c ontin ue_bl owdow n__\r\nCT N BLD N FLT K|连排扩容器_co ntinu e_blo wdown_flas htank__\r\n CTN R|罐_C ontai ner__\r\nCTR|中心_Cen ter__\r\nCV|用户阀_cus tomer_valv e__\r\nCX|公用变_commo n_tra nsfor mer__\r\nCYL|汽缸_cyl inder__\r\nDC|直流_di rect_curre nt__\r\nD EA|除氧器_dea erato r__\r\nDE MAG|消磁装置_d emagn etize r__\r\nDE MINE|除盐的_D emine raliz ed__\r\nD EMINR|除盐装置_Demi neral ized_devic e__\r\nDI F PRS(DP)|差压(压差)_dif feren tial_press ure__\r\nDIFF|差动_di ffere ntial__\r\nDIF F PRS|压差(差压)_di ffere ntial_pres sure__\r\nDIRT Y|脏_d irty__\r\nDISC H|泄放_Disch arge__\r\nDISC H OIL|放油_D ischa rge_o il__\r\nD ISCHSTM|放汽_Dis charg e_ste am__\r\nD ISCHWTR|放水_dis charg e_wat er__\r\nD ISCON|断线_d iscon necti ng__\r\nD ISP|位移_dis place__\r\nDMD|要求_D emand__\r\nDMD|指令,命令_Dem and__\r\nDMPR|挡板_da mper__\r\nDN|下_down__\r\nDNC MR|下降管_dow ncome r__\r\nDP HRM|隔膜_Dia phrag m__\r\nDR AFT|通风_Dra ft__\r\nD RG|渣_Dregs__\r\nDRN|疏水_d rain_water__\r\nDRN FLTK|疏水扩容器_dra in_wa ter_f lasht ank__\r\nDRN T K|疏水罐_drai n_tan k__\r\nDR N V|疏水阀_dr ain_w ater__\r\nDRUM|传动_d rum__\r\nDRUM|汽包_Dr um__\r\nD RV_E|驱动端_d rive_end__\r\nDSH|减温_Des uperh eat__\r\nDSHR|减温器_D esupe rheat er__\r\nD SL|柴油机_die sel_e ngine__\r\nDSP PR|消失_disa ppear__\r\nDSS LV|溶解_diss olved__\r\nDST Y|浓度_Densi ty__\r\nD TY OC|污油室_Dirty_oil_chamb er__\r\nD UP|复_Dupli cate__\r\nDWTR|脱水_D ewate r__\r\nDZ|刀闸_D ao_zh a__\r\nEC NT|偏心度_Ecc entri city__\r\nECON|省煤器_Econo mizer__\r\nEGF|排烟风机_exha ust_g as_fa n__\r\nEL EC|电气_Elec tric__\r\nEMG|紧急_Em ergen cy__\r\nE MG|事故_Emer gency__\r\nEMG RLVOIL V|紧急放油阀_eme rgenc y_rel ieve_oil_v alve__\r\n END|结束_en d__\r\nEN D FAC E|端_E nd_fa ce__\r\nE NST|蓄能器_en ergy_stora ge__\r\nE QPMNT|装置_e quipm ent__\r\nEXCHR|交换器_excha nger__\r\nEXCT|励磁_e xcita tion__\r\nEXCT R|励磁机_exci tator__\r\nEXC TR SI DE|励端_exci tator_side__\r\nEXH|排风_E xhaus t__\r\nEX H OIL|排油_E xhaus t_oil__\r\nEXH STM|排汽_Ex haust_stea m__\r\nEX H WTR|排水_E xhaus t_wat er__\r\nE XHR|排风机_Ex haust er__\r\nE XP|膨胀_expa nsion__\r\nEXP DIFF|胀差_e xpans ion_d iffer ence__\r\nEXTD|伸进_E xtend__\r\nEXT R|抽汽_extra ction_stea m__\r\nF/B|前后_front_\r\nFAIL|失败_f ailur e__\r\nFA ST CL|速断_f ast-c losin g__\r\nFA ULT|故障_Fau lt__\r\nF D|送风_force d_dra ft_ai r__\r\nFD BK|反馈_feed back__\r\nFDF|送风机_f orced_draf t_fan__\r\nFEE D WTR|给水_f eedwa ter__\r\nFGHT|消防_fi re_fi ghtin g__\r\nFI NE TR MT|精处理_fin e_tre atmen t__\r\nFI RING|有火_fi ring__\r\nFLAN|法兰_f lange__\r\nFLM|火焰_f lame__\r\nFLMINTS|火焰强度_flame_inte nsity__\r\nFLT K|扩容器_flas h_tan k__\r\nFL TR|过滤器_fil ter__\r\nFLTR|滤网_fi lter__\r\nFLUE GAS|排烟_fl ue_ga s__\r\nFL W|流量_flow__\r\nFNC|炉膛_fu rnace__\r\nFOR CE|强制_forc e__\r\nFP O|抗燃油_flam e_pro of_oi l__\r\nFR|前_fr ont__\r\nFREQ|频率_Fr equen cy__\r\nF UEL|燃料_Fue l__\r\nFU EL-X|燃油变_F uel_x fmr__\r\nFUSE|熔断_fu sible__\r\nFUS E|熔断器_fusi ble_c utout__\r\nFV|定值_Fi xed_v alue__\r\nGAS|气体_ga s__\r\nGA S|烟气_gas__\r\nGAS P ASS|烟道_gas_pass__\r\nGAS TEM|烟温_ga s_tem p__\r\nGD VN|导叶_guid e_van e__\r\nGE AR|齿轮_Gear__\r\nGEN|发电机_gener ator__\r\nGLD|汽封_st eam_s ealin g,_st eam_s eal_g land__\r\n GLD|轴封_Gl and__\r\nGND|接地_gro und__\r\nGP|组_Group__\r\nGVN|可调速的_gove rning__\r\nGVN OIL(GO)|调速油_Go verni ng_oi l__\r\nGV N V|调速汽门_g overn ing_v alve__\r\nGXU|发变组_g enera tor_t ransf ormer_unit__\r\nH2SPL|供氢_H2_suppl y__\r\nH2_S|氢侧_H2_s ide__\r\nHD_CP LR|液力耦合器_h ydrau lic_c ouple r__\r\n HD_MTR|油动机_h ydrau lic_s ervom otor__\r\n HDR|集箱_he ader__\r\nHDR|联箱_he ader__\r\nHDR|母管_he ader__\r\nHEAT STM|加热蒸汽_heat_steam__\r\nHEA VY|重_heavy__\r\nHES I|高能点火器_hi gh_en ergy_spark_igni tor__\r\nHIGHAUX|高辅_hig h_pre ssure_auxi liary__\r\nHIG H LMT|高限_h igh_l imit__\r\nHIGH PRS|高压力_h igh_p ressu re__\r\nH IGH S PD|高速_high_spee d__\r\nHI GH TE M|高温_high_tempe ratur e__\r\nHI GH VO LT|高电压_hig h_vol tage__\r\nHIGH(HI)|高_Hig h__\r\nHI PC|高中压缸_hi gh_in terme diate_pres sure_cylin der__\r\nHLWB|高位水箱_high_level_wate r_box__\r\nHMD T|湿度_humid ity__\r\nHORZ|水平(方向)的_ho rizon tal__\r\nHOT A IR|热风_hot_air__\r\nHOT R HT|热再热_hot_rehe at__\r\nH OT WE LL|热井_hot_well__\r\nHPC|高压缸_h igh_p ressu re_cy linde r__\r\nHP H|高加_high_press ure_h eader__\r\nHTG|采暖_H eatin g__\r\nHT R|加热器_heat er__\r\nH VSX|高备变_hi gh_vo ltage_stan dby_t ransf ormer__\r\nHYD L OIL|液压油_hydra ulic_oil__\r\nHYDP|液压_Hy draul ic_pr essur e__\r\nID A|引风_induc ed_dr aft_a ir__\r\nI DF|引风机_ind uced_draft_fan__\r\nIGNT|点火_I gniti on__\r\nI GNTR|点火器_I gnito r__\r\nIM PDC|阻抗_imp edanc e__\r\nIN C|增加_incre ate__\r\nIND W TR|工业水_ind ustri al_wa ter__\r\nING|进_Ingo ing__\r\nING L INE|进线_ing oing_line__\r\nINL|入口_in let__\r\nINL S IDE|吸入端_in let_s ide__\r\nINN|内,内侧,内部_inn er__\r\nI NT VO LT|问询电压_in terro gatio n_vol tage__\r\nINTM T|定期(排污)_i nterm itten t__\r\nIN TMT B LDN F LTK|定期排污扩容器_int ermit tent_blow_down_flash_tank__\r\n INT R PRS|中压_i nterm ediat e_pre ssure__\r\nINT RCT|联络_int ercon necti on__\r\nI NTRLK|联锁_i nterl ock__\r\nINVS|逆_inv erse__\r\nION|离子_io n__\r\nIP C|中压缸_inte rmedi ate_p ressu re_cy linde r__\r\n IS LN,IS LT|绝缘_Isol ation__\r\nISL T|隔离_isola te__\r\nI SLT P LTN|分隔屏_is olati ng_pl aten__\r\nJACK|顶轴_j ackin g__\r\nKW H|电度_elect rical_work__\r\nL_A|A层_L ayer_A__\r\nL_STG|末级_the_last_stag e__\r\nLA YER|层_laye r__\r\nLB TY SI DE|自由端_lib erty_side__\r\nLCL|就地_Lo cal__\r\nLE|左_Left__\r\nLEAK|泄漏_l eak__\r\nLIFT|支撑_li ft__\r\nL IFT B EAR|支撑轴承_l ift_b earin g__\r\nLI GHT|轻_ligh t__\r\nLM T|极限_Limit__\r\nLMT|限_li mit__\r\nLOAD|负荷_Lo ad__\r\nL OCK|闭锁_loc k__\r\nLO CK CL|闭锁关_lock_close__\r\nLOC K OPN|闭锁开_lock_open__\r\nLOSE MAG|失磁_lo se_ma gnet__\r\nLOSE SYN|失步_lo se_sy nchro nizer__\r\nLOW AUX|低辅_lo w_pre ssure_auxi liary__\r\n LOW FREQ|低频_l ow_fr equen cy__\r\nL OW LM T|低限_low_l imit__\r\nLOWPRS|低压力_lo w__\r\nLO W SPD|低速_l ow_sp eed__\r\nLOW T EM|低温_low_tempe ratur e__\r\nLO W VOL T|低电压_Low__\r\nLOW(LO)|低_Low__\r\nLPC|低压缸_l ow_pr essur e_cyl inder__\r\nLPH|低加_l ow_pr essur e_hea ter__\r\nLUB|润滑_lub e__\r\nLU B OIL|润滑油_lube_oil__\r\nLVL|液位_lev el__\r\nL WR|下层,低层_l ower__\r\nM_BL D|动叶片_movi ng_bl ade__\r\nMAG|电磁_ele ctric_magn etic__\r\nMAGV|电磁阀_elec tric_magne tic_v alve__\r\nMAIN|主_ma in__\r\nM AIN S TM|主蒸汽_mai n_ste am__\r\nM AIN S TM V|主汽门_m ain_s team_stop_valve__\r\nMAI N TUR B|主机_main_turbi ne__\r\nM AIN X FMR|主变_mai n_tra nsfor mer__\r\nMAINT ENACE|检修_m ainte nance__\r\nMAN L|手动_Manua l__\r\nMA TCH|满足_mat ch__\r\nM AX|最大_Maxi mum__\r\nMCH R M|机房_Machi ne_ro om__\r\nM CHN|机械_mec hanic al__\r\nM CM|磁控表_Mag netic_cont rol_m eter__\r\nMCR|最大持续功率_max imum_conti nuous_revo lutio n__\r\nMD FP|电动给水泵_m otor_drive_feed water_pump__\r\nMDS GOP|电动调速油泵_Moto r_dri ve_sp eed_g overn ing_o il_pu mp__\r\n M ESH|啮合_mes h__\r\nMF T|主燃料跳闸_ma ster_fuel_trip__\r\nMGNT|永励机_magne to_ge nerat or__\r\nM ID|中间,中部_M iddle__\r\nMIL L|磨煤机_coal_mill__\r\nMIN|最小_M inimu m__\r\nMK UP O IL|补油_make-up_o il__\r\nM K UPWTR|补水_mak e-up_water__\r\nMMT R|主电机_Main_elec tric_motor__\r\nMNT|力矩_M oment__\r\nMNT R|监视_monit or__\r\nM O|电动_motor_oper ated__\r\nMODE|方式_m ode__\r\nMOV|电动调节门_motor_oper ated_regul ating_valv e__\r\nMO V|电动门_moto r_ope rated_valv e__\r\nMS MNT P NT|测点_meas ureme nt_po int__\r\nMTL|金属_Met al__\r\nM TR|电机(电动机)_elec tric_motor__\r\nMTR|马达_m otor__\r\nMTV|动力_mo tive_power__\r\nN_D RV_E|非驱动端_non_d rive_end__\r\nN_SYM|不对称_non_s ymmet ry__\r\nN A|钠_n atriu m__\r\nNE T CTL ROOM|网控楼_netwo rk_co ntrol_room__\r\n NO.|号(量词)_Num ber__\r\nNODR|失灵_be_out_of_or der__\r\nNON|非_Non__\r\nNORM|正常_n ormal__\r\nNOZ ZLE|火嘴_Noz zle__\r\nN-SEQ|负序_n egati ve_se quenc e__\r\nNT RL PN T|中性点_Neut ral_p oint__\r\nO_PW|工作电源_oper ating_powe r__\r\nO2|氧_O2__\r\nO2CT|含氧量_oxy gen_c onten t__\r\nO2 CT|氧量_oxy gen_c onten t__\r\nOI L|油_o il__\r\nO IL BO X|油箱_Oil_b ox__\r\nO IL CL R|冷油器_oil_coole r__\r\nOI L FLT R|滤油器_oil_filte r__\r\nOI L P|油泵_oil_pump__\r\nOIL PIPE|油路_o il_pi pe__\r\nO IL PR S|油压_oil_p ressu re__\r\nO IL SP L|供油_oil_s upply__\r\nOIL STN|油站_oi l_sta tion__\r\nOILTEM|油温_oil_temp eratu re__\r\nO IL TK|贮油箱_oil_t ank__\r\nOIL V LU|油量_Oil_value__\r\nONL Y|仅_O nly__\r\nOPN|开式_ope n__\r\nOP N CIR|开式循环_open_circ ulati ng__\r\nO PN CI R WTR|开式循环水_ope n_cir culat ing_w ater__\r\n OPNDMD|打开命令_o pen_d emand__\r\nOPN ED|开状态_ope ned_s tatus__\r\nOPR|操作_o perat ion__\r\nORT|方向_ori entat ion__\r\nOUT|外部_out er__\r\nO UTG W IRE|出线_out going_wire__\r\nOUT G WTR|出水_O utgoi ng_wa ter__\r\nOUTL|出口_ou tlet__\r\nOUTL SIDE|吐出端_outle t_sid e__\r\nOV CRRT|过流_o ver_c urren t__\r\nOV EXCT R|过励磁_over_exci tator__\r\nOVLOAD|过负荷_o ver_l oad__\r\nOV LO AD|过载_over load__\r\nOV S PD|过速_over_spee d__\r\nOV VOLT|过压_o ver_v oltag e__\r\nOV ER SP D|超速_Over_speed__\r\nOVE R TEM|超温_o ver_t emper ature__\r\nOVF L|溢_o verfl ow__\r\nO VFL S TN|溢流站_ove rflow_stat ion__\r\nOX|工作变压器_o perat ing_t ransf ormer__\r\nP|负压_neg ative_pres sure__\r\nP_L_XFMR|厂低变_p lant_servi ce_lo wer_t ransf ormer__\r\n P_L_XFMR|厂高变_plant_serv ice_h igher_tran sform er__\r\n P_SHTR|屏式过热器_pla ten_s uperh eat__\r\nP_XFM R|厂变_plant_serv ice_t ransf ormer__\r\nPA|一次风_p rimar y_air__\r\nPAD|瓦(轴承)_pad__\r\nPAD|瓦块_p ad__\r\nP AF|一次风机_pr imary_air_fan__\r\nPAO|一次油_pr imary_oil__\r\nPB|按钮(键)_push_butto n__\r\nPC LVL|粉位_PC_leve l__\r\nPC E|排粉机_pulv erize d_coa l_exh auste r__\r\nPC S|制粉系统_Pul veriz ed-co al_sy stem__\r\nPCT|百分比_P ercen t__\r\nPH|相_ph ase__\r\nPH DI FF|相位差_pha se_an gle_d iffer ence__\r\nPH L OSE|缺相_pha se_lo se__\r\nP H MDF R|调相机_phas e_mod ifier,_pha se_mo dulat or__\r\n P IP|管,管道_Pi pe__\r\nP IP WA LL|管壁_Pipe_wall__\r\nPLN T|厂用_Plant__\r\nPLN T INN|厂内_p lant_inner__\r\nPLN T PWRATE|厂用电率_Plant_serv ice_p ower_rate__\r\n PLT|导向_pi lot__\r\nPLT B EAR|导向轴承_p ilot_beari ng__\r\nP LT V|滑阀_Pi lot_v alve__\r\nPLTN FAN|屏风机_p laten_fan__\r\nPMP(P)|泵_PUMP__\r\nPMT|允许_pe rmit__\r\nPNFC|盘面_p anel_face__\r\nPNMT C|气动_pneum atic__\r\nPNT|点_Poi nt__\r\nP OS|阀位/位置反馈_valv e_pos ition__\r\nPOS|位置_p ositi on__\r\nP RCT|保护_pro tecti on__\r\nP REC|除尘器_Pr ecipi tator__\r\nPRG C|程控_progr ammed_cont rol__\r\nPRHT|预热_pr eheat__\r\nPRH T PIP|预热管道_preh eat_p ipe__\r\nPROBE|探针_P robe__\r\nPRSREDRV|减压阀_pres sure_reduc er_va lve__\r\nPRS(P)|压力_press ure__\r\nPRS/T EM RE DR|减温减压器_t emper ature_and_press ure_r educe r__\r\n PU L|煤粉_Pulve rized_coal__\r\nPUL CVR|输粉机_p ulver ized_coal_conve yor__\r\nPULSE|脉冲_P ulse__\r\nPUROC|净油室_Pur ity_o il_ch amber__\r\nPUR GE|吹扫_purg e__\r\nPU RITY|纯度_pu rity__\r\nPUTI N|投_p uttin g_int o__\r\nPV L FDR|给粉机_pulve rized_coal_feed er__\r\nP W|电源_Power_supp ly__\r\nP W|功率_Power__\r\nPWON|有电_powe r_on__\r\nR_PW|无功_r eacti ve_po wer__\r\nRAD / AXI|径向_ra dial_/_axi al__\r\nR ATE|率_rate__\r\nRAT IO|比_Ratio__\r\nRB|快速减负荷_run_back__\r\nRBBR BALL|胶球_r ubber_ball__\r\nRBC H|消泡箱_ridd ing_b ubble_cham ber__\r\nRBEAR|径向轴承_Radi al_be aring__\r\nRCT F|整流的_rect ifyin g__\r\nRC TFR|整流器_re ctifi er__\r\nR EAR P LTN|后屏_rea r_pla ten__\r\nRECIR|再循环_recir culat e__\r\nRE CIR V|再循环阀_reci rcula ting_valve__\r\nRED R|减少_Reduc e__\r\nRE F|参考_refer ence__\r\nRELA Y|继电器_rela y__\r\nRE MO|遥控_Remo te__\r\nR ENEW|重新_re new__\r\nRETR|退回,缩回_retr act__\r\nRFF|回料风机_r eturn_fuel_fan__\r\nRGEN|再生_r egene ratio n__\r\nRG L STG|调节级_regul ating__\r\nRGL V|调节门_reg ulate_valv e__\r\nRH T|再热_Rehea t__\r\nRH T STM|再热蒸汽_rehe ated_steam__\r\nRHT R|再热器_rehe ater__\r\nRI|右_righ t__\r\nRL TV EX P|相对膨胀_rel ative_expa nsion__\r\nRMT|远方_r emote__\r\nROT SPD|转速_ro tatin g_spe ed__\r\nR OW|排(量词)_r ow__\r\nR RT|反转_reve rsal_rotat ion__\r\nRSET|复位_Re set__\r\nRT|正转_rota tion__\r\nRTN(OIL, WTR)|回(油,水)_re turn_(oil,_wate r)__\r\n R TN AI R|回送风_retu rn_ai r__\r\nRT R|转子_rotor__\r\nRUN|运行_R un__\r\nR UNP|运行状态_R unnin g_pos ition__\r\nRVR S|反向_rever se__\r\nR WG|反冲洗_Rev ersal_wash ing__\r\nS_A|A侧_sid e_A__\r\nS_BLD|静叶片_stati onary_blad e__\r\nSA|二次风_secon dary_air__\r\nSAD|二次风挡板_secon dary_air_d amper__\r\nSAH|暖风器_steam_air_heate r__\r\nSB W|吹灰_soot_blow__\r\nSBWR|吹灰器_soot_blowe r__\r\nSC|短路_S hort_circu it__\r\nS CHN|同步器,同操器_Syn chron izer__\r\nSCNR|火检_s canne r__\r\nSC ORE|比_scor e__\r\nSD|停止命令_stop_comm and__\r\nSDOP|汽动油泵_steam-driv en_oi l_pum p__\r\nSE AL|密封_Seal ing__\r\nSEALOIL|密封油_se al_oi l__\r\nSE AL WT R|密封水_seal_wate r__\r\nSE L|选择_selec t,_se lecti on__\r\nS EP|分离器_Sep arato r__\r\nSE T|设定_Set__\r\nSFT|安全_Saf ety__\r\nSFT|保安_saf ety__\r\nSGNL|信号_si gnal__\r\nSH|仓_Stor ehous e__\r\nSH|过热_s uperh eated__\r\nSHSTM|过热蒸汽_s uperh eated_stea m__\r\nSH ELL|壳体_she ll__\r\nS HFT|轴_Shaf t__\r\nSH KPRF|耐震_Sh ockpr oof__\r\nSHTR|过热器_s uperh eater__\r\nSID E|侧_S ide__\r\nSIDEWALL|侧墙_si de_wa ll__\r\nS LGRMV|出渣机,除渣机_s lag_r emove r__\r\nSL OT|槽_slot__\r\nSLOW DN|减速_slo w_dow n__\r\nSP|停止状态_stop_posi tion__\r\nSPD|速度_Sp eed__\r\nSPD G VNR|调速器_sp eed_g overn or__\r\nS PD UP|加速_s peed_up__\r\nS PRAY|喷水_sp ray__\r\nSRC|源_sour ce__\r\nS SPB|滑动止推轴承_Slid ing_s top_p ushin g_bea ring__\r\n SSR|传感器_S ensor__\r\nST|状态_st atus,_stat e__\r\nST AT|定子_stat or__\r\nS TBY|备用_sta ndby__\r\nSTBY PW|备用电源_s tandb y_pow er_so urce__\r\nSTEP UP|升压_ste p_up__\r\nSTG|级_Sta ge__\r\nS TG I|第一级_S tage_one__\r\nSTG I|一级_S tage_one__\r\nSTM|汽_Stea m__\r\nST M HDR|集汽联箱_stea m_hea der__\r\nSTM R OOM|蒸汽室_st eam_c hambe r__\r\nST M SPL|供汽_s team_suppl y__\r\nST M TEM|汽温_s team_tempe ratur e__\r\nST MLP|导汽管_st eam_l ead_p ipe__\r\nSTN|站_Stat ion__\r\nSTR|开始_sta rt__\r\nS TR|启动_star t__\r\nST RD|启动指令_St art_d emand__\r\nSTR OKE|行程_str oke__\r\nSURGE|喘震_s urge__\r\nSWAY|摆动_s way__\r\nSWTH|开关_sw itch__\r\nSWTH|切换_S witch__\r\nSYM|对称_s ymmet ry__\r\nS YNCH|同期_sy nchro nous__\r\nSYS|系统_sy stem__\r\nT V|三通阀_T_valv e__\r\nTA|三次风_terti ary_a ir__\r\nT AP|抽头_tap__\r\nTDFP|汽动给水泵_tur bine-drive n_fee dwate r_pum p__\r\n TE M(T)|温度_te mpera ture__\r\nTEST|检测_t est__\r\nTEST|试验_te st__\r\nT HRL|节流_Thr ottle__\r\nTHS T|推力_thrus t__\r\nTH ST BE AR|推力轴承_th rust_beari ng__\r\nT HTTL|截止_th rottl e__\r\nTO|至_to__\r\nTOINDCT|仪(器)用_to_indic ator__\r\nTOP|顶_top__\r\nTOR OSC|扭振_tor siona l_osc illat ion__\r\nTPLR|翻车机_t ipple r__\r\nTR IP|跳闸_trip__\r\nTRM T|处理_treat ment__\r\nTURB|(汽)机_turb ine__\r\nTURB|汽机_tu rbine__\r\nTUR B SID E|机端_turbi ne_si de__\r\nT URN|盘车_tur ning__\r\nTURN|匝间_t urn__\r\nTURNROOM|转向室_t urnin g_roo m__\r\nTV S|复速级_two-veloc ity_s tage__\r\nUNGE AR|脱扣_Unge aring__\r\nUNI T|机组_unit__\r\nUP|上,上部_u p__\r\nUP P|上层_upper__\r\nUSE|用(使用)_Use__\r\nUSE R|用户_User__\r\nV|阀门_valv e__\r\nVA CM|真空_Vacu um__\r\nV ACM B RK V|真空破坏阀_vacu um_br eak_v alve__\r\nVACM P|真空泵_vac uum_p ump__\r\nVBRT|振动_vi brati on__\r\nV ENT|排空_Ven t__\r\nVE RT|立式_vert ical_type__\r\nVERT|竖直(方向)的_v ertic al__\r\nV ICE|副_vice__\r\nVOL T|电压_volta ge__\r\nV OLT L OOP|电压回路_v oltag e_loo p__\r\nWA LL|墙_Wall__\r\nWALL TEM|壁温_wa ll_te mpera ture__\r\nWASH|清洗_w ash__\r\nWCL|有煤_wit h_coa l__\r\nWH L DAY|全天_w hole_day__\r\nWHL P LNT|全厂_who le_pl ant__\r\nWINDB OX|风箱_Wind box__\r\nWND|绕组_win ding__\r\nWNUT|磨损_w orn_o ut__\r\nW ORK|工作_wor king__\r\nWORK SHOP|厂房_Wo rksho p__\r\nWT R|水_w ater__\r\nWTRBOX|水箱_wat er_bo x__\r\nWT R CLC T|集水箱_wate r_col lecto r__\r\nWT R CUR TAIN|水幕_wa ter_c urtai n__\r\nWT R CUT|断水_c ut_of f_the_wate r_sup ply__\r\nWTR L VL|水位_wate r_lev el__\r\nW TR P|水泵_Wa ter_p ump__\r\nWTR S EAL|水封_Wat er_se al__\r\nW TR SP L|上水_water-supp ly__\r\nW TR TR MT|水处理_wat er_tr eatme nt__\r\nW TR WA LL|水冷壁_wat er_wa ll__\r\nX FMR|变压器_tr ansfo rmer__\r\nXPRT|输送_t ransp ort__\r\n02-DL-MU|#2机220V直流系统→#2机220V直流动力母线电压→\r\n02-KZ-MU|#2机220V直流系统→#2机220V直流控制母线电压→\r\nS E1-2F-A1|#2发-变组系统→#2发电机定子电流 A→#2 GE N STA T CRR T A\r\n SE1-2F-A2|#2发-变组系统→#2发电机定子电流B→#2 GEN STAT CRRT B\r\n SE1-2F-A3|#2发-变组系统→#2发电机定子电流C→#2 GENSTATCRRTC\r\n SE1-2F-A4|#2发-变组系统→#2发电机负序电流→#2 GE N N-SEQ C RRT\r\nSE1-2F-V1|#2发-变组系统→#2发电机定子三相电压AB→#2 GENSTATT-PHVOLTAB\r\nSE1-2F-V2|#2发-变组系统→#2发电机定子三相电压 BC→#2 G EN ST AT T-PHVO LT BC\r\nSE1-2F-V3|#2发-变组系统→#2发电机定子三相电压CA→#2 GEN STAT T-PH VOLT CA\r\nSE1-2F-V5|#2发-变组系统→#2发电机定子绝缘电压A相→#2 G EN ST AT IS LNVO LT A-PH\r\nSE1-2F-V6|#2发-变组系统→#2发电机定子绝缘电压B相→#2 GE N STA T ISL N VOL T B-P H\r\nSE1-2F-V7|#2发-变组系统→#2发电机定子绝缘电压C相→#2 GEN STAT ISLN VOLT C-PH\r\nSE1-2F-H1|#2发-变组系统→#2发电机频率→#2GEN F REQ\r\nSE1-2F-H2|#2发-变组系统→220KV南母频率→220KV S YS F REQ\r\nSE1-2F-H3|#2发-变组系统→220KV北母频率→220KV S YS F REQ\r\nSE1-2F-W|#2发-变组系统→#2发电机有功功率→#2 G EN A-PW\r\nSE1-2F-V a|#2发-变组系统→#2发电机无功功率→#2 G EN R-PW \r\nSE1-2F-COS|#2发-变组系统→#2发电机功率因数(DC S计算实现)→#2GEN P W COS\r\nSE1-2FB-V1|#2发-变组系统→220 k V南母母线电压→220KVS-BUS VOLT\r\nSE1-2FB-V2|#2发-变组系统→220 k V 北母母线电压→220KV N-BU S VOL T\r\nSE1-2EX-1ZA|#2发-变组系统→#2发电机#1整流柜输出直流电流→#2 RCT F CAB OUTP DC C RRT\r\nSE1-2EX-2ZA|#2发-变组系统→#2发电机#2整流柜输出直流电流→#2 R CTF C AB OU TP DC CRRT\r\nSE1-2EX-A1|#2发-变组系统→#2发电机转子电流→#2 GE N RTR CRRT\r\nSE1-2EX-A3|#2发-变组系统→#2发电机主励转子电压→#2GEN M AIN E XCTRRTR V OLT\r\nSE1-2EX-A5|#2发-变组系统→#2发电机主励转子电流→#2 GE N MAI N EXC TRRT R CRR T\r\nSE1-2EX-V1|#2发-变组系统→#2发电机转子电压→#2 G EN RT R VOL T\r\nSE1-2EX-V2 |#2发-变组系统→#2发电机付励定子电压→#2 GEN VICE EXCT RST AT VO LT\r\nSE1-2EX-V3|#2发-变组系统→#2发电机转子正对地电压→#2 GE N RTR P-V S-GND VOLT\r\nSE1-2EX-V4|#2发-变组系统→#2发电机转子负对地电压→#2 GENRTR N-VS-G ND VO LT\r\nSE1-2EX-V6|#2发-变组系统→#2发电机功角(电压电势夹角)→#2 MAIN EXCTSTAT VOLT\r\nSE7-2GB-W|#2高厂变系统→#2高厂变有功功率→#2 P-H-XFMRA-PW\r\nSE7-2GB-VA R|#2高厂变系统→#2高厂变无功功率→#2 P-H-XFM R R-P W\r\nSE7-2GB-A1|#2高厂变系统→#2高厂变高压侧电流→#2 P-H-XF MR H-VOLTCRRT\r\nSE7-2GB-A2|#2高厂变系统→613开关电流→613 SWTH CRRT\r\nSE7-2GB-A3|#2高厂变系统→614开关电流→614 SWTH CRRT\r\nSE7-B FA-A1|#2高厂变系统→603开关电流→603 SWTH CRRT\r\nSE7-B FB-A1|#2高厂变系统→604开关电流→604 SWTH CRRT\r\nSE7-2GB-V1|#2高厂变系统→6 kV 3段母线电压→6 KV #3 B US VO LT\r\nSE7-2GB-V2|#2高厂变系统→6 kV 4段母线电压→6KV #4 BUSVOLT\r\nS E7-2G B-V5|#2高厂变系统→6kV 3段绝缘电压AN→6 KV #3 ISL T VOL T AN\r\n S E7-2G B-V6|#2高厂变系统→6kV 3段绝缘电压BN→6KV #3 ISLT VOLT BN\r\n SE7-2GB-V7|#2高厂变系统→6 k V 3 段绝缘电压CN→6KV #3 ISLT VOLT CN\r\n SE7-2GB-V8|#2高厂变系统→6 k V 4 段绝缘电压AN→6KV #4 ISLT VOLT AN \r\n S E7-2G B-V9|#2高厂变系统→6kV 4段绝缘电压BN→6KV #4 ISLT VOLT BN \r\n S E7-2G B-V10|#2高厂变系统→6 kV 4段绝缘电压 CN→6 KV#4 IS LT VO LT CN \r\n SE8-3DB-V|#2机低压厂用电系统→380V3段母线电压→380V #3 BUSVOLT\r\nS E8-4D B-V|#2机低压厂用电系统→380V4段母线电压→380V #4 B US VO LT\r\n SE8-3DB-A|#2机低压厂用电系统→#3低厂变高压侧电流→#3 P-L-XFMR H-VO LT S IDE C RRT\r\nSE8-4DB-A|#2机低压厂用电系统→#4低厂变高压侧电流→#4 P-L-XFM R H-V OLT S IDE C RRT\r\nSG Y-1CH-A|#2机公用及备用系统→1除灰甲开关电流→\r\nSG Y-2CH-A|#2机公用及备用系统→2除灰甲开关电流→\r\nSE4-ZMB-A|#2机公用及备用系统→照明检修变高压侧电流→M-L-X HIGH VOLT SIDE CRRT\r\nSE4-Z MB-V|#2机公用及备用系统→照明检修段母线电压→M-L-X BUS VOLT\r\nSE5-02B-A|#2机公用及备用系统→#2低备变高压侧电流→#2 LVSX H-V SIDE CRRT\r\nSE5-02B-V|#2机公用及备用系统→380V备2段母线电压→380V ST BY #2 BUSVOLT\r\nS E1-2F B-R1|#2发-变组系统→#2主变油温1→#2 MAIN XFMR OILTEM 1\r\nSE7-2GB-R1|#2高厂变系统→#2高厂变温度→#2P-H-X FMR T EM\r\nSE8-3DB-R1|#2机低压厂用电系统→#3低厂变温度→#3P-L-X FMR T EM\r\nSE1-2FB-R2|#2发-变组系统→#2主变油温2→#2 MA IN XF MR OI L TEM 2\r\nSE8-4DB-R1|#2机低压厂用电系统→#4低厂变温度→#4P-L-X FMR T EM\r\nSE4-ZMB-R1|#2机公用及备用系统→照明检修变温度→M-L-X TE M\r\nSE5-02B-R1|#2机公用及备用系统→#2低备变温度→#2 L VSX T EM\r\nSE1-2GLB-F1|#2发-变组系统→#2发变组故障录波器装置故障→#2GXU F AUILRECOR D EQP FAIL\r\nSE1-2GLB-F2|#2发-变组系统→#2发变组故障录波器动作→#2GXUFAUILRECO RD AC T\r\nSE1-2GLB-F3|#2发-变组系统→#2发变组故障录波器电源消失→#2G XUFA UIL R ECORD PW D ISPPR\r\nE14-172-EL CERR|#2发-变组系统→Y222开关跳闸→Y222 SW TH TR IP\r\nE14-036-ELCER R|#2发-变组系统→#2发电机灭磁开关跳闸→#2GEN M K SWY H TRI P\r\n。
流量计计算书-中文对照表-1
常规数据
用户名称 项目 合同编号 订单编号 计算日期 合同型号 位号
产品说明
结构形式 节流件类型 节流件材质 管道规格 过程连接 取压类型 取压口方向 管道尺寸 壁厚等级 管道材质
参数
介质类型 介质名称 管道内径 流体压力 流体温度 粘度 等熵指数 压缩系数 操作状态下密度 流量 最小量 常用量 最大量 刻度量 kg/hr kg/hr kg/hr kg/hr
管道雷诺数 气体膨胀系数 预计压力损失 常用量 最大量 Velocity at Max Flow:
kPa kPa m/sec
修正后管道内径ຫໍສະໝຸດ 节流件厚度 修正后开孔尺寸
kg/hr MPa-g MPa-g
Inch
mm
结论
一次元件最小流量限制 最大允许压力/温度 操作温度/压力 最小建议管道雷诺数 166.00 C 建议最小差压值 166.000 C 最高允许温度
(Calculation Performed at Normal Conditions.) mm kPa kPa kPa kPa
mm MPa-g C cP
基准压力 基准温度
基准密度 大气压 kg/m3
kPa-a
计算结果
开孔尺寸 最小量差压值 常用量差压值 最大量差压值 可度量差压值 Beta 流出系数
kPa C
告警
The line size selected is outside the range specified in the ISO 5167-2 2003 standard selected.
注意事项
Printed On:
12-Jul-15
A+K选型计算书中英文对照
A+K选型计算书中英文对照A+ FlowTek Program Suite Ver. #2.0.2Friday, July 11, 2008 3:55:41 PM______________节流装置:平衡流量计- 流体计算设计Flow Element: Balanced Flow Meter - Liq Mass Flow, Sizing and Design ______________工程师Engineer:项目名称Project Name:仪表位号Tag No.:项目编号Project Number:仪表型号Model:介质名称: Fluid:______________管道规格说明Pipe Specifications:(User Spec:)管道内径Pipe ID =管道直径Diameter =管道壁厚Schedule =管道粗糙度Pipe Roughness =管道材质Material =______________平衡流量计规格Balanced Flow Meter Specifications:取压口海拔高度变化(一般情况下,该值取0)Tap Elevation Change = 0 ftß值Beta Ratio =校准系数Calibration Factor =节流件厚度Plate Thickness = 3/8 Inch平衡流量计类型=与雷诺数相匹配Balanced Flow Meter Type = Reynolds Number Matching (NRe)第一层孔的个数1st Ring Number of Holes =第二层孔的个数2nd Ring Number of Holes =孔的设计=直角切孔Hole Design = Square cut holes.适合位置=直管段>5 Fitting Location = Upstream fitting L/D > 5.加工类型=无脏物类型Process Type = Non-fouling service.孔的设计=孔的标准设计Hole Clearance Design = Hole layout based on standard design.______________流体过程数据Process Data at Flowing Conditions:刻度流量Mass Flow =温度Temperature =压力Pressure =密度Density =动力粘度Viscosity =蒸发压力Vapor Pressure =注意:流体状态计算包括管道/节流原件的热膨胀效应Note: Pipe/Flow-Element thermal expansion effects at flowing conditions included in sizing and fabrication specifications.______________平衡流量计基本设计数据Balanced Flow Meter Flow Element Design Basis:刻度差压Tap Pressure Drop =刻度差压Flow Pressure Drop =海拔高度对应的大气压相对变化Elevation Pressure Change =永久压力损失Permanent Pressure Loss =压力恢复Pressure Recovery =流出系数Total Cd =雷诺数Reynolds No. =。
管道输量计算(中英对照)
ACCURATE CALCULATION OF PIPELINE TRANSPORT CAPACITYLeif Idar Langelandsvik 1, Willy Postvoll1, Britt Aarhus1, Kristin Kinn Kaste11. Gassco ASKeywords: 1. natural gas; 2. pipeline capacity; 3. friction; 4. ambient temperature, 5. operational data1 AbstractGassco is the operator of the largest sub-sea transportation system for natural gas in the world. This implies selling transport capacity to shippers of natural gas. Once a pipeline is built, the physical capacity is determined by boundary conditions such as available inlet and outlet pressure. In order to achieve optimal utilization of the pipelines and hence optimal return of invested capital, it is of great importance to calculate this capacity as accurately as possible. Failing to meet booked capacities will result in penalties and poorer reputation while under estimation of the capacity can possibly trigger too early investments in new infrastructure. Both situations are strongly unwanted. Gassco has therefore developed a well proven methodology for transport capacity calculation, which will be elaborated in this paper.Over the last years Gassco has improved the former approach of capacity calculation, namely a capacity test. This improvement has involved further development of the models, particularly by means of heat transfer, which now makes the models more accurate than before and even better suited to calculate transport capacity. Incorporation of real-time modelled sea-bottom temperatures from the UK Meteorological Shelf-seas model provides the models with the best available now-casts and two-day-forecasts of the sea- bottom temperature across most of the North Sea. Better estimates of actual sea-bottom temperatures on certain days in the past combined with short-term forecasts updated every day reduce margins and utilize day-to-day variations in capacity induced by the ambient temperature. Eventually instead of using one single capacity-test point, Gassco has now extended this methodology to make use of steady-state operational data periods in the past, which one-by-one is treated like a capacity test. The results are then averaged to reduce the random error uncertainty in the estimate.Basically these measures have increased the accuracy of the transport capacity calculations. It is however also seen that the result is increased transport capacity which can be sold to the shippers. Altogether the methodology outlined in this paper probably represents the best practice in gas industry with respect to transport capacity calculation. The benefit is increased capacity and consequently flexibility for the shippers, increased income for the infrastructure owners and reduced unit tariff for the shippers.2 Introduction/BackgroundNatural gas plays an important role in the energy supply of Europe and the world. Natural gas accounts for almost a quarter of worl d’s energy consumption. According to energy statistics f rom , total world production in 2008 was 3,065 billion cubic meters, i.e. 3.1·1012 MSm3, of which Norway contributed 3.2% (99.2 billion Sm3). Natural gas is mainly transported in pipelines, either onshore or offshore.The Norwegian gas transportation system is illustrated in Figure 1 and consists of 7,800 km of pipelines, processing plants, riser platforms and receiving terminals, yielding a very complex network which is the largest offshore transportation system in the world. United Kingdom and continental Europe are supplied through seven large diameter subsea pipelines covering around 15% of the European natural gas consumption. The export pipelines are between 500 and 800 km long with a typical inner diameter of 1 m. Security of supply for the customers requires reliable and optimal operation of the transport system.Figure 1 Overview of the trans portation system operated by Gassco.After a reorganization of the infrastructure on the Norwegian Continental Shelf in 2001, the state- owned company Gassco was appointed the operator of the transportation system. The ownership of the infrastructure is organized in a joint-venture, Gassled, where the different companies’ interest is determined based on their historical investments. Gassco is thus responsible for redelivering the requested amount ofgas at the different exit points. The shippers have a certain capacity right, a booked capacity, at each exit point. They can then nominate up to this amount of gas at each exit point, as long as they make the same amount of gas available at an entry point. The shipper may be a producer of gas, or it may have purchased the gas upstream the entry point. The capacity is sold as non-interruptable.Transportation capacity is made available for shippers in dedicated booking rounds, where capacity can be booked on long-term, medium-term or short-term. This will be elaborated later. The unit price of capacity is fixed and regulated by Norwegian government. All the capacity is sold at nearly all exit points, even though it is only fully exploited perhaps a few weeks during a year.High accuracy in the pipeline transport capacity calculations is of crucial importance in order to ensure optimal utilization of invested capital in the pipeline infrastructure. One wants the calculations to be as close to, but not larger than, the true capacity as possible. This will ensure optimal utilization of invested capital. As soon as a pipeline is built, the true capacity is determined by the diameter, length, available inlet compression, minimum delivery pressure and other physical parameters. In Gassco it is the job of scientists to estimate this figure exactly before the commercial department sells the capacity to the shippers. This paper explains the elaborate process used by Gassco to calculate an exact hydraulic capacity. A process that leads to a very accurate hydraulic capacity, and which has been used with great success.The Gassco operated pipelines are often single-leg with one supply point and one delivery point. Since the pipelines are sub-sea, instrumentation is also only found at the inlet and outlet. The methodology is therefore most elaborate for this kind of pipeline. Nonetheless, it also covers pipelines with branches.a. Capacity DefinitionsGassco uses several definitions for pipeline transport capacity. The hydraulic capacity is the calculated maximum physical throughput using maximum inlet pressure and minimum outlet pressure. Available Technical Capacity accounts for limitations in system boundary conditions, eg. caused by limited inlet pressure due to dependency with other pipelines. A fuel factor is also deducted to account for metering errors and fuel gas consumption in either compressors or heating stations. The committable capacity is the capacity that is available for stable deliveries. An operational flexibility (opflex) of 1 or 2 % is usually deducted from the available technical capacity to ensure that small operational disturbances do not lead to loss of delivered gas. Gassco has the mandate to hold back capacity for certain periods. When this hold back is deducted, the bookable capacity is obtained. This is the capacity that is offered to the shippers.b. Pipeline SimulatorsThe transport capacity of Gassco operated pipelines is calculated by using computer simulation models. A detailed model of the pipeline is implemented in a commercially available simulation software. The methodology described in this paper is independent of the chosen software, and should work equally well with most available pipeline simulation software packages. Great care is taken to ensure that all pipeline parameters such as pipeline length, diameter, thickness of different wall layers, elevation profile and burial depth on the sea bed are correct. After the pipeline is installed, the design data is combined with survey data to obtain the best possible data.The simulation software uses the Benedict-Webb-Ruben-Starling (BWRS) equation of state. Great effort has been put into tuning the coefficients to ensure it predicts the density of typical North Sea gases well. The predictive power of the viscosity correlation Lee-Gonzalez-Eakin (LGE) has also been analyzed. The correlation has a simple structure which makes it attractive for use in real-time systems. And it has also proved to predict viscosity for natural gas mixtures well. Gassco has initiated a measurement series of viscosity, and has also proposed a new set of coefficients for the LGE-correlation based on these measurements.The heat transfer model is important in order to simulate the gas temperature correctly. This will be discussed later in the paper.All pipeline simulators use a friction factor correlation which takes wall roughness as input, and calculates the friction factor which gives the wall friction in the model. One of the main uncertainties when modelling pipeline flow, is which roughness factor to use and how the friction shall be calculated based on it. This is also discussed below.c. InstrumentationIn order to achieve the desired accuracy of the transport capacity calculations, Gassco has put a lot of effort into the instrumentation of the pipelines. All pipelines are equipped with state-of-the-art flow meters and pressure transmitters at all supply and delivery points. The pressure transmitters usually have an absolute uncertainty of 52 mBar within a range of 0-200 barg or 0-400 barg depending on the application. The flow meters are either qualified as fiscal or have a similar uncertainty. Usually they are ultrasound⎧ metering stations with an uncertainty of 0.5-0.8 %. Both pressure transmitters and flow meters are calibrated sufficiently often to maintain this uncertainty level over time.Temperature transmitters and gas chromatographs are not that important for the capacitycalculations, but the quality is still very good. The temperature elements are mounted in the gas and close to the real gas flow, and yet keeping the pipelines pigable without damaging the elements. Skin temperature meters are not used as boundary conditions for the models.3Capacity Calculation MethodologyWhen a new pipeline is planned, it is designed to meet a transport capacity need. This means thatafter finding the optimal route from the supply point to the delivery point and the length of this route, the diameter is chosen such that the requested capacity is obtained. This is performed using a pipeline simulator with all design data as input, a slightly conservative ambient temperature estimate and the standard Colebrook-White friction factor correlation with design roughness of 5 micron. Flow coated inner walls is assumed. Originally Gassco, and the previous operators of the transportation system, used 10 micron as the design roughness. Studies however revealed that 5 micron is closer to the true value, and still on the conservative side. The design capacity is used in the first booking rounds for a new pipeline.After the pipeline has commenced operation a capacity test is performed to find the hydraulicroughness in a real test of the pipeline, which is elaborated below.Over the last years the capacity calculation methodology employed by Gassco has been improved inseveral ways. The two major improvements are use of historical operational data periods to improve the accuracy even more and the use of up-to-date ambient sea bottom temperatures from a real time model run by the UK Meteorological Office. These improvements are described below.First of all in this section, some introductory information about wall friction and pressure drop inpipelines is given.a. Friction factor and roughnessThe set of equations describing flow of natural gas in a pipeline can be used to show that the mainresistance to flow in a pipeline is friction against the wall. Almost all the pressure drop is therefore used to overcome frictional forces. Getting the frictional forces correct is hence very important in getting the pressure drop versus flow rate and transport capacity correct.For decades the Colebrook-White correlation (see Colebrook (1939)) has been widely acceptedmore or less as an industry standard in calculating the friction factor (f ) based on roughness (µ, often denoted hydraulic roughness), Reynolds number (Re , turbulence intensity) and inner diameter (D ). Moody plotted the correlation in a semi-logarithmic diagram, known as Moody-diagram, which made it easily accessible without much computation (see Figure 4).1= 2 log 2.51 +Eq. 1f Re f 3.7DExperiments have however shown that different surfaces give different friction factor characteristics.This is particularly valid for the transition region, where the flow changes from smooth turbulent to fully rough turbulent. None has succeeded in explaining why the different surfaces give exactly the friction factor characteristics they give, or predicting friction factor based on measurements of the physical wall surface.Even if accepting the Colebrook-White correlation as the valid one, it remains to find the hydraulicroughness (µ). This can differ significantly from the physically measured wall roughness. Research has proposed to set hydraulic roughness equal 1.5-5 times the measured wall roughness (see e.g. Langelandsvik et al. (2008) and Shockling et al. (2006)). The physical roughness height in commercial steel pipes is very low. Gassco has measured it to be in the range of 2 to 5 micron. When scanned by a human finger most observers would characterize this as perfectly smooth. However, at high enough Reynolds numbers, the laminar sublayer next to the wall diminishes making the roughness elements protrude through this layer and into the turbulence and adding resistance, which is what defines the transition region.The uncertainty associated with a priori calculation of wall friction and pressure drop in a pipelinemakes it necessary to have the friction or roughness tuned in a full-scale test in either way. The methods employed by Gassco are described below.b. Capacity TestWhen the pipeline is installed more accurate as-laid data with respect to length, wall layerthicknesses and burial depths are available and these data are used to update the computer simulator. Shortly after start-up a so-called capacity test is performed. Particular care is taken by all supply and delivery points to operate the pipeline very steady for a period of 1-5 days. The best period of approximately 12 hoursduration is chosen as the official test period, and assumed to represent a steady-state condition in the pipeline.Single-legFor a single-leg pipeline the hydraulic roughness µis mainly a function of the following parameters⎧=f (P in , P out , Q,T in ,T ambient , C ) Eq. 2 where P denotes the pressure, Q is the standard volumetric flow rate, T is the temperature and C is the gas composition.The averaged boundary pressures from the test period are used as boundary conditions in a steady- state simulation. The hydraulic roughness can be determined through iterative model simulations where the roughness is adjusted until the simulated flow rate equals the weighted average of the measured flow rates from the test period. The resulting hydraulic roughness is then said to be this pipeline’s hydraulic roughness. The procedure is illustrated in the figure below.Figure 2 Illustration of capacity test methodology.The other parameter that can be used to check if the model is a good representation of the physical pipeline is the simulated outlet temperature versus the measured one. A deviation can have three different causes. First is obviously the ambient temperature used in the model. If this deviates from the actual temperature at the time of the test, it will usually result in a different modeled temperature. Second are the pipeline parameters like wall data and burial depth. The modeled heat transfer and subsequently the temperature will be affected if these parameters are incorrect in the model. Last come the equations in the simulator software. If they fail to model the heat transfer between the surroundings and the gas, the joule- thompson cooling or the frictional heating effect correctly, the temperature will be affected. And an inaccurate simulated gas temperature along (parts) of the pipeline will affect the calculated hydraulic roughness. Care must therefore be taken to reduce the possible deviation between simulated and measured outlet temperature. Gassco has checked the equations in the simulator, so focus is on the two first causes when we see a temperature deviation in a capacity test.The capacity test is often performed at flow rates significantly lower than the maximum capacity, due to limited amount of gas available early in a pipeline’s lifetime. The simulator is hence used to calculate the hydraulic capacity by using maximum inlet pressure and minimum outlet pressure. This implies extrapolatingthe friction factor along the specific Colebrook-White line for this roughness in the Moody diagram to find the friction factor at maximum capacity. It hence relies on the accuracy of the Colebrook-White correlation, and will be further described in a later section.Network with several supply and delivery pointsThe method for estimating the effective roughness for a pipeline network is more complicated than for a single pipeline. Figure 3 shows a schematic example of a pipeline network which consists of a main pipeline and three branches. The tie-in points are denoted A, B and C. A compressor, K, is also represented. The main pipeline and the branches may have different physical properties like diameter, physical roughness etc.Inlet 2Inlet 3COutlet 1 Inlet 1 KA BOutlet2Figure 3 Example of a pipeline network.As shown in Figure, the network can be considered as a connection of the following single-leg pipelines:Table 1: Network elements in the example network of Figure 3.If measurements are available at the tie-in points A and B as well as upstream and downstream the compressor, an effective roughness can be determined for each “si ngle-l eg”that constitutes the network. The methodology is then similar to the one described above.When there are no pressure instruments at the tie-in points, the single-leg tuning approach is impossible. The following parameters are then necessary in order to determine the effective roughness in the different parts of the network:Pressure at the network inlets: P in,i , where i = inlet numbe r 1,2,…,n inPressure at the outlets: P out,j where j = outlet numbe r 1,2,…,n outFlow rate at the inlets: Q in,iFlow rate at the outlets: Q out,jTemperature at the inlets: T in,iAmbient temperature along the pipeline: T ambient(x,y) Composition at the inlets: C in,iIn other words,⎧=f (Qin ,i , Qout , j, Pin ,i, Pout , j, Tin ,i, Tambient, Cin ,i)Eq. 3The boundary conditions that are recommended to use in the model simulations when the effective roughness is adjusted are shown in Table 2.Table 2: Boundary conditions to use in the simulations.To achieve a steady state solution, the model needs either pressure or flow at each inlet and outlet, where the pressure has to be provided for at least one inlet/outlet. The other pressure and f low measurements are redundant. The boundary conditions selected in Table 2 represent what is usually chosen in a capacity study. Other boundary conditions would have worked equally well. Each redundant measurement can be used to tune one parameter, usually one effective roughness.To match the test data measurements from the capacity test, it is necessary to perform iterative simulations to find the matching simulation parameters shown in Table 3.Table 3: Simulation output parameters.The flow at the last outlet is determined by the flow at the other inlets and outlets, keeping in mind that at steady-state the total inlet flow must equal the total outlet flow.Lack of knowledge on the real system (burial depth, ambient temperature, material etc.) might result in poor outlet temperature predictions. Nevertheless, the simulated outlet temperature must be checked against specified pipeline temperatures to ensure that the simulated gas transport scenarios give acceptable results.For pipelines without compressors, the effective roughness of the leg considered to be the main pipeline in the network is found when the simulated and measured pressures at the main pipeline inlet are the same. This leg should be tuned before starting with the branches. In Figure 3, the main pipeline will be the pipeline running from Inlet 1 to Outlet 1.When the effective roughness is determined for the main pipeline, the simulation also gives the pressures at the tie-in points. Possible deviations between the simulated and the real tie-in point pressures (which are not measured) will obviously not be detected.To match the test data measurements at the other branches, it is necessary to perform iterative simulations for each branch to match the simulated and measured inlet pressures.Two methods of matching the pressure measurements at the branches are given in prioritized order here:1. Tune separate effective roughness for each branch connected to the main pipeline.2. Use a chosen effective roughness for each branch and tune a flow resistance element at theend of each branch. The modelled resistance coefficient must be tuned to match the desiredpressure drop.For both alternatives an iteration process is necessary to match the measurements. In case of relatively short branches with low flow rates, the adoption of the second approach may become necessary since very large changes in roughness are needed to achieve the desired flow resistance in the branch pipeline at low flow rates.Often the most important aim of a capacity test is to estimate the roughness of the main pipeline, and subsequently find the capacity of the main pipeline, i.e., the output capacity.Steady-state flow weighingIn a steady-state simulation, the sum of flow into the network needs to equal the sum of the flow out of the network. This is not necessarily the case for the real pipeline during the capacity test, either due to small remaining transients or due to metering errors. The flow rate that shall be obtained in the steady-state simulation is calculated by weighing the different metered flow rates. For a single-leg pipeline this means flow rate is calculated by:Qmean =w ⊕Qin+ (1 w) ⊕QoutEq. 4where the weight w is calculated based on the flow m eters’ uncertainties to minimize the uncertainty in Q m ean. It can be shown that this is obtained by selecting:u 2 w =outu 2 +u 2Eq. 5in outwhere u denotes the uncertainty.For a pipeline network with several supply points and/or several delivery points the calculation is similar, though a bit more complex.c. Operational DataThe two major drawbacks with the capacity test approach described above are that it relies on one testing point and that it often is performed at a low flow rate and therefore relies on extrapolation of the friction factor along a Colebrook-White curve. The approach described here adds useful knowledge about the pipeline and its capacity in addition to that obtained from a capacity test.Uncertainty analysis quantifies the capacity calculation uncertainty from a capacity test. This uncertainty comprises both systematic error and random error. The categorization of systematic and random error is often difficult, and one usually only obtain a vague idea of their relative contribution to the total uncertainty figure. It is well known that the random error can be minimized and eventually be made neglible if more testing points are averaged to find a pipeline’s hydraulic roughness. Gassco’s capacity calculation methodology has therefore been extended to average a set of steady-state period data points to calculate the hydraulic roughness. And instead of organizing an elaborate capacity test to obtain every single data point, a data base of historical operational data for the pipeline is used. This data base contains logged data from all pressure and temperature transmitters, gas chromatographs, flow meters and other instruments connected to the pipeline. All data are usually logged with intervals of approximately 1 minute. This data base is searched to find good steady-state operational periods which have occurred arbitrarily in the daily operation of the pipeline. A certain set of criteria has been developed for the periods to qualify as a steady- state period. Each of these periods is then treated exactly like a capacity test period, and have a roughness tuned.The Colebrook-White friction factor correlation has been accepted as an industry standard for decades, even though many research groups have proved it to be wrong in their specific tests. The reason it is still well accepted is that none has succeeded in explaining why the Colebrook-White correlation fit or does not fit to their experiments and how different wall surface structures lead to different transition regions (see e.g. results from American Gas Association in the 1960s in Uhl et al. (1965) and more recent experiments in Superpipe at Princeton University by Shockling et al. (2006)). The uncertainty associated with extrapolating along a Colebrook-White curve can be almost entirely removed by selecting steady-state periods with high flow rates. Therefore only steady-state periods with a flow rate of more than approximately 80% of the pipeline’s expected capacity are used when averaging the hydraulic roughness. Most of the Gassco operated pipelines are in the early phase of the transition region from smooth turbulent flow to fully rough turbulent flow, where Colebrook-White is mostly questioned. Evaluating only steady-state periods with high flow rates makes this uncertainty neglible.Figure 4 shows steady-state periods that have been collected and simulated for one specific export pipeline, denoted pipeline A. We see that all the data points have a roughness in the range of 1.5 to 3.0 micron. The average roughness of the data points with highest Reynolds number seems to be approximately 2.2 micron. Imagine the encircled data point which have a roughness close to 3 micron was a capacity-test data point. Extrapolating along the corresponding Colebrook-White curve would have yielded a too large friction factor (marked with red unfilled circle) at maximum capacity and thus predicting a too low capacity. The red filled circle illustrates the recommended friction factor based on averaging steady-state operational data periods. Vice verca would a low capacity test result over predict capacity and result in over booking.This illustrates the reduced uncertainty that is gained by averaging a set of high-flow data points, even though this example shows data points that do not deviate a lot from the Colebrook-White trends.One can also obtain an experimental friction factor curve for the pipeline in question by fitting a line to the plotted friction factors from the steady-state periods. For a limited range of Reynolds number, e.g. between 10 and 40·106, which is the operating range for pipeline A and most others Gassco operated pipelines, it is usually sufficient to use a straight line. Regression analysis can be used to find the line. For pipeline A such a line would be quite parallel to the Colebrook-White lines. If the steady-state periods do not cover flow rates close to the maximum flow rate, even extrapolation along a fitted pipeline specific friction factor curve would imply uncertainty, since one cannot predict the behaviour of the friction factor for larger flow rates.The physical roughness for pipeline 1 has not been measured. But based on measurements on other pipelines which have been manufactured according to the same specifications, it is believed that the root mean square roughness is around 2-3 micron. This is about the same value as the hydraulic roughness estimated to be 2.2 micron in this case. This unexpected low hydraulic roughness may indicate that the friction factor characteristics will deviate from the Colebrook-White lines for larger Reynolds numbers. This is discussed in more detail in Langelandsvik (2008).Figure 4 Moody-diagram where the lines are given by the Colebrook-white correlation for different relative roughnesses. Data points from simulation of steady-state periods for the export pipeline A.In a capacity test, the instruments are usually calibrated beforehand, and special effort is taken by the field and plant operators to ensure steady-state conditions in the pipeline during the test. In operational steady-state periods none of these keys to success are present. But despite this, the benefits of the new approach more than outweigh these drawbacks.The increased accuracy and reduced margins have lead to an increase in calculated transport capacity of in total 4.6 MSm3/d for five export pipelines. It should be noted that one pipeline contributes 2.7 MSm3/d to this number. The basis for this pipeline’s capacity was design capacity and not capacity test capacity as for the other pipelines, ie. the capacity was even more conservative before the application of the described methodology.Requirements for steady-state periodsIt is important that the operational period is a good steady-state representation of the pipeline for the given flow rate. The steady-state periods are therefore found in a two-step procedure. The database that contains the operational data provides a powerful search tool, which can suggest a set of steady-stateperiods based on criteria set by the user. But every single period is also checked visually by Gassco’s。
A+K流量计算书中英文对照
A+ FlowTek Program Suite Ver. #2.0.2 Friday, August 22, 2008 17:17:01 ______________ Flow Element: Balanced Flow Meter - Liq Mass Flow, Sizing and Design ______________ Engineer: PBX Project Name: Tag No.:FE12102,12103 Project Number: Model:AKPPD001C28MBMBN Fluid:WATER ______________ Pipe Specifications:(User Spec:) Pipe ID = 0.8661 Inch Diameter = 1'' Schedule = N/A Pipe Roughness = 0.00015 Steel (ft) Material = 304 ______________ Balanced Flow Meter Specifications: Tap Elevation Change = 0 ft Beta(ß ) Ratio = 0.7 (BETA RATIO) ______________ Process Data at Flowing Conditions: Mass Flow= 4000 kg/hr Standard Gas Volume Flow = Temperature = 253.8 ° C Pressure = 4.15 (MPa)g Compressibility = 1.000142 Molecular Weight = 11.648 (Cp/Cv Ratio = 1.361493 Density = 793.4959 kg/m³ Viscosity = 0.1041524 centipoise Vapor Pressure = 614.8591 psia Note: Pipe/Flow-Element thermal expansion effects at flowing conditions included in sizing and fabrication specifications. Balanced Flow Meter Flow Element Design Basis: Tap Pressure Drop = 24.21582 kPa Flow Pressure Drop = 24.21582 kPa Elevation Pressure Change = 0 kPa Permanent Pressure Loss = 5.970988 kPa Pressure Recovery = 75.34261 % Total Cd = 0.8385 Reynolds No. = 617384.1 Compressibility Molecular Weight Cp/Cv Ratio) @ 32 癋 and 1 ATM
节流装置计算书(中英)
最小雷诺数Min.Reynolds:137473
计算误差 calculation error:E:0.000001%
流量不确定度Uncertainty e=±0.72%
流量系数 flow coefficientα:0.628847
前直管段straight pipe before :L1:2.10m 后直管段straight pipe after L2:0.50m
管道材质Pipe Material: 线膨胀系数/ Coefficient of linear expansion:***mm/mm℃
节流件材质Element Material: 线膨胀系数/Coefficient of linear expansion:***mm/mm℃
计算结果Results
刻度流量Scale flow:kg/h
最大流量/Max. flow:2156.00kg/h
常用流量/Normal flow:1320.00kg/h
最小流量/Min.flow:550.00kg/h
工作表压WP(g):0.93600MPa
工作温度WT:38.00℃
操作密度WD:11.2046kg/m3
地区大气压: 1000mbar
Local Atmosphere pressure
Baffle type at upstream of throttling element: Single 90° elbow, any two elbows in a plane(S>30D)
工 艺 条 件 Process Conditions
气体名称/Gas:
体积Volume %:
密度值状态Density State:工作状态 Under working state
Flowserve数据表翻译
1 Pipe Size, Up/Down 管道尺寸 入/出口 51 Act. Type /Matl 执行机构形式/材料 2 Pipe Sch, Up/Down 管道编号 入/出口52 Act. Size/Fab 型号 3 Allow Noise/Add Attn/Type 最大允许噪音 53 Stroke 行程 4 Process Fluid/Crit. Press. 介质/临界压力 54 Spring 弹簧 5 Design Press./Temp. 设计温度/压力 55 Air To 进气阀门趋向 6 Cond 1 Cond 2 Cond 3 Cond 4 56 Volume Tank 气罐 7 Temperature 操作温度 37.000 37.000 37.000 57 Tubing/Fittings 接管和管接头 材料/尺寸 8 Inlet Press 入口压力 0.400 0.400 0.400 58 Handwheel 手轮 9 Outlet Press 出口压力 0.300 0.300 0.300 59 10 Liq Flow Rate 液体流量 50.000 100.000 150.000 60 Actuator O-Rings 执行机构密封圈材料 11 Gas Flow Rate 气体流量 0 0 0 61 12 Viscosity 黏度 0.700 0.700 0.700 62 Model 定位器品牌 13 Vapor Press 蒸汽压力 6.258 6.258 6.258 63 Model # 型号 定位器详细型号 14 SG-MW 比重/分子量 0.983 0.983 0.983 64 Comm/Sig/Diag 通讯协议/信号 15 Max Shutoff / Shutoff Class 关闭压差 / 阀座密封等级 65 Material 定位器材料 16 Available Air Supply 供气压力 66 Conduit/Pneu Conn 电/气 接口 17 Fail Position/Valve Function 故障位置 / 阀门用途 67 Temperature 使用温度 18 Cond 1 Cond 2 Cond 3 Cond 4 68 Language/Indicator 语言 / 现场指示 19 Flow Coeff. 流量系数(C )57.507 116.233 177.529 69 Options/Feedback 可选项 / 阀位反馈 20 Est Stroke 行程 50.000 60.000 86.000 70 Internal switches 内置限位开关 21 Pressure Drop 压降 (k P a ) 100.000 100.000 100.000 71 Manifold/Pos Tag Double Acting / 22 Choke Drop 阻塞压降(k P a )434.845 41 5.133400.698 72 Gauges / Pos Mtg 压力表要求 23 Noise 计算噪音 <70 <70 <70 73 Model 24 Valve Vel 流速 (m/s) 1.714 3.428 5.142 74 25 Pipe Vel 管道里流速 (m/s) 75 26 Valve Model / Body Type 阀门型号 76 27 Size/Pressure Rating/Type 尺寸/压力等级 77 28 Trim # - Cv / Characteristic 额定Cv / 调节特性 78 29 / / 79 30 Flow Direction 流动方向 80 31 Body Matl / Bonnet Matl 阀体/阀盖 材料 81 32 End Conn/Sch/Face to Face 连接端形式/编号/面对面尺寸标准 82 Solenoid Model 电磁阀型号 33 Flange Finish 法兰表面加工精度 83 Position On De-en 失电阀门位置 34 Bonnet Type 阀盖形式 84 Electrical 电压 35 Trim Type / P/B Seal Matl. 内件形式 85 Mounting 与执行机构安装方式 36 Plug Matl / Facing 阀塞材料 86 37 Plug Stem Facing 阀杆表面硬化 87 38 Seat Ring Matl / Facing 阀座材料 88 Tag # 39 Soft Seat Material 软座材料 89 Air Filter/Mnting 过滤器 40 Retainer Matl/Sleeve Matl 支撑环材料 90 Filter-Reg/Mnting 过滤减压阀 41 Guides Upper/Lower 导向套材料 91 Flow Booster 流量放大器 42 Packing Matl / Style / Vac / Fire 填料形式/材料 92 Booster Config 放大器形式 43 Packing - Live-Loaded 动态填料 93 Quick Exhaust 快速排放阀 44 Bonnet Port / Body Drain 阀盖尺寸 94 SupTube/Jctn Box 接管/接线盒 45 Bellows Type / Material 波纹管形式/材料 95 Lockup 锁位阀 46 P/B Design 96 Plate ID 安装板 47 Body Bolting/Bonnet Flange Matl 螺栓材料 97 Plate Type 安装板形式 48 Gaskets 垫片材料 98 Packaging 包装 49 Gland Flange Material 密封管材料 99 Pwr. Sup. 50 Gland Flange Bolting 密封管螺栓 00 Wiring Conn. Type 电线连接方式 01 Certification / Approval Type 认证 01 Rad. Exm 02 Class or Gas Group No Cert Req 02 Drawings 图 03 Division or Zone 级别 03 Assem Hydro 水压测试 04 Group 组别 04 Seat Leak Test 阀座泄漏测试 05 Ingress / Temperature 防护/温度 05 PMI Test 06 Cert of Conf. 整体功能测试 07 Clean/Bld/Doc 表面处理/文件 08 CMTR 材料检验 09 Special Paint/Test 特殊喷漆 10 Diag Test/FM / Line #: RemarksDB rev: 121 : 2007-08-24 Quantity: 1Control Valve SpecificationPrepared By :Flowserve CorporationSpringville Utah12 3 Sheet 1 of 1 Customer : DB of sunny Project : Valve Tag # : PO # : Proj Num : Page # : 11 Quote # : Contract # : P&ID : Rev/By : 0.0/Alex Cui Alternate : Line : Application : Date / Ver : 12 3。
220kV电缆电缆载流量计算书
Sc=2500mm 2导体直径 dc=61.9mm tic=2.0mm 导体屏蔽直径 Dic=66.4mm ti=24mm Di=114.4mm tiu=1.0mm Du=116.4mm tih=5.0mm Dh=126.4mm til=2.8mm Dl=147.0mm te=5.0mm De=157mm运行系统:三相交流系统,双回路,金属护套单点接地或交叉互联敷设条件:直埋土壤,平行排管敷设导体运行最高工作温度 θc=90℃环境温度:土壤中 θh=26℃标准环境温度θ0=20℃直埋环境热阻系数 1.2Km/w2 导体交流电阻已知:20℃导体直流电阻 R0=0.0000073Ω/m导体温度系数α=0.00393电缆允许最高工作温度θc=90℃最高工作温度下导体直流电阻由下式给出: 各参数值代入,计算得:R'=9.308E-06Ω/m 2.2 集肤效应因数电源系统频率f=50HzKs=0.435Ω/m·HzXs 2=8·π·f·10-7·Ks/R'Xs 2=5.8726集肤效应因数Ys由下式给出:各参数值代入,计算得:Ys=0.15712.3 邻近效应因数Kp=0.37S=350mm(平行排管敷设电缆间距)Xs 2=8·π·f·10-7·Kp/R'Xp 2=4.995Ω/m邻近效应因数Yp由下式给出:对于三根单芯电缆,按平行排列方式:Yp=Yp=0.01122.4 交流电阻220kV电缆工程技术参数计算YJLW03 127/220kV 1×2000mm 2电缆载流量计算书1. 基本条件铝套直径1.2 电缆敷设方式、环境条件和运行状况1.1 电缆结构绝缘直径绝缘屏蔽厚度绝缘屏蔽直径标称截面 导体屏蔽厚度绝缘厚度 肤效应及邻近效应有关,各参数计算如下。
R'=R0[1+α(θc-θ0)]Ys=Xs 4/(192+0.8*Xs 4)缓冲层厚度缓冲层直径 电缆额定载流量计算,即GB/T 10181-20001.3 计算依据铝套厚度PE外护套厚度PE外护套直径 导体损耗主要涉及到导体的交流电阻。
工艺参数中英文对照
工艺参数中英文对照在工艺参数中,英文和中文之间的对照是非常重要的,特别是在国际合作和交流中。
以下是一些常见的工艺参数中英文对照:1. 温度 - Temperature摄氏度 - Celsius华氏度 - Fahrenheit2. 压力 - Pressure巴 - Pascal磅力/平方英寸 - Pound per square inch (PSI)3. 流量 - Flow rate立方米/小时 - Cubic meters per hour (m³/h)升/分钟 - Liters per minute (L/min)4. 时间 - Time秒 - Second (s)分钟 - Minute (min)小时 - Hour (hr)5. 浓度 - Concentration摩尔/升 - Mole per liter (mol/L)百分比 - Percentage (%)6. 粘度 - Viscosity帕斯卡秒 - Pascal second (Pa·s)斯托克 - Stokes (St)7. 强度 - Strength兆帕 - Megapascal (MPa)千磅/英寸2 - Kilopound per square inch (ksi)8. 相对湿度 - Relative humidity百分比 - Percentage (%)重量比 - Weight ratio9. 电导率 - Conductivity10. 清洁度 - Cleanliness微克/立方米 - Micrograms per cubic meter (µg/m³)颗粒/升 - Particles per liter (p/L)11. 电流 - Current安培 - Ampere (A)毫安 - Milliampere (mA)12. 功率 - Power瓦特 - Watt (W)千瓦 - Kilowatt (kW)13. 电压 - Voltage伏特 - Volt (V)千伏 - Kilovolt (kV)14. 频率 - Frequency赫兹 - Hertz (Hz)千赫兹 - Kilohertz (kHz)15. 质量 - Mass克 - Gram (g)千克 - Kilogram (kg)16. 声音 - Sound分贝 - Decibel (dB)毫帕斯卡 - Millipascal (mPa)17. 测量精度 - Measurement accuracy百分之 - Percentage (%)小数点后几位 - Decimal places这只是一些常见的工艺参数中英文对照,根据不同的行业和背景,可能还有其他的对照。
【测控专业英语】Flow Measurement流量测量技术
优点:受交流电磁场干扰小; 缺点:电解质液体易被极化。
一般只用于测量非电解质 液体,如液态金属等。
43
2.交流励磁
大都采用工频(50Hz)交流励磁; 优点:消除了电极表面的极化干扰; 缺点:电磁干扰大。 感应电动势:
E Bm Dv sin t
则体积流量与感应电动势成正比:
qv
DE
4 Bm sin t
Importance of fluid flow measurement
1、流量是四大工业过程控制量 (压力、温度、流量、液位)之一; 2、石油、天然气、化工原料等流 体的计量直接关系到国家利益;
3、自来水、灌溉、污水处理等关 系到国计民生。
6
大型化工企业中,流量是 控制工艺过程和保证产品 质量的关键因素。
v2 v1 p1
h1
p2
h2
1 v12 2 p1 v2 2 p2 gh1 p gh v c gh2 2 2 22 1
水平放置: h1 h2
1=2= 不可压缩液体:
v2 v p1 p2 p 2
2 2 1
16
v p1 v2 p2 2 2
1 设 Cd
则体积流量:
(流量系数)
qv A0v A0
f f g 0 0 g
2V f ( f 0 ) A f 0
2V f ( f 0 ) g A f 0
31
A0
R
r
R r h tan
A0 ( R r )
2 2
47
涡轮流量计的特点
1) 高精确度,基本误差可达±0.25%-±1.5%,在所 有流量计中,它属于最精确的。 2) 重复性好,短期重复性可达0.05%-0.2%; 3) 输出脉冲频率信号,无零点漂移,抗干扰能力强。 4) 测量范围度宽,中大口径可达40:1-10:1。 5) 结构紧凑轻巧,安装维护方便。 6) 适用高压测量,仪表表体上不必开孔,易制成高压 型仪表。 7) 难以长期保持校准特性,需要定期校验。
Acuflow流量计产品说明书(英文版)
EnglishRev.1.012/2020Operating ManualNorth American version (English)ACUFLOW™FLOW METERLOW™Description (3)Concept (3)Resources (3)Service Repair Kit (3)Models & Specifications (4)Valve Body Feature (4)Installation ....................................................................5Operation (8)Head Loss Data (8)Dimensions (11)Technical Data (14)Maintenance (15)Warranty ............................................................back coverTABLE OF CONTENTSThank you for purchasing the AcuFlow fl ow meter byH2fl ow Controls. If you would like to fi nd additional product resources, including tech tip sheets, brochures, videos, and materials in other languages, please visit our website at www.h2fl or scan the QR Code below.Service repair kits are available for all models:AF-SK for all 1.5”, 2”, and 2.5” models, comprising:• 1 x o-ring• 1 x spring• 1 x fl apper and indicator arm• 1 x pivot pinAF-SK-CAR for all 3”, 4”, 6”, and 8” models, comprising:• 1 x o-ring• 1 x spring• 1 x spring pulley pivot pin• 1 x spring pulley to fl apper pulley wireFor all other parts, please contact H2fl ow at 888-635-0296 (toll-free) or (+1) 419-841-7774 (International).RESOURCESSERVICE REPAIR KITDESCRIPTIONAbove: AF-25, AF-3, AF-4, AF-6 and AF-8AcuFlow™ is a revolutionary, patented solution for accurateand reliable fl ow and velocity rate measurement in fresh, grayand potable water applications. A variation of this product,named FlowVis®, is also available for swimming pool, spa,fountain, water feature and fl otation tank applications.Using a design that is based on ‘mass fl ow’ principles,AcuFlow™ provides many benefi ts that include:• Ease of installation with zero to minimal straight pipe• Installation fl exibility that allows orientation in any position,e.g., horizontal, vertical or even upside-down• Long life without sticking fl oats or paddle wheels• Combined Flow Meter and Check Valve for models AF-15,AF-2, and AF-25• User upgradeable to include Digital functionality (AF-Dand AF-D-PM)As fl ow increases, the fl apper moves forward towardits fully open position. The fl apper’s angular position isdirectly related to the fl ow rate through the valve body /tee / pipe. A calibrated scale on the valve’s lid provides ahighly accurate reading of the flow rate and velocity.Calibrated ScaleFlowCONCEPT-3, AF-4, AF-6 and AF-8On the side of the valve body that is used for the 1.5”, 2”, and 2.5” models, you will note the following feature:This feature has no functionality relating to the operation of the AcuFlow™ and is simply provided as an attribute to be able to plumb in a drain down pipe and valve. A typical use for this might be a roof mounted solar system. Under no circumstancesshould this hole be drilled out when using the valve body with the AcuFlow™.VALVE BODY FEATUREAcuFlow™ comprises several models; it is important that you check that the model you are about to install is the correct one for your application.MODELS & SPECIFICATIONSInstallation of AcuFlow™ should be in accordance with the following instructions.Normal plumbing procedures such as cleaning, priming and gluing of fixtures should be followed in order to avoid leaks. If you are not familiar with plumbing procedures, it is recommended that you employ the skills of a qualified plumber.Unlike other flow meters, the majority of AcuFlow™ models are not affected by flow stream disturbances caused by its proximity to pumps, elbows, tees, valves, etc. AcuFlow™ can be installed either horizontally or vertically. Straight pipe requirements are addressed in the table on page 19.Pay particular attention to the system’s direction of flow and make sure that the arrow on the lid of the AcuFlow™ is pointing in the correct direction. For the AF-3, AF-4, AF-6 and AF-8 versions, the T ee / Saddle-clamp will feature an additional arrow label. In the event that the AcuFlow™ is inadvertently installed into the plumbing in the wrong direction, simply remove the (8) screws holding the lid in place and rotate the entire lid assembly by 180˚.NOTE: For all models 2.5” and smaller, always remove the AcuFlow™ lid assembly prior to gluing in the valve body.NOTE (1): When selecting a physical location to install AcuFlow™, be sure to allow accessibility to read the scale on the lid.NOTE (2): Due to the possibility of excessive turbulence, models AF-3, AF-3-40, AF-4, AF-6, and AF-8 should not be installed directly after the pump.NOTE (3): AcuFlow models are designed for the specific pipe Schedule stated at the bottom of the flow scale label. While it is important to comply with the specific Schedule of pipe, the accuracy stated within this manual can be maintained if a short length (3-6 inches / 75-150mm), of the correct pipe type, is installed either side of the AcuFlow. For example, an AF-4 can be installed to a SCH 40 plumbing system, provided that a short length of SCH 80 pipe is installed into each end of the AcuFlow AF-4.INSTALLATIONGeneral Installation GuidancePipe Configuration Definitions:A . Zero straight pipe before of after AcuFlow. Can be installed in any orientation - horizontal, vertical up or vertical down.B . Straight horizontal pipe of ≥11” before AcuFlowC . Straight horizontal pipe of ≥17” before AcuFlowD . Straight horizontal pipe of ≥33” before AcuFlowE . Straight horizontal pipe of ≥64” before AcuFlowCertified NSF 50 Accuracy and Associated Pipe ConfigurationsAcuFlow models AF-6 and AF-8, use Schedule 80 Saddle Clamps. Dimensional details are as follows:Installation of Saddle-clamp style models (AF-6 and AF-8)When drilling the hole, the following precautions should be taken:1. Prior to drilling, make sure that the intended hole will be at 45 degrees fromthe perpendicular.2. Ensure that the intended position will allow the user to read the AcuFlowscale on the lid. If this is not possible, then we recommend adding anAcuFlow Digital upgrade to enable the flow reading to be read remotely.NOTE: Model AF-8 includes AcuFlow Digital as standard.3. Do not damage the external pipe area around the drilled hole. Surfacedamage will result in the Saddle’s o-ring being unable to provide a watertightseal.4. If using a hole saw, it is advisable to run the drill in reverse, and although thiswill take longer to cut through the pipe, it will be less aggressive and will cuta cleaner hole.5. Be sure to obtain the correct sized hole saw.Before securing the Saddle Clamp to the pipe, apply a good quality o-ring lubricant to the o-ring. Install the o-ring into the socket on the underside of the upper-half of the Saddle Clamp. Position the Clamp to the pipe so that the o-ring is centered around the drilled hole. Evenly tighten the nuts and bolts until both halves of the Saddle Clamp are mated together.Piping configurations that are more demanding than those used by NSF for testing AcuFlow, e.g., installing an AF-3 right next to another fitting such as an elbow, will result in a lower accuracy level than stated above. It is impossible to determine the exact impact that each scenario will have, but like all flow meters installed in larger pipe sizes, turbulence becomes an issue. The longer the run of straight pipe before the AcuFlow, the better.Pipe Configurations other than those used by NSF for TestingLevel 1 (L1) - Average of absolute values of all single point deviations must be ≤2%. Single point deviations shallnot exceed ±4%.Level 2 (L2) - Average of absolute values of all single point deviations must be ≤5%. Single point deviations shallnot exceed ±7.5%.Level 3 (L3) - Average of absolute values of all single point deviations must be ≤10%. Single point deviations shall not exceed ±12.5%.Level 4 (L4) - Average of absolute values of all single point deviations must be ≤12.5%. Single point deviationsshall not exceed ±15%.Level 5 (L5) - Average of absolute values of all single point deviations must be ≤15%. Single point deviations shall not exceed ±20%.NSF 50 Accuracy LevelsThe NSF 50 Standard for flow meters, has five levels of accuracy (L1-L5) that are expressed as follows:When removing and re-installing the AcuFlow™ lid assembly, it is important to adhere to the following procedure:1.Make sure that the o-ring on the underside of the lid is undamaged, lubricated with silicone (such as Boss 820) and isin-place without twists.2. Ensure fl apper hinge pin is centered.3. Carefully lower the lid onto its valve body, T ee, or Saddle-Clamp, makingsure that the o-ring stays in place.4. Insert by hand the (8) stainless steel screws but do not tighten at thisstage.5. Using a hand Phillips-head screwdriver, slowly tighten the screws in adiagonal pattern, per the sequence to the right. Do not fully tighten one screw before proceeding to the next, i.e., pull them down slowly multiple times to avoid stressing and cracking the lid. Screws should be tightened to a fi nal torque of 25 inch / pounds or 2.8 Nm.135478Tightening Lid ScrewsUnion style valve bodies are available for 1.5” and 2” AcuFlow models and are designated AF-15-U and AF-2-U, respectively. The Union style valve body off ers two main advantages:1.Ease of installation for retrofi tting to existing plumbing, and where it is diffi cult to ‘spread’ the pipe for the standardAcuFlow valve body, and;2. Where the user wishes to uninstall the AcuFlow during cold winter monthsAs with all Union style fi ttings, it is essential that accurate measurements are taken before cutting out the section of pipe. The ends of the cut pipe must be cut square. Removing too much pipe will prevent the union fi tting from tightening up, and leaks will occur. Cutting out insuffi cient pipe will result in diffi culty inserting the valve body in-between the unions.IMPORTANT NOTE: Be careful to slide the two locking rings onto each pipe end before gluing on the union fl anges.The amount of pipe to be removed is as follows:Installation of Union-style models (AF-15-U and AF-2-U)NOTE: The lid assembly from the standard valve body cannot be transferred to a union style valve body (and visa-versa), due to the fl ow reading being diff erent.AcuFlow is factory-calibrated to be extremely accurate across its full operating range. Any perceived ‘inaccuracy’ is related to the viewing angle at which the scale is being read. T o avoid so-called ‘parallax error’, it is important to position your eye so that you are looking squarely at the tip of the indicator arm. T o achieve this, simply move your head so that you just lose sight of the vertical leading edge of the red arm.NOTE:Slowly move your head in this direction to the pointwhere the leading edge of the indicating arm is not visible.Vertical leading edge(1)(2)(3)(1) Indicator arm is being viewed too far forward / near the rear of the lid.(2) Indicator arm is being viewed correctly.(3) Indicator arm is being viewed too far back / front of the lid.Reading the Flow RateOPERATIONHEAD LOSS DATAHead Loss (AF-15):Head Loss (AF-15-U):Head Loss (AF-2):Head Loss (AF-2-U):Head Loss (AF-3):Head Loss (AF-25):Head Loss (AF-4):Head Loss (AF-3-40):Head Loss (AF-8):Head Loss (AF-6):DIMENSIONSEModels: AF-15-UModels: AF-15Models: AF-2-UAFDDECBADFModels: AF-3 / AF-3-40CAF DD ECModels: AF-6ABEDA DFModels: AF-4Models: AF-8ADCTECHNICAL DATAMaterial Data Sheet (MSDS)Although AcuFlow™ is designed to be maintenance-free, periodic checks should be made to the following:MAINTENANCEOperational DataStraight Pipe RequirementsH2fl ow Controls, Inc., 3545 Silica Road, Unit F, Sylvania, OH 43560 U.S.A.Tel: 888-635-0296 (Toll Free) OR (+1) 419-841-7774 (International) • Fax: 419-517-9900For international sales and service, please visit our website: IMPORTANT, please read and keep this document on record.1. Defi nition H2fl ow Controls, Inc., warrants the AcuFlow™ product for 3-years from its date of supply from H2fl ow Controls, Inc. or its stocking Distributor. In the event that the product experiences a premature failure due to defective workmanship or materials, H2fl ow will, at its discretion, replace either the failed component(s) or the complete AcuFlow unit. H2fl ow shall not be responsible for third-party labor or any consequential losses. Damage caused by improper installation, misuse or exposure to excessive chemicals such as acids or chlorine, will not be covered by this warranty.2. EligibilityThis warranty extends to the original purchaser only or to the end-user client of an H2fl ow Controls Inc authorized affi liate.3. How to obtain serviceT o obtain service under the terms of this warranty, the customer is required to notify H2fl ow Controls Inc. before the expiration of the warranty period and to return the item in accordance with H2fl ow Controls Inc’s product return policy. Any product returned for warranty repair must be accompanied by a full fault report specifying the symptoms and the conditions under which the fault occurs. Should H2fl ow Controls Inc incur additional cost as a result of a failure to complete the appropriate paperwork, an administrative charge may be levied.4. ExclusionsThis warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate care. H2fl ow Controls Inc. shall not be obligated to provide service under this warranty if:a) damage has been caused by a failure to make a full and proper inspection of the product (as described by the documentation enclosed with the product at the time of shipment) on initial receipt of the product following shipment; b) damage has been caused by the attempts of individuals, other than H2fl ow Controls Inc staff to repair or service the product;c) damage has been caused by the improper use of the product, including but not limited to, the installation of a AcuFlow unit using a chlorination system as described in this manual.5. ChargesUnder cover of this warranty, H2fl ow Controls Inc will pay the carriage and insurance charges for the shipment of defective product back to H2fl ow Controls Inc and for its return to the client’s original site of dispatch except when: a) H2fl ow Controls Inc’s product return policy has not been followed.b) product failure is caused by any of the exclusions described at paragraph 4 above, when the customer will be liable for the full cost of the repair (parts and labor) plus all carriage and insurance costs to and from H2fl ow Controls Inc’s premises.c) the product is damaged in transit and a contributory cause is inadequate packaging. It is the customer’s responsibility to ensure that the packaging used to return equipment to H2fl ow Controls Inc is the same, or has equivalent protective qualities, to that used to ship the product to the customer in the fi rst instance. Any damage resulting from the use of inadequate packaging will nullify H2fl ow Controls Inc’s obligations under this warranty.Should the customer’s product be damaged in transit following a repair at H2fl ow Controls Inc’s site, a full photographic record of the damage must be obtained (packaging and the product) to support any claim for recompense. Failure to present this evidence may limit H2fl ow Controls Inc’s obligations under this warranty.THIS WARRANTY IS GIVEN BY H2FLOW CONTROLS INC IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, NON INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. H2FLOW CONTROLS INC SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES. WE SPECIFICALL Y DISCLAIM ANY AND ALL WARRANTIES TO CUSTOMERS OF THE CUSTOMER. THE CUSTOMER’S SOLE REMEDY FOR ANY BREACH OF WARRANTY IS THE REPAIR OR REPLACEMENT, AT H2FLOW CONTROLS INC’S DISCRETION, OF THE FAILED PRODUCT.WARRANTY。
A+K平衡流量计资料
A+K平衡流量计资料A+K平衡流量计的资料平衡流量计是第三代节流装置,是美国国家航空航天局(NASA)下属马歇尔航空飞行中心(NASA-MSFC)针对航天飞机的主发动机液氧测量而设计发明的一种新型流量计,称为A+K平衡流量计(BFM: Balanced Flow Meter)。
这种流量计的测量精度是传统节流装置的5,10倍,流动噪声降低到1/15,永久压力损失约为1/3,压力恢复快2倍,最小直管段可以小于0.5D,没有活动的部件,安装和使用非常方便简单,可省去大直管段,大大减少流体运行所需的能量消耗,是一种具有广阔应用前景的节能仪表。
A+K平衡流量计(BFM)对传统节流装置进行了极大的改进,将节流原理由边缘节流改为平衡节流,是一种革命性的差压式流量仪表。
平衡流量传感器是一个多孔的圆盘节流整流器,安装在管道的截面上,每个孔的尺寸和分布基于独特的公式和测试数据定制,称为函数孔。
当流体穿过圆盘的函数孔时,流体将被平衡调整,涡流被最小化,形成近似理想流体,通过常规取压装置,可获得稳定的差压信号,根据伯努利方程计算出体积流量、质量流量。
平衡流量计巧妙的设计在于将多孔整流器和测量孔板合二为一,能最大限度地将流场平衡调整成理想状态,从而将差压式流量计的优势发挥到极至。
由于有航天巨额科研经费的支持,2000年,2004年,NASA和QMC已经组织大量流量技术专家,投资一千万美元,对平衡流量计进行了大量试验,约10万组流量测量数据反映出测试结果良好,产品性能令人欣慰。
平衡流量计几乎适用于所有流体测量,是流体测量技术的一场革命,其加工、制造安装可以像孔板一样实现标准化,检定同样容易实现干标,有望成为节流装置新的国际标准。
NASA已经于2004年获得产品发明系列专利,并于2006年获得总统颁发的发明大奖。
一、线性度高、重复性好由于平衡流量传感器具有对称多孔结构特点,能对流场进行平衡,降低了涡流、振动和信号噪声,流场稳定性大大提高,使线性度比孔板提升了5,10倍,重复性提高了54,,为0.15,,从其综合性能来看,平衡流量计属于高档流量计行列。
Unit-conversion单位转换
Unit-conversion单位转换Unit ConvertLift head 扬程1 m = 3.28 feet = 39.36 inch1 m = 0.1 bar = 1.45 PSI = 0.01 Mpa 1 m = 10kg/cm²G1 PSI = 0.69 m1 feet = 0.3048 m1 inch = 2.54 cm = 25.4 mm1 bar = 0.1 Mpa = 10 m1 Mpa = 100 m1 kg/㎡= 10 m = 1 bar1bar=10mwcCapacity Flow 流量1 m³/h = 16.67 L/min = 0.2778 L/s1L/min = 0.06m³/h1 m³/h = 4.4 GPM = 0.0733 GPH1 GPM = 0.227 m³/h1 L/s = 3.6 m³/hPower 功率1 kw = 1.34 HP = 1.36 PS1 HP = 0.75 kw1KV A = 0.8 kw ≈ 0.85 kw50 HZ 60 HZFlow :× 1.2Head :× 1.44Power :× 1.728Speed :× 1.2Temperature 温度℃ = (℉32)/1.8 ℉ = 32 + ℃×1.8单位转换Dimension 容积1 BBL = 0.159 m³ = 42 gal = 1174 L1000 L = 1 m³1 L= 0.246 gal1 lbs = 0.4536 kg1 gallon = 3.87 L = 3870 cm3Weight 重量1Lb = 0.4536 kg1kg = 2.17Lbs1 pound = 0.45 kg1 carat = 0.2 g1 MT = 7.35 bbl常用换算单位流量:1m3/h=16.67L/Min (即:1m3/h=4.4GPM)压力:1Bar=1.02kg/cm2 1Bar=14.5PSI1MPa=10Bar=145PSI 1kg/cm2约为10M(扬程)黏度:SSU=CP×4.55/SG CP=CSt×SG SSU=CSt×4.55mPa.s=CPS (即:1CPS=4.55SSU) 1Pa·S=1000mPa·S功率:1HP=0.75KW温度:℃=(°F-32)/1.8重量:1Lb=0.4536kg1kg=2.17Lbs长度:l inch=25.4mm 1 foot=12inchs=0.3048m1m3=35.2ft3体积:1gallon=3.87L=3870cm3密度:水=1000kg/m3 SG=介质密度/水密度1大气压=14.7PSI=33.8feet水=760mmHg美英制单位:GPM,PSI,SSU,HP,°F,Lb,inch,gallon,foot重量换算(一)公制英制美制港制公吨长吨短吨司马担1 0.9842 1.1023 16.5351.016 1 1.12 16.80.9072 0.8929 1 150.05 0.04921 0.0551 0.82670.0508 0.05 0.056 0.84020.0605 0.0594 0.0667 1公制中国市制英美制公斤斤磅1000 2000 2204.61016 2032 2242907 1814 200050 100 110.2350.8 101.6 11260.48 120.96 133.331 2 2.20460.5 1 1.10230.4536 0.9072 1港制1司马担=100司马斤公制1公吨=10公担英制1长吨=20英担(CWT) 1英担=50.8024公斤美制1短吨=20短担(CWT) 1短吨=100磅=45.36公斤重量换算(二)公制英美制常衡英美制金衡或药衡基准价公斤克磅磅两1 1000 2.2046 35.2736 2.679 31.1507 200.001 1 0.0022 0.0022 0.00268 0.0321 0.020.4536 453.59 1 16 1.2135 14.5833 9.0720.02835 28.35 0.0625 1 0.07595 0.9114 0.5670.3732 373.24 0.82286 13.1657 1 12 7.4650.0311 31.10 0.06857 1.0971 0.08333 1 0.6220.05 50 0.1102 1.76368 0.13396 1.6075 1宝石:1克拉=0.2克 1金衡=155.5克拉容(体)积换算(一)公制中国市制英制美制升升英加仑美加仑1 1 0.22 0.2644.546 4.546 1 1.2013.785 3.785 0.833 11000升=1立方米 1升=1000毫升=1000立方厘米(C.C.)英制1加仑=277.42立方英寸英制1加仑=231立方英寸容(体)积换算(一)公制英美制中国市制立方米立方厘米立方码立方英尺立方英寸立方尺1 1000000 1.303 35.3147 61024 270.000001 1 0.0000013 0.00004 0.06102 0.000027 0.7636 764555 1 27 46656 20.6430.02832 28317 0.037 1 1728 0.76460.000016 16.317 0.00002 0.00058 1 0.00044 0.037 37037 0.0484 1.308 2260 1木材体积单位换算板(BOARD FOOT MEASURE,BFM):指厚一英寸面积一平方英尺的木材板材的换算:100板=2.36立方米原木的换算:100板=5立方米(近似值)功率换算表1千瓦(KW)=1034英制马力(HP)1.36公制马力(HP)1英制马力=0.746千瓦(KW)1公制马力=0.735千瓦(KW)1千伏安(K.V.A)=千瓦(K.W.)/0.80粮谷重量容积换算1蒲式耳折合品名1公吨折合蒲式耳磅公斤小麦,大豆36.743 60 27.216 玉米39.368 56 25.402 大麦(英制) 44.092 50 22.68大麦(美制) 45.931 48 21.7731英制蒲式耳(-1.0321美制蒲式耳)合36.3677升石(原)油重量,容积换算1公吨折合国别千升美制桶英制加仑美制加仑美国,印度尼西亚 1.18 7.4 259.1 310.6 伊朗,沙特阿拉伯 1.19 7.49 261.8 314.5 日本 1.11 6.99 244.5 293.3 英国,科威特 1.16 7.31 255.8 306.7委内瑞拉 1.09 6.84 239.2 287.4注:世界平均比重的原油通常以1公吨=7.35桶(每桶为42美制加仑)或1174升计常用度量衡英文名称和简写名称英文名称简写名称英文名称简写克gram g. 码yard yd.公斤kilogram kg. 英尺foot ft.公担quintal q. 英寸inch in.公吨metric ton m.t. 平方米square metre sq.m.长吨long ton l.t. 平方英尺square foot sq.ft 短吨short ton sh.t. 平方码square yard sq.yd.英担hundredweight cwt. 立方米cubic metre cu.m.美担hundredweight cwt. 立方英尺cudic metre cu.ft.磅pound lb. 升litre l.(常衡) ounce oz. 毫升millilitre ml.(金衡) ounce oz.t 加仑gallon gal.司马担picul 蒲式耳bushel bu.米metre m. 克拉carat car.公里kilometre km. 马力horse power h.p.厘米centimetre cm. 千瓦kilowatt kw.毫米millimetre mm. 公吨度metric ton unit m.t.u. 附表八:计量单位换算表面(地)积换算公制英美制平方米平方厘米平方码平方英尺平方英寸平方尺1 10000 1.1960 10.7639 1550 90.0001 1 0.00012 0.00108 0.155 0.00090.8361 8361 1 9 1296 7.5250.0929 929 0.1111 1 144 0.8360.00065 6.45 0.00077 0.00694 1 0.00580.111 1111 0.133 1.196 172.2 1长度换算公制中国市制英美制米厘米尺码英尺英寸1 100 3 1.094 3.2808 39.370.01 1 0.03 0.01094 0.03281 0.39370.3333 33.33 1 0.3646 1.094 13.1230.9144 91.44 2.743 1 3 360.3048 30.48 0.9144 0.3334 1 120.0254 2.54 0.0762 0.0278 0.833 11米=100厘米=1000毫米psi 有听过吧,psig 就叫做(英制)蒸气压力,锅炉内[蒸气]的压力.蒸气归蒸气,空气归空气,空气中含有水气时,水分的重量是可以分离计算成(psig)的,但是我以为[psig]单独表示时,应该是指[锅炉内饱和水蒸汽的压力].psi是磅/平方英吋(念做每平方英吋xx磅) 如果是Kg/cm2 换算成psi,1Kg/cm2 = 14.21psi1psi = 0.454Kg/(2.54cm)2 = 0.07037kg/cm2 则倒数就是14.21~~~~~~~~1大气压= 760.00027 mHg1mHg = 133.322 pa1大气压= 101324.75 pa1kpa=>1000pa / 133.322pa X 13.6(水银比重) => 102.0087mH2OPSID指的应该是[压力差][PSI为单位]mpa应该写成Mpa M是[百万],十的六次方.PSID, psidPounds per Square Inch Differential. Not just a unit, but a comment that the number represents a difference between two pressures. PSID gauges have two input connectors. PSIA is PSID relative to vacuum, PSIG is PSID relative to local atmospheric pressure, and PSIS is PSID relative to a sealed 14.7-psi pressure vessel.PSI = Pound per Square Inch (磅/每平方英吋) PSID == PSI Differential (PSI 压差).PSIA == PSID to Vacuum (对真空的压差)PSIG == PSID to environment (对表外环境的压差)工作压力10-40PSID 表示仪器能承受10-40PSI 的压力差.温度的测算标准有两种:摄氏和华氏。
aspen中常用的英语单词对照中英文atm
aspen中常用的英语单词对照中英文atm 1atm为一个标准大气压Bar 巴压力单位BaseMethod 基本方法包含了一系列物性方程Batch 批量处理BatchFrac 用于两相或三相间歇式精馏的精确计算Benzene 苯Blocks 模型所涉及的塔设备的各个参数Block-Var 模块变量ChemVar 化学变量Columns 塔Columnspecifications 塔规格CompattrVar 组分变量Components 输入模型的各个组成ComponentsId 组分代号Componentsname 组分名称Composition 组成Condenser 冷凝器Condenserspecifications 冷凝器规格Constraint 约束条件Conventional 常规的Convergence 模型计算收敛时所涉及到的参数设置Databrowser 数据浏览窗口Displayplot 显示所做的图Distl 使用Edmister方法对精馏塔进行操作型的简捷计算DSTWU 使用Winn-Underwood-Gilliland方法对精馏塔进行设计型的简捷计算DV 精馏物气相摩尔分率ELECNRTL 物性方程适用于中压下任意电解质溶液体系Extract 对液体采用萃取剂进行逆流萃取的精确计算Find 根据用户提供的信息查找到所要的物质Flowsheetingoptions 流程模拟选项Formula 分子式Gasproc 气化Heat Duty 热负荷HeatExchangers 热交换器Heavy key 重关键组分IDEAL 物性方程适用于理想体系Input summary 输入梗概Key component recoveries 关键组分回收率kg/sqcm 千克每平方厘米Lightkey 轻关键组分Manipulated variable 操作变量Manipulators 流股调节器Mass 质量流量Mass-Conc 质量浓度Mass-Flow 质量流量Mass-Frac 质量分率Materialstreams 绘制流程图时的流股包括work(功)heat热和material物料mbar 毫巴Mixers/splitters 混合器/分流器Mmhg 毫米汞柱mmwater 毫米水柱Model analysis tools 模型分析工具Model library 模型库Mole 摩尔流量Mole-Conc 摩尔浓度Mole-Flow 摩尔流量Mole-Frac 摩尔分率MultiFrac 用于复杂塔分馏的精确计算如吸收/汽提耦合塔N/sqm 牛顿每平方米NSTAGE 塔板数Number of stages 塔板数OilGas 油气化Optimization 最优化Overallrange 灵敏度分析时变量变化范围Pa 国际标准压力单位PACKHEIGHT 填料高度Partial condenser with all vapor distillate 产品全部是气相的部分冷凝器Partial condenser with vapor and liquid distillate 有气液两相产品的部分冷凝器PBOT 塔底压力PENG-ROB 物性方程适用于所有温度及压力下的非极性或极性较弱的混合物体系Petchem 聚酯化合物PetroFrac 用于石油精炼中的分馏精确计算如预闪蒸塔Plot 图表PR-BM 物性方程适用于所有温度及压力下非极性或者极性较弱的体系Pressure 压力PressureChangers 压力转换设备PRMHV2 物性方程适用于较高温度及压力下极性或非极性的化合物混合体系Process type 处理类型Properties 输入各物质的物性Property methods & models 物性方法和模型psi 英制压力单位psig 磅/平方英寸(表压)PSRK 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系PTOP 塔顶压力RadFrac 用于简单塔两相或三相分馏的精确计算RateFrac 用于基于非平衡模型的操作型分馏精确计算Reactions 模型中各种设备所涉及的反应Reactors 反应器ReactVar 反应变量Reboiler 再沸器RECOVH 重关键组分回收率RECOVL 轻关键组分回收率Refinery 精炼Reflux ratio 回流比Reinitialize 重新初始化Result summary 结果梗概Retrieve parameter results 结果参数检索RKS-BM 物性方程适用于所有温度及压力下非极性或者极性较弱的体系RKSMHV2 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系RK-SOAVE 物性方程适用于所有温度及压力下的非极性或极性较弱的混合物体系RKSWS 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系RR 回流比Run status 运行状态SCFrac 复杂塔的精馏简捷计算如常减压蒸馏塔和真空蒸馏塔Sensitivity 灵敏度Separators 分离器Solids 固体操作设备SR-POLAR 物性方程适用于较高温度及压力下极性或非极性的轻组分气体化合物体系State variables 状态变量Stdvol 标准体积流量Stdvol-Flow 标准体积流量Stdvol-Frac 标准体积分率Stream 各个输入输出组分的流股StreamVar 流股变量Substream name 分流股类型Temperature 温度Toluene 甲苯Torr 托真空度单位Total condenser 全凝器Total flow 总流量UNIQUAC 物性方程适用于极性和非极性强非理想体系UtilityVar 公用工程变量Vaiable number 变量数Vaporfraction 汽相分率V olume 体积流量XAxisvariable 作图时的横坐标变量YAxisvariable 作图时的纵坐标变量BERL:BERL Saddle贝尔鞍环BX:Sulzer BX苏尔寿BX型板波纹规整填料CMR:Cascade mini-ring 聚丙烯阶梯环COIL:COIL Pack环形填料CROSSFLGRD:Raschig Cross-Flow-Grid Structured PackCY:苏尔寿CY(丝网)型规整填料DIXON:DIXON Packing狄克松填料(θ环填料)FLEXERAMIC:Koch Flexeramic Structured Packing柯赫曲线规整填料FLEXIGRID:Koch Flexigrid Structured Packing柯赫格栅规整填料FLEXIMAX:Koch Fleximax High Performance Random Packing柯赫高性能散堆填料FLEXIPAC:Koch Flexipac Corrugated Sheet Structured Packing柯赫柔性波纹板填料FLEXIRING:Koch Flexiring Single-tab Slotted Ring Random Packing柯赫单面环槽不规整填料FLEXISADDL:Koch Flexisaddle Random Packing柯赫鞍形不规整填料GOODLOE:Glitsch Goodloe Structured Packing格里奇古德洛卷带型规整填料GRID:Glitsch Grid Structured Packing格里奇格栅规整填料GRID-PACK:Grid Type Structured Packing格栅规整填料HCKP:Koch HCKP Multi-tab Slotted Ring Random Packing 柯赫多面槽环形不规整填料HELI:Heli Pack螺旋填料HELIX:螺旋角填料HYPAK:I-BALL:I-Ball Packing I-球型填料IMTP:Intalox Metal Tower Packing英特洛克斯金属矩鞍环填料INTX:Intalox Saddle矩鞍环填料ISP:Norton Intalox Structured Packing诺顿规整填料KERAPAK:Sulzer Kerapak Structured Packing苏尔寿陶瓷板波纹填料(凯勒派克)LESCHIG:Leschig Ring浸环MCMAHON:Mcmahon Packing鞍形网填料MELLAPAK:Sulzer Mellapak Structured Packing苏尔寿孔板波纹填料MESH:Mesh Ring Packing筛网环形填料PALL:Pall Ring鲍尔环RALU-FLOW:Raschig Ralu-FlowRALU-PAK:Raschig Ralu-Pak拉西带缝板波填料RALU-RING:Raschig Ralu-Ring拉西Ralu环RASCHIG:Raschig Ring拉西环SHEET-PACK:Sheet Type Structured PackingSIGMA:Sigma PackingSNOWFLAKE:Intalox Snowflake Plastic PackingSTORUSSDDL:Raschig Super-Torus-SaddleSUPER-INTX:Super Intalox SaddleSUPER-PAK:Rashig Super-PakSUPER-RING:Rashig Super-RingTORUSSADDL:Raschig Torus SaddleWIRE-PACK:Wire Type Structured Packing三、常用词汇表(按菜单分类)1. Fileexit[`eksIt]退出export[ 5ekspC:t ]输出file[ fail ]文件import[ im5pC:t ]输入new[ nju: ]新的open[ 5EupEn ]打开print[prInt]印刷,打印save[ seiv ]保存send[ send ]发送Save as 另存Import EO variable 输入EO Export EO variable 输出EO Page setup 页面设置Print preview 打印预览Print setup 打印设置Send to 发送到2. Editclear[ kliE ]清除copy[ 5kCpi ]拷贝edit[ 5edit ]编辑form[ fC:m ]表格format[ 5fC:mAt ]格式化(磁盘) link[ liNk ]链接paste[ peist ]粘贴select[ si5lekt ]选择special[ 5speFEl ]特殊的Selected copy 选择拷贝Select all 全选3. Viewbar[bB r)]条control[kEn5trol]控制current[ 5kQrEnt ]当前的history[ 5histEri ]历史Page[ peidV ]页panel[ 5pAnl ]面板preview[ 5pri:5vju: ]预览report[ ri5pC:t ]报告reset[ 5ri:set ]重新安排solver[ 5sClvE ]求解器status[ 5steitEs ]状态summary[ 5sQmEri ]摘要Toolbar 工具栏view[ vju: ]视图zoom[zum]图象放大或者缩小status bar 状态栏model library 模型库control panel 控制面板page break preview 分页预览reset page break 重新分页current section only 仅显示当前段global data 全局[公用]数据annotation 注释OLE object 嵌入目标EO sync error EO 同步错误Input summary 输入规定汇总(输入语言) Solver report 求解器报告4. Data(1) Setupassay[ E5sei ]化验class[klB:s]分类option[ 5CpFEn ]选项report[ ri5pC:t ]报告setup[6set7(p]设置simulation[ 7simju5leiFEn ]模拟specification[ 7spesifi5keiFEn ]输入规stream[stri:m]流股unit[5ju:nIt]单位simulation option 模拟选项stream class 流股类型units-sets 单位集custom units 用户单位report option 报告选项(2) Componentsblend[blend] 混合characterization[7k#r*kt*i6zei.*n] component[k*m6poun*nt] 组成data[5deitE]数据define[di6fain] 给…下定义find[faind] 找到formula[6f%8rmj*l*]分子式analysis[*6n#lisis] 分析generation[7d/en*6rei.*n]生成group[gru8p]组library[6lai7breri8]库light[ lait ]轻的manager[6m#nid/*]管理method[6meG*d] 方法moisture[6m%ist.*] 湿气name[neim]名字object[6%bd/ikt] 目标petroleum[pI5trEJlIEm]石油polymer[5pRlImE(r)]聚合物procedure[prE5si:dVE(r)]程序pseudocomponent[5pEunEnt]虚拟组分reorderri:5C:dE(r)]重新,排序result[ri6z(lt] 结果review[rI5vju:]回顾selection[si6lek.*n] 选择specification[7spes*fi6kei.*n] 详细说明status[5steItEs]状态type[taip] 类型user [6ju8z*]使用者wizard[6wiz*d]向导assay/blend 化验/混合(油品分析与混合)light-end properties 轻端组分性质petro-characterization 油品表征attr-comps 组分属性henry comps 亨利组分moisture comps 湿气组分UNIFAC groups UNIFAC 参数组Comps-groups 组分分组comps-lists 组分列表Attr-Scaling 属性标量(3)Propertiesadvanced[ Ed5vB:nst ]高级的analysis[ E5nAlisis ]分析base[ beis ]基础calculation[ 7kAlkju5leiFEn ]计算compare[ kEm5pZE ]比较data[ 5deitE ]数据electrolyte[I5lektrEJlaIt]电解质estimation[ esti5meiFEn ]估算flowsheet[ flEu5Fi:t ]流程图global[ 5^lEubEl ]全局的input[ 5input ]输入method[5meWEd]方法missing[ 5misiN ]缺少molecular structure 分子结构molecular[ mEu5lekjulE ]分子的pair[ pZE ]一对parameter[ pE5rAmitE ]参数process[ prE5ses ]过程propaganda[prRpE5^AndE]宣传method[5meWEd]方法Prop-Sets 物性集pure[ pjuE ]纯的refectioner[rI`fekFEnE(r)]参考的route[ ru:t ]路线solubility[ 7sClju5biliti ]溶解度structure[ 5strQktFE ]结构ternary[ 5tE:nEri ]三重的user[ 5ju:zE ]使用者Property method 方法Prop-Sets 物性集molecular structure 分子结构CAPE-OPEN package CAPE-OPEN 物性数据包 (4)Flowsheetadvanced[ Ed5vB:nst ]高级的analysis[ E5nAlisis ]分析base[ beis ]基础calculation[ 7kAlkju5leiFEn ]计算compare[ kEm5pZE ]比较data[ 5deitE ]数据electrolyte[I5lektrEJlaIt]电解质estimation[ esti5meiFEn ]估算flowsheet[ flEu5Fi:t ]流程图global[ 5^lEubEl ]全局的input[ 5input ]输入method[5meWEd]方法missing[ 5misiN ]丢失molecular structure 分子结构molecular[ mEu5lekjulE ]分子的pair[ pZE ]一对parameter[ pE5rAmitE ]参数process[ prE5ses ]过程propaganda[prRpE5^AndE]宣传method[5meWEd]方法Prop-Sets 物性急pure[ pjuE ]纯的refectioner[rI`fekFEnE(r)]参考的route[ ru:t ]路径solubility[ 7sClju5biliti ]溶度structure[ 5strQktFE ]结构ternary[ 5tE:nEri ]三重的user[ 5ju:zE ]使用者flowsheet[flEu5Fi:t]工艺流程图global[6gloub*l] 全局的section[5sekF(E)n]流程分段(5)Streamsstream[stri:m]流股(6)Utilitiesutility[ ju:5tiliti ]公用工程(7)Blocksblock[ blCk ](8)Reactionschemistry[ 5kemistri ]化学reaction[ ri(5AkFEn ]反应convergence[ kEn`v\:dVEns ]收敛(9)Convergenceconvergence[k*n6v*8d/*ns] 收敛default[di6f%8lt] 默认method[6meG*d] 方法sequence[6si8kw*ns] 顺序tear[tW*r] 撕裂、断裂Conv options 收敛选项EO Conv options EO 收敛选项Conv order 收敛次序(10)Flowsheeting Optionsadd[#d] 添加balance[5bAlEns]平衡calculator[5kAlkjJleItE(r)]计算器design[dI5zaIn]设计flowsheet[ flEu5Fi:t ]流程图measurement[ 5meVEmEnt ]测量relief[ ri5li:f ]释放specification[ 7spesifi5keiFEn ]说明书、详述transfer[ trAns5fE:]传递Design spec 设计规定Stream library 流股库Pres relief 压力释放(安全排放)Add input 添加输入(11)Model Analysis Toolsanalysis[E5nAlEsIs]分析study[5stQdi]研究case[kes] 工况constraint[kEn5streInt]约束cost[k%st] 成本estimation[esti5meiFEn]估算model[ 5mCdl ]模型、模拟optimization[Cptimai5zeiFEn]优化sensitivity[sensI5tIvItI]灵敏度tool[tu8l] 工具model analysis tool 模型分析工具Data fit 数据拟合case study 工况研究cost estimation 成本估算(12)EO Configurationalias[5eIlIEs]又名,别名configuration[kEn9fI^jE5reFEn]配置connection[kE5nekF(E)n]连接global[5^lobl]全局的group[^ru:p]组local[ 5lEukEl ]局部的objective[Eb5dVektiv]目标script[skrIpt]脚本solve[ sClv ]求解variable[5vZEriEbl]变量Solve option 求解选项EO variable EO 变量EO input EO 输入Spec group 规定组EO Option EO 选项local script 局部的脚本global script 全局的脚本script method 脚本方法EO sensitivity EO 灵敏度(13)Result Summary convergence[ kEn`v\:dVEns ]收敛run[rQn]运算status[ 5steitEs ]状态stream[ stri:m ]流股utility[ ju:5tiliti ]公用工程run status 运行状态5. ToolAnalysis [E5nAlEsIs] 分析Assistant [E5sIst(E)nt] 帮助、助理Clean [kli8n] 清除concatenate[k%n6k#tn7eit] 连结conceptual[kEn5septFuEl]概念的design[ di5zain ]设计explorer[ iks5plC:rE]资源管理器next[ nekst ]下一次, 下一个option[ 5CpFEn ]选项package[ 5pAkidV ]包parameter[ pE5rAmitE ]参数result[ ri5zQlt ]结果retrieve[ ri5tri:v ]重新得到(调用)tool[ tu:l ]工具variable[ 5vZEriEbl ]变量retrieve parameter result 调用物性数据库参数结果Clean property parameter 清除物性参数Property Method selection assistant 物性方法选择帮助conceptual design 概念[方案]设计import CAPE-OPEN package 输入CAPE-OPEN 数据包export CAPE-OPEN package 输出CAPE-OPEN 数据包variable explorer 变量管理器6. Runbatch[ bAtF ]一批check[ tFek ]检查connect[ kE5nekt ]连接load[ lEud ]装载move[ mu:v ]移动point[pCInt]指向reconcile[ 5rekEnsail ]调谐recover[ ri5kQvE ]恢复Reinitialize 初始化reset[ 5ri:set ]重新安排result[ ri5zQlt ]结果run[ rQn ]运算setting 安置stop[ stCp ]停止Stop point 停止点Reset EO variable 重新安排EO 变量recover EO variable 恢复EO 变量check result 检查结果load result 加载结果reconcile all 调谐reconcile all stream 调谐全部流股connect to engine 连接模拟器(技术主程序)7. plotadd[Ad]加curve[ kE:v ]曲线display[dI5spleI]显示plot[ plCt ]绘图type[ taip ]类型variable[ 5vZEriEbl ]变量wizard[ 5wizEd ]向导x-axis[`eks9AksIs]X 轴plot type 绘图类型x-axis variable 变量做X 轴Y-axis variable 变量做Y 轴Parametric variable 变量做参(变)量display plot 显示图add new curve 增加新的曲线plot wizard 绘图向导8. Flowsheetflowsheet[ flEu5Fi:t ]流程图section[ 5sekFEn ]部分,段reconnect[ri:kE5nekt]重新连接source[ sC:s ]来源destination[ 7desti5neiFEn ]目的地exchange[ iks5tFeindV ]交换icon[5aIkRn]图标align[E5lain]排成直线block[5blCks]模块reroute[ ri5ru:t, -5raut ]变更路径stream[stri:m]流股hide[ haid ]隐藏unplaced[ 5Qn5pleist ]取消放置group[ ^ru:p ]组find[ faind ]找object[ 5CbdVikt ]目标lock[ lCk ]锁flowsheet section 流程段reconnect source 重新连接流股来源reconnect destination重新连接流股目的地exchange icon 更换设备图标align block 使模块排成直线reroute stream 变更流股路径unplaced blocks 取消放置模块find object 查找目标9. Librarybuilt-in[ 5bilt5in ]内置category[ 5kAti^Eri ]种类default[ di5fC:lt ]默认icon[5aIkRn]图标library[ 5laibrEri ]库palette[ 5pAlit ]调色板, 颜料problem [ 5prCblEm ]问题, 难题reference[ 5refrEns ]参考save[ seiv ]保存Palette category 调色种类save default 默认保存save icon 保存图标built-in 内置10. Windowarrange icons 重排图标cascade[ kAs5keid ]层叠icon[5aIkRn]图标normal[ 5nC:mEl ]常规的tile[ tail ]平铺wallpaper[5wC:lpeIpE(r)]壁纸window[5wIndEJ]窗口workbook[5w\:kbJk]练习簿方式arrange icons 重排图标flowsheet as wallpaper 流程设置为壁纸11. Helpabout[ 5Ebaut ]关于help[help]帮助plus[plQs]加的product[ 5prCdEkt ]产品readme 自述文件support [ sE5pC:t ]支持topic[ 5tCpik ]主题training[ 5treiniN ]训练update[ Qp5deit ]更新view[ vju: ]视图web[web]网what[ (h)wCt ]什么help topic 帮助主题what′s this 这是什么?product support on the web 互联网产品支持view update readme 查看软件更新自述文件about aspen plus 关于aspen plus化学物质缩写A英文缩写全称A/MMA 丙烯腈/甲基丙烯酸甲酯共聚物AA 丙烯酸AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物ABFN 偶氮(二)甲酰胺ABN 偶氮(二)异丁腈ABPS 壬基苯氧基丙烷磺酸钠B英文缩写全称BAA 正丁醛苯胺缩合物BAC 碱式氯化铝BACN 新型阻燃剂BAD 双水杨酸双酚A酯BAL 2,3-巯(基)丙醇BBP 邻苯二甲酸丁苄酯BBS N-叔丁基-乙-苯并噻唑次磺酰胺BC 叶酸BCD β-环糊精BCG 苯顺二醇BCNU 氯化亚硝脲BD 丁二烯BE 丙烯酸乳胶外墙涂料BEE 苯偶姻乙醚BFRM 硼纤维增强塑料BG 丁二醇BGE 反应性稀释剂BHA 特丁基-4羟基茴香醚BHT 二丁基羟基甲苯BL 丁内酯BLE 丙酮-二苯胺高温缩合物BLP 粉末涂料流平剂BMA 甲基丙烯酸丁酯BMC 团状模塑料BMU 氨基树脂皮革鞣剂BN 氮化硼BNE 新型环氧树脂BNS β-萘磺酸甲醛低缩合物BOA 己二酸辛苄酯BOP 邻苯二甲酰丁辛酯BOPP 双轴向聚丙烯BP 苯甲醇BPA 双酚ABPBG 邻苯二甲酸丁(乙醇酸乙酯)酯BPF 双酚FBPMC 2-仲丁基苯基-N-甲基氨基酸酯BPO 过氧化苯甲酰BPP 过氧化特戊酸特丁酯BPPD 过氧化二碳酸二苯氧化酯BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚) BPTP 聚对苯二甲酸丁二醇酯BR 丁二烯橡胶BRN 青红光硫化黑BROC 二溴(代)甲酚环氧丙基醚BS 丁二烯-苯乙烯共聚物BS-1S 新型密封胶BSH 苯磺酰肼BSU N,N’-双(三甲基硅烷)脲BT 聚丁烯-1热塑性塑料BTA 苯并三唑BTX 苯-甲苯-二甲苯混合物BX 渗透剂BXA 己二酸二丁基二甘酯BZ 二正丁基二硫代氨基甲酸锌C英文缩写全称CA 醋酸纤维素CAB 醋酸-丁酸纤维素CAN 醋酸-硝酸纤维素CAP 醋酸-丙酸纤维素CBA 化学发泡剂CDP 磷酸甲酚二苯酯CF 甲醛-甲酚树脂,碳纤维CFE 氯氟乙烯CFM 碳纤维密封填料CFRP 碳纤维增强塑料CLF 含氯纤维CMC 羧甲基纤维素CMCNa 羧甲基纤维素钠CMD 代尼尔纤维CMS 羧甲基淀粉D英文缩写全称DAF 富马酸二烯丙酯DAIP 间苯二甲酸二烯丙酯DAM 马来酸二烯丙酯DAP 间苯二甲酸二烯丙酯DA TBP 四溴邻苯二甲酸二烯丙酯DBA 己二酸二丁酯DBEP 邻苯二甲酸二丁氧乙酯DBP 邻苯二甲酸二丁酯DBR 二苯甲酰间苯二酚DBS 癸二酸二癸酯DCCA 二氯异氰脲酸DCCK 二氯异氰脲酸钾DCCNa 二氯异氰脲酸钠DCHP 邻苯二甲酸二环乙酯DCPD 过氧化二碳酸二环乙酯DDA 己二酸二癸酯DDP 邻苯二甲酸二癸酯DEAE 二乙胺基乙基纤维素DEP 邻苯二甲酸二乙酯DETA 二乙撑三胺DFA 薄膜胶粘剂DHA 己二酸二己酯DHP 邻苯二甲酸二己酯DHS 癸二酸二己酯DIBA 己二酸二异丁酯DIDA 己二酸二异癸酯DIDG 戊二酸二异癸酯DIDP 邻苯二甲酸二异癸酯DINA 己二酸二异壬酯DINP 邻苯二甲酸二异壬酯DINZ 壬二酸二异壬酯DIOA 己酸二异辛酯< lan>E英文缩写全称E/EA 乙烯/丙烯酸乙酯共聚物E/P 乙烯/丙烯共聚物E/P/D 乙烯/丙烯/二烯三元共聚物E/TEE 乙烯/四氟乙烯共聚物E/V AC 乙烯/醋酸乙烯酯共聚物E/V AL 乙烯/乙烯醇共聚物EAA 乙烯-丙烯酸共聚物EAK 乙基戊丙酮EBM 挤出吹塑模塑EC 乙基纤维素ECB 乙烯共聚物和沥青的共混物ECD 环氧氯丙烷橡胶ECTEE 聚(乙烯-三氟氯乙烯) ED-3 环氧酯EDC 二氯乙烷EDTA 乙二胺四醋酸EEA 乙烯-醋酸丙烯共聚物EG 乙二醇2-EH :异辛醇EO 环氧乙烷EOT 聚乙烯硫醚EP 环氧树脂EPI 环氧氯丙烷EPM 乙烯-丙烯共聚物EPOR 三元乙丙橡胶EPR 乙丙橡胶EPS 可发性聚苯乙烯EPSAN 乙烯-丙烯-苯乙烯-丙烯腈共聚物EPT 乙烯丙烯三元共聚物EPVC 乳液法聚氯乙烯EU 聚醚型聚氨酯EV A 乙烯-醋酸乙烯共聚物EVE 乙烯基乙基醚EXP 醋酸乙烯-乙烯-丙烯酸酯三元共聚乳液F英文缩写全称F/V AL 乙烯/乙烯醇共聚物F-23 四氟乙烯-偏氯乙烯共聚物F-30 三氟氯乙烯-乙烯共聚物F-40 四氟氯乙烯-乙烯共聚物FDY 丙纶全牵伸丝FEP 全氟(乙烯-丙烯)共聚物FNG 耐水硅胶FPM 氟橡胶FRA 纤维增强丙烯酸酯FRC 阻燃粘胶纤维FRP 纤维增强塑料FRPA-101 玻璃纤维增强聚癸二酸癸胺(玻璃纤维增强尼龙1010树脂) FRPA-610 玻璃纤维增强聚癸二酰乙二胺(玻璃纤维增强尼龙610树脂) FWA 荧光增白剂G英文缩写全称GF 玻璃纤维GFRP 玻璃纤维增强塑料GFRTP 玻璃纤维增强热塑性塑料促进剂GOF 石英光纤GPS 通用聚苯乙烯GR-1 异丁橡胶GR-N 丁腈橡胶GR-S 丁苯橡胶GRTP 玻璃纤维增强热塑性塑料GUV 紫外光固化硅橡胶涂料GX 邻二甲苯GY 厌氧胶H英文缩写全称H 乌洛托品HDI 六甲撑二异氰酸酯HDPE 低压聚乙烯(高密度)HEDP 1-羟基乙叉-1,1-二膦酸HFP 六氟丙烯HIPS 高抗冲聚苯乙烯HLA 天然聚合物透明质胶HLD 树脂性氯丁胶HM 高甲氧基果胶HMC 高强度模塑料HMF 非干性密封胶HOPP 均聚聚丙烯HPC 羟丙基纤维素HPMC 羟丙基甲基纤维素HPMCP 羟丙基甲基纤维素邻苯二甲酸酯HPT 六甲基磷酸三酰胺HS 六苯乙烯HTPS 高冲击聚苯乙烯I英文缩写全称IEN 互贯网络弹性体IHPN 互贯网络均聚物IIR 异丁烯-异戊二烯橡胶IO 离子聚合物IPA 异丙醇IPN 互贯网络聚合物IR 异戊二烯橡胶IVE 异丁基乙烯基醚J英文缩写全称JSF 聚乙烯醇缩醛胶JZ 塑胶粘合剂K英文缩写全称KSG 空分硅胶L英文缩写全称LAS 十二烷基苯磺酸钠LCM 液态固化剂LDJ 低毒胶粘剂LDN 氯丁胶粘剂LDPE 高压聚乙烯(低密度) LDR 氯丁橡胶LF 脲LGP 液化石油气LHPC 低替代度羟丙基纤维素LIM 液体侵渍模塑LIPN 乳胶互贯网络聚合物LJ 接体型氯丁橡胶LLDPE 线性低密度聚乙烯LM 低甲氧基果胶LMG 液态甲烷气LMWPE 低分子量聚乙稀LN 液态氮LRM 液态反应模塑LRMR 增强液体反应模塑LSR 羧基氯丁乳胶M英文缩写全称MA 丙烯酸甲酯MAA 甲基丙烯酸MABS 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯共聚物MAL 甲基丙烯醛MBS 甲基丙烯酸甲酯-丁二烯- 苯乙烯共聚物MBTE 甲基叔丁基醚MC 甲基纤维素MCA 三聚氰胺氰脲酸盐MCPA-6 改性聚己内酰胺(铸型尼龙6)MCR 改性氯丁冷粘鞋用胶MDI 3,3’-二甲基-4,4’-二氨基二苯甲烷MDI 二苯甲烷二异氰酸酯(甲撑二苯基二异氰酸酯) MDPE 中压聚乙烯(高密度) MEK 丁酮(甲乙酮)MEKP 过氧化甲乙酮MES 脂肪酸甲酯磺酸盐MF 三聚氰胺-甲醛树脂M-HIPS 改性高冲聚苯乙烯MIBK 甲基异丁基酮MMA 甲基丙烯酸甲酯MMF 甲基甲酰胺MNA 甲基丙烯腈MPEG 乙醇酸乙酯MPF 三聚氨胺-酚醛树脂MPK 甲基丙基甲酮M-PP 改性聚丙烯MPPO 改性聚苯醚MPS 改性聚苯乙烯MS 苯乙烯-甲基丙烯酸甲酯树脂MSO 石油醚MTBE 甲基叔丁基醚MTT 氯丁胶新型交联剂MWR 旋转模塑MXD-10/6 醇溶三元共聚尼龙MXDP 间苯二甲基二胺N英文缩写全称NBR 丁腈橡胶NDI 二异氰酸萘酯NDOP 邻苯二甲酸正癸辛酯NHDP 邻苯二甲酸己正癸酯NHTM 偏苯三酸正己酯NINS 癸二酸二异辛酯NLS 正硬脂酸铅NMP N-甲基吡咯烷酮NODA 己二酸正辛正癸酯NODP 邻苯二甲酸正辛正癸酯NPE 壬基酚聚氧乙烯醚NR 天然橡胶O英文缩写全称OBP 邻苯二甲酸辛苄酯ODA 己二酸异辛癸酯ODPP 磷酸辛二苯酯OIDD 邻苯二甲酸正辛异癸酯OPP 定向聚丙烯(薄膜)OPS 定向聚苯乙烯(薄膜) OPVC 正向聚氯乙烯OT 气熔胶P英文缩写全称PA 聚酰胺(尼龙)PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11)PA-12 聚十二酰胺(尼龙12)PA-6 聚己内酰胺(尼龙6)PA-610 聚癸二酰乙二胺(尼龙610)PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66)PA-8 聚辛酰胺(尼龙8)PA-9 聚9-氨基壬酸(尼龙9)PAA 聚丙烯酸PAAS 水质稳定剂PABM 聚氨基双马来酰亚胺PAC 聚氯化铝PAEK 聚芳基醚酮PAI 聚酰胺-酰亚胺PAM 聚丙烯酰胺PAMBA 抗血纤溶芳酸PAMS 聚α-甲基苯乙烯PAN 聚丙烯腈PAP 对氨基苯酚PAPA 聚壬二酐PAPI 多亚甲基多苯基异氰酸酯PAR 聚芳酰胺PAR 聚芳酯(双酚A型)PAS 聚芳砜(聚芳基硫醚)PB 聚丁二烯-[1,3]PBAN 聚(丁二烯-丙烯腈)PBI 聚苯并咪唑PBMA 聚甲基丙烯酸正丁酯PBN 聚萘二酸丁醇酯PBR 丙烯-丁二烯橡胶PBS 聚(丁二烯-苯乙烯)PBS 聚(丁二烯-苯乙烯)PBT 聚对苯二甲酸丁二酯PC 聚碳酸酯PC/ABS 聚碳酸酯/ABS树脂共混合金PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯)PCE 四氯乙烯PCMX 对氯间二甲酚PCT 聚对苯二甲酸环己烷对二甲醇酯PCT 聚己内酰胺PCTEE 聚三氟氯乙烯PD 二羟基聚醚PDAIP 聚间苯二甲酸二烯丙酯PDAP 聚对苯二甲酸二烯丙酯PDMS 聚二甲基硅氧烷R英文缩写全称RE 橡胶粘合剂RF 间苯二酚-甲醛树脂RFL 间苯二酚-甲醛乳胶RP 增强塑料RP/C 增强复合材料RX 橡胶软化剂S英文缩写全称S/MS 苯乙烯-α-甲基苯乙烯共聚物SAN 苯乙烯-丙烯腈共聚物SAS 仲烷基磺酸钠SB 苯乙烯-丁二烯共聚物SBR 丁苯橡胶SBS 苯乙烯-丁二烯-苯乙烯嵌段共聚物SC 硅橡胶气调织物膜SDDC N,N-二甲基硫代氨基甲酸钠SE 磺乙基纤维素SGA 丙烯酸酯胶SI 聚硅氧烷SIS 苯乙烯-异戊二烯-苯乙烯嵌段共聚物SIS/SEBS 苯乙烯-乙烯-丁二烯- 苯乙烯共聚物SM 苯乙烯SMA 苯乙烯-顺丁烯二酸酐共聚物SPP :间规聚苯乙烯SPVC 悬浮法聚氯乙烯SR 合成橡胶ST 矿物纤维T英文缩写全称TAC 三聚氰酸三烯丙酯TAME 甲基叔戊基醚TAP 磷酸三烯丙酯TBE 四溴乙烷TBP 磷酸三丁酯TCA 三醋酸纤维素TCCA 三氯异氰脲酸TCEF 磷酸三氯乙酯TCF 磷酸三甲酚酯TCPP 磷酸三氯丙酯TDI 甲苯二异氰酸酯TEA 三乙胺TEAE 三乙氨基乙基纤维素TEDA 三乙二胺TEFC 三氟氯乙烯TEP 磷酸三乙酯TFE 四氟乙烯THF 四氢呋喃TLCP 热散液晶聚酯TMP 三羟甲基丙烷TMPD 三甲基戊二醇TMTD 二硫化四甲基秋兰姆(硫化促进剂TT)TNP 三壬基苯基亚磷酸酯TPA 对苯二甲酸TPE 磷酸三苯酯TPS 韧性聚苯乙烯TPU 热塑性聚氨酯树脂TR 聚硫橡胶TRPP 纤维增强聚丙烯TR-RFT 纤维增强聚对苯二甲酸丁二醇酯TRTP 纤维增强热塑性塑料TTP 磷酸二甲苯酯U英文缩写全称U 脲UF 脲甲醛树脂UHMWPE 超高分子量聚乙烯UP 不饱和聚酯VV AC 醋酸乙烯酯V AE 乙烯-醋酸乙烯共聚物V AM 醋酸乙烯V AMA 醋酸乙烯-顺丁烯二酐共聚物VC 氯乙烯VC/CDC 氯乙烯/偏二氯乙烯共聚物VC/E 氯乙烯/乙烯共聚物VC/E/MA 氯乙烯/乙烯/丙烯酸甲酯共聚物VC/E/V AC 氯乙烯/乙烯/醋酸乙烯酯共聚物VC/MA 氯乙烯/丙烯酸甲酯共聚物VC/MMA 氯乙烯/甲基丙烯酸甲酯共聚物VC/OA 氯乙烯/丙烯酸辛酯共聚物VC/V AC 氯乙烯/醋酸乙烯酯共聚物VCM 氯乙烯(单体)VCP 氯乙烯-丙烯共聚物VCS 丙烯腈-氯化聚乙烯-苯乙烯共聚物VDC 偏二氯乙烯VPC 硫化聚乙烯VTPS 特种橡胶偶联剂W英文缩写全称WF 新型橡塑填料WP 织物涂层胶WRS 聚苯乙烯球形细粒X英文缩写全称XF 二甲苯-甲醛树脂XMC 复合材料Y英文缩写全称YH 改性氯丁胶YM 聚丙烯酸酯压敏胶乳YWG 液相色谱无定型微粒硅胶Z英文缩写全称ZE 玉米纤维ZH 溶剂型氯化天然橡胶胶粘剂ZN 粉状脲醛树脂胶此外,有关化学试剂按杂质含量的多少分:实验试剂:缩写为LR,又称四级试剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A+ FlowTek计算软件 版本号为2.02 计算日期和时间 ______________ 节流元件:平衡流量计-流体质量流量-规格设计 ______________ 设计人:PBX 项目名称 位号: FE12102,12103 项目编号: 型号: AKPPD001C28MBMBN 介质名称:水 ______________ 管道规格 内径:0.8661英寸 公称直径:1英寸 DN25 壁厚 无数据 (此项已在型号中体现,所此项添为空) 管的粗糙度:0.00015ft 管道材质:304 ______________ 平衡流量计规格 取压口海拔高度变化(一般情况下,该值取0) ß 为0.7 ______________ 流体状态过程数据 刻度流量:4000 kg/h 气体标况状态:32℉(0℃) 1标准大气压 温度=253.8 ° C 压力=4.15 (MPa)g 压缩系数=1.000142 摩尔质量=11.648 等熵指数=1.361493 密度=793.4959 kg/m³ 动力粘度= 0.1041524CP 蒸发压力=614.8591 psia 注意:流体状态计算包括管道/节流原件的热膨胀效应 平衡流量计设计基础 刻度差压 = 24.21582 kPa 流体压差 = 24.21582 kPa 海拔高度对应的大气压相对变化= 0 kPa 压力损失= 5.970988 kPa 压力恢复 = 75.34261 % 流量系数= 0.8385 雷诺数= 617384.1
A+K计算书中英文对照表(举例说明)
A+ FlowTek Program Suite Ver. #2.0.2 Friday, August 22, 2008 17:17:01 ______________ Flow Element: Balanced Flow Meter - Liq Mass Flow, Sizing and Design ______________ Engineer: PBX Project Name: Tag No.:FE12102,12103 Project Number: Model:AKPPD001C28MBMBN Fluid:WATER ______________ Pipe Specifications:(User Spec:) Pipe ID = 0.8661 Inch Diameter = 1'' Schedule = N/A Pipe Roughness = 0.00015 Steel (ft) Material = 304 ______________ Balanced Flow Meter Specifications: Tap Elevation Change = 0 ft Beta(ß Ratio = 0.7 (BETA RATIO) ) ______________ Process Data at Flowing Conditions: Mass Flow= 4000 kg/hr Standard Gas Volume Flow = @ 32 癋 and 1 ATM Temperature = 253.8 ° C Pressure = 4.15 (MPa)g Compressibility = 1.000142 Compressibility Molecular Weight = 11.648 (Cp/Cv Ratio = 1.361493 Density = 793.4959 kg/m³ Viscosity = 0.1041524 centipoise Vapor Pressure = 614.8591 psia Note: Pipe/Flow-Element thermal expansion effects at flowing conditions included in sizing and fabrication specifications. Balanced Flow Meter Flow Element Design Basis: Tap Pressure Drop = 24.21582 kPa Flow Pressure Drop = 24.21582 kPa Elevation Pressure Change = 0 kPa Permanent Pressure Loss = 5.970988 kPa Pressure Recovery = 75.34261 % Total Cd = 0.8385 Reynolds No. = 617384.1 Molecular Weight Cp/Cv Ratio)