人教版数学九年级上册第二十四章圆 测试题附答案

合集下载

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。

【单元练】人教版初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)

【单元练】人教版初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)

一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245C 解析:C【分析】 先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°,∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =+=+=.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104πB解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.如图,分别以AB,AC为直径的两个半圆,其中AC是半圆O的一条弦,E是弧AEC中点,D是半圆ADC中点.若DE=2,AB=12,且AC˃6,则AC长为()A.2B.2C.2D.2D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80πB解析:B【分析】 先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .πA解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102解析:C【分析】 根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A.8 B.6 C.4 D.2A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222=-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒D解析:D【分析】连接AC,根据圆心角、弧、弦的关系求出∠BAC,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.10.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题11.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,12⎛+ ⎝⎭332⎛ ⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得632JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒∴1122FH AF == ∵已知点M 的纵坐标是312+,即312MH =+ ∴点M 的坐标是:13,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,226632JM CM CJ =-= ∵点I 是正六边形的中心∴1IC IF ==∴32JF IF IC CJ =+-=∴点6M 的坐标是:33,22⎛⎫ ⎪ ⎪⎝⎭. 故答案是:13,122⎛⎫+ ⎪ ⎪⎝⎭;33,22⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.12.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________. 【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵22(32)310MB =-+=∴⊙M 10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.13.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE的长为最大值,∵AO=OC=OE,且AB=AC=4,∴122OE AC==又∵∠BAC=90°∴22222BO AO AB=+=+=4220∴25BO=∴BE=252+=+BO OE+故答案为:225【点睛】此题主要考查了求线段的最大值,构造出△ACE的外接贺是解答本题的关键.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.BC=,若点P是矩形ABCD上一动点,要使得18.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.或4或8【分析】取CD中点P1连接60APBAP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B =60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:434或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=3△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米. 65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.解析:(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD -=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD =-=-=. ∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.解析:证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==解析:(1)证明见解析;(2)364π- 【分析】 (1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 60133360464AOT AOTS S ππ⨯=-=-=-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD 交于圆一点P ,连接AP ,同理可证AP 即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 解析:(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ. 【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.解析:(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒,根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE , ∵AE 是O 的直径, ∴90ACE ∠=︒, ∵52ACB ∠=︒, ∴905238BCE ∠=︒-︒=︒, ∴38BAE BCE ∠=∠=︒, ∵AB AD =, ∴71ABD ADB ∠=∠=︒, ∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.。

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB=180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D (1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2, 故选:C .12.解:连接OD ,∵DF 为圆O 的切线,∴OD ⊥DF ,∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°, ∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠ABC =∠DOC =60°, ∴OD ∥AB ,∴DF ⊥AB ,在Rt △AFD 中,∠ADF =30°,AF =2, ∴AD =4,即AC =8,∴FB =AB ﹣AF =8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点,∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO ,并延长交⊙O 于N ,连接BC ;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.。

2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)

2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)

第二十四章圆单元检测题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中,正确的是( )A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形2.已知☉O的半径为6,圆心O到直线l的距离为7,则直线l与☉O的位置关系是( )A.相离B.相交C.相切D.无法确定3.(2023自贡)如图所示,△ABC内接于☉O,CD是☉O的直径,连接BD,∠DCA=41°,则∠ABC的度数是( )第3题图A.41°B.45°C.49°D.59°4.圆锥的底面圆的半径r=3,高h=4,则圆锥的侧面积是( )A.10πB.15πC.30πD.45π5.如图所示,☉O的直径为10,弦AB的长为6,P为弦AB上的动点,则线段OP的取值范围是( )第5题图A.3<OP<5B.3≤OP≤5C.4<OP<5D.4≤OP≤56.如图所示,四边形ABCD内接于☉O,F是CD上一点,且DF=BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°7.如图所示,☉O是△ABC的外接圆,∠BAC=60°,若☉O的半径OC为2,则弦BC的长为( )第7题图A.4B.23C.338.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )2 B.22-22 D.2-29.(2022娄底改编)如图所示,等边三角形内切圆中的黑色部分和白色部分关于等边三角形ABC 的内心成中心对称,则圆中的黑色部分的面积与△ABC 的面积之比是( )第9题图3π18 B.3183π9 D.3910.(2022广大附中一模)如图所示,点A,B 的坐标分别为A(2,0), B(0,2),点C 为坐标平面内一点,BC=1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )2+1 B.2+12C.22+1D.22-12二、填空题:本大题共5小题,每小题3分,共15分.11.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设 .12.如图所示,C为AB的中点,CN⊥OB于点N,CD⊥OA于点M,CD=4 cm,则CN= cm.13.已知圆心角为120°的扇形的面积为12π cm2,则扇形的弧长是 cm.14.如图所示,☉O的半径为1,PA,PB是☉O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为 .第14题图15.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示),让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得AB的中点C到AB的距离CD=1.6 cm,AB=6.4 cm,则求得圆形瓦片所在圆的半径为 cm.第15题图三、解答题(一):本大题3小题,第16题10分,第17,18题各7分,共24分.16.(1)(2022湘潭节选)如图所示,在☉O中,直径AB与弦CD相交于点E,连接AC,BD,AD.若AD=3,∠C=30°,求☉O的半径.(2)如图所示,扇形OAB的圆心角为120°,半径OA为6 cm.若把扇形纸片OAB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.17.如图所示,四边形ABCD内接于☉O,AB=AD,∠C=110°,若点E在AD 上,求∠E的度数.18.(2022珠海一模改编)如图所示,已知AB是☉O的直径,直线CD是☉O的切线,过点A作AD⊥CD,垂足为D,直线CD与AB的延长线交于点E.当AB=2BE,且CE=3时,求AD的长.四、解答题(二):本大题3小题,每小题9分,共27分.19.(原创)综合与实践素材:一张三角形纸板.操作:如图(1)所示,将一块三角形纸板ABC,准备裁剪成一个面积最大的圆形,已知∠C=90°,BC=3,AC=4.如图(2)所示,作△ABC的内切圆☉O,切点分别为D,E,G,连接OG,OD,OE.解决问题:请求出裁剪出的最大圆形面积.20.(2022眉山改编)如图所示,AB为☉O的直径,点C是☉O上一点,CD 与☉O相切于点C,过点B作BD⊥DC,连接AC,BC.(1)求证:BC平分∠ABD;(2)若BC=23,AB=4,求阴影部分的面积.21.(2022新疆节选)如图所示,☉O是△ABC的外接圆,AB是☉O的直径,点D在☉O上,AC=CD,连接AD,延长DB交过点C的切线于点E.求证:(1)∠ABC=∠CAD;(2)BE⊥CE.五、解答题(三):本大题2小题,每小题12分,共24分.22.(2022金华)综合探究如图(1)所示,正五边形ABCDE内接于☉O,阅读以下作图过程,并回答下列问题:作法如图(2)所示.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与☉O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN是正三角形吗?请说明理由;(3)从点A开始,以DN长为半径,在☉O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.23.(2022宁波)综合运用如图(1)所示,☉O为锐角三角形ABC的外接圆,点D在BC上,AD交BC 于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连接BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD;(2)求证:△BDE≌△FDG;(3)如图(2)所示,若AD为☉O的直径,当AB的长为2时,求AC的长.答案:一、选择题1.D2.A3.C4.B5.D6.B7.B8.B9.A 10.B二、填空题11.∠B≥90° 12.2 13.4π 14.33 15.4三、解答题(一)16.(1)解:∵∠C=∠B,∠C=30°,∴∠B=30°.∵AB是☉O的直径,AD=3,∴∠ADB=90°.∴AB=6.∴☉O的半径为3.(2)如图所示,设圆锥底面圆的半径为r,所以2πr=4π,解得r=2,在Rt△OHC中,HC=2,OC=6,所以OH=OC2-H C2=42(cm).17.解:如图所示,连接BD,∵∠C+∠BAD=180°,∠C=110°,∴∠BAD=180°-110°=70°.∵AB=AD,∴∠ABD=∠ADB.×(180°-70°)=55°.∴∠ABD=12∵四边形ABDE是☉O的内接四边形,∴∠E+∠ABD=180°.∴∠E=180°-55°=125°.18.解:如图所示,连接OC,∵直线CD为☉O的切线,∴∠OCE=90°.∵AB=2BO,AB=2BE,∴BO=BE=CO.设BO=BE=CO=x,∴OE=2x.在Rt△OCE中,根据勾股定理,得OC2+CE2=OE2,即x2+(3)2=(2x)2.∴x=1.∴AE=3,∠E=30°.∴AD=32.四、解答题(二)19.解:∵∠C=90°,BC=3,AC=4,OG=OE=OD,∴AB=32+42=5.∴S △ABC =12AC×BC=12AC×OG+12BC×OE+12AB×OD=12OG×C △ABC ,即12AC×BC=12OG×C △ABC .∴12×3×4=12×OG×(3+4+5),解得OG=1,∴裁剪出的最大圆形面积为π×12=π.20.(1)证明:连接OC,如图所示,∵CD 与☉O 相切于点C,OC 为半径,∴OC ⊥CD.∵BD ⊥CD,∴OC ∥BD.∴∠OCB=∠DBC.∵OC=OB,∴∠OCB=∠OBC.∴∠DBC=∠OBC.∴BC 平分∠ABD.(2)解:如图所示,作CE ⊥AO 于点E,∵AB是直径,AB=4,∴∠ACB=90°,OA=OC=2.在Rt△ABC中,AC=AB2-B C2=42-(23)2=2,∴AO=CO=AC=2.∴△AOC是等边三角形.∴∠AOC=60°.∵CE⊥OA,∴OE=12OA=1.∴CE=3.∴阴影部分的面积S=60×π×22360-12×2×3=2π3-3.21.证明:(1)∵AC=CD,∴∠CAD=∠ADC.∵∠ABC=∠ADC,∴∠ABC=∠CAD.(2)如图所示,连接OC,∵CE与☉O相切于点C,∴∠OCE=90°.∵四边形ADBC是圆内接四边形,∴∠CAD+∠DBC=180°.∵∠DBC+∠CBE=180°,∴∠CAD=∠CBE.∵∠ABC=∠CAD,∴∠CBE=∠ABC.∵OB=OC,∴∠OCB=∠ABC.∴∠OCB=∠CBE.∴OC∥BE.∴∠E=180°-∠OCE=90°.∴BE⊥CE.五、解答题(三)22.解:(1)∵五边形ABCDE是正五边形,∴∠ABC=(5-2)×180°=108°,5即∠ABC=108°.(2)△AMN是正三角形.理由如下:如图所示,连接ON,NF,由题意,得FN=ON=OF,∴△FON是等边三角形.∴∠NFA=60°.∴NMA=60°.同理,得∠ANM=60°,∴∠MAN=60°.∴△MAN是正三角形.(3)∵∠AMN=60°,∴∠AON=120°.×2=144°,∵∠AOD=360°5∴∠NOD=∠AOD-∠AON=144°-120°=24°.∵360°÷24°=15,∴n的值是15.23.(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,.∴∠BFD=90°-α2,(2)证明:由(1),得∠BFD=90°-α2∵∠ADB=∠ACB=α,.∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴∠BFD=∠FBD.∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.在△BDE 和△FDG 中,{DB =DF ,∠DBE =∠DFG ,BE =FG ,∴△BDE ≌△FDG(SAS).(3)解:∵△BDE ≌△FDG,∴∠FDG=∠BDE=α,DE=DG.∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2.∴∠DBG=180°-∠BDG-∠DGE=90°-3α2.∵AD 是☉O 的直径,∴∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2.∴AC 与AB 所对的圆心角度数之比为3∶2.∴AC 与AB 的长度之比为3∶2.∵AB =2,∴AC =3.。

人教版九年级数学上册《第二十四章圆》单元检测卷带答案

人教版九年级数学上册《第二十四章圆》单元检测卷带答案

人教版九年级数学上册《第二十四章圆》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知点A为⊙O内的一点,且⊙O的半径为5cm,则线段OA的长度可能是()A.3cm B.5cm C.6cm D.7cm⌢的中点,半径OC交弦AB于点D,已知OC=5,AB=8,则CD的长为()2.如图,在⊙O中,点C为ABA.2B.√5C.√7D.33.如图,点A、B、C在⊙O上∠ACB=55°,则∠ABO的度数是()A.30°B.35°C.40°D.55°4.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=15°,则∠C的度数是()A.45°B.65°C.60°D.70°5.如图,点O是△ABC内切圆的圆心,已知∠ABC=50°,∠ACB=80°,则∠BOC的度数是()A.100°B.115°C.125°D.130°6.如图,四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,若∠BEC=20°,则∠ADC的度数为()A.100°B.110°C.120°D.130°7.如图,过正六边形内切圆圆心的两条直线夹角为60°,圆的半径为√3,则图中阴影部分面积之和为()A.π−√3B.π−23√3C.√3−23πD.√3−12π8.如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则BC⌢的长为()A.6πB.2πC.32πD.π二、填空题9.如图,AB是⊙O的直径,弦CD⊥AB交于点E,若OE=4,CE=3,则⊙O的半径为.10.如图,四边形ABCD内接于⊙O,点M在AD的延长线上∠CDM=71°,则∠AOC=.11.如图,AB是⊙O的直径,DE切⊙O于点E,BD⊥DE于点D,交⊙O于点C.若AB=5,BC=3,则CD=.12.如图,在正八边形ABCDEFGH中,连接AC、AE,则∠CAE的度数是.13.如图:一把折扇的骨架长是 30 厘米,扇面宽为 20 厘米,完全展开时圆心角为135°,扇面的面积为平方厘米.三、解答题14.如图,在△ABC中AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.(1)求证:BE=CE;(2)若AB=6,∠BAC=54°,求AD⏜的长.15.如图,AB是⊙O的直径,C是BD⏜的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.16.如图,在△ABC中BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD;(2)求证:DE为⊙O的切线.17.如图,水平放置的圆柱形排水管的截面半径为12cm,截面中有水部分弓形的高为6cm.(1)求截面中弦AB的长;(2)求截面中有水部分弓形的面积.18.如图,直角三角形ABC中,∠C=90°,点E为AB上一点,以AE为直径的⊙O上一点D在BC上,且AD平分∠BAC.(1)证明:BC是⊙O的切线;(2)若BD=4,BE=2,求AB的长.参考答案1.A2.A3.B4.C5.B6.B7.D8.D9.510.142°11.112.45°13.187.5π14.(1)证明:如图,连接AE.∵AB是圆O的直径∴∠AEB=90°即AE⊥BC.又∵AB=AC∴AE是边BC上的中线∴BE=CE;(2)解:∵AB=6∴OA=3.又∵OA=OD,∠BAC=54°∴∠AOD=180°−2×54°=72°∴AD⏜的长为:72×π×3180=6π5.15.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∴∠A=90°-∠ABC.∵CE⊥AB∴∠ECB=90°-∠ABC∴∠ECB=∠A.又∵C是BD⌢的中点∴CD⌢=BC⌢∴∠DBC=∠A∴∠ECB=∠DBC∴CF= BF ;(2)解:∵BC⌢=CD ⌢ ∴BC=CD=6.在Rt △ABC 中,AB= √BC 2+AC 2=√62+82=10 ∴⊙O 的半径为5;∵S △ABC = 12AB ×CE= 12BC ×AC∴CE= BC×AC AB =6×810=245.16.(1)证明:∵AB 为直径∴∠ADB =90° ∵BA =BC ∴AD =CD ;(2)证明:连接OD ,如图∵AD =CD ,AO =OB∴OD 为△BAC 的中位线∴OD ∥BC ∴DE ⊥BC ∴OD ⊥DE ∴DE 为⊙O 的切线.17.(1)解:如图:作OC ⊥AB 交⊙O 于D ,连结OB∴OB=12cm.∵O是圆心OC⊥AB∴AB=2BC∵CD=6cm∴OC=OD−CD=12−6=6(cm)∴BC=√OB2−OC2=√122−62=6√3(cm)∴AB=2BC=12√3cm.即弦AB长12√3cm.(2)解:连结OA∵OC⊥AB,OB=2OC∴∠BOC=60°∴∠AOB=120°∴S弓形=120360π×122−12×12√3×6=48π−36√3(cm2).即截面中有水部分弓形的面积为(48π−36√3)cm2.18.(1)证明:连接ODAD平分∠BAC ∴∠1=∠2∵OA=OD ∴∠2=∠3 ∴∠1=∠3∴AC//OD∵∠C=90°∴∠ODE=90°,即OD⊥BC ∵OD是半径∴BC是⊙O的切线(2)解:设OD=OE=r在Rt△ODB中,BD=4,BE=2,故OB=r+2由勾股定理,得:r2+42=(r+2)2解之,得:r=3故OD=OA=OE=3,AB=6+2=8.。

【3套】人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)

【3套】人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)

人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC =3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB 的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB =180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。

人教版初中九年级数学上册第二十四章《圆》习题(含答案解析)

人教版初中九年级数学上册第二十四章《圆》习题(含答案解析)

一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,AB 是О的直径,,CB CD 是О的弦,且,CB CD CD =与AB 交于点E ,连接OD .若40,AOD ∠=︒则D ∠的度数是( )A .20B .35C .40D .55 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π 5.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°6.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 7.已知O 的半径为4,点P 在O 外,OP 的长可能是( ) A .2 B .3 C .4 D .5 8.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .4 9.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠10.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.22+1 B.22+2 C.42+1 D.42-211.如图,⊙O的半径为1,点 O到直线a的距离为2,点 P是直线a上的一个动点,PA 切⊙O于点 A,则 PA的最小值是()A.1 B.3C.2 D.512.如图,AB为圆O的直径,点C在圆O上,若∠OCA=50°,OB=2,则弧BC的长为()A.103πB.59πC.109πD.518π13.如图,点M是矩形ABCD的边BC、CD上的点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP,若AB=6,AD=4,则DP的长的最小值为()A.2 B.121313C.4 D.514.如图,△ABC内接于☉O,若☉O的半径为6,∠A=60°,则BC的长为()A .2πB .4πC .6πD .8π 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.已知O 的面积为π,则其内接正六边形的边长为______.18.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB=BC ,连结OB 、OC ,延长CO 交弦AB 于D ,若△OBD 是直角三角形,则弦BC 的长为______________.19.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.20.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.21.如图,AB AC 、分别为O 的内接正方形、内接正三角形的边,BC 是圆内接正n 边形的一边,则n 的值为_______________________.22.如图,正方形 ABCD 中,点 E 是 CD 边上一点,连接 AE ,过点 B 作 BG ⊥AE 于点 G , 连接 CG 并延长交 AD 于点 F ,当 AF 的最大值是 2 时,正方形 ABCD 的边长为______.23.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;24.如图,半径为3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则OC =_____.25.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.26.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题27.如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =NE =3.(1)求证:BC 是⊙O 的切线;(2)若AE =4,求⊙O 的直径AB 的长度.28.如图,四边形ABCD 内接于O ,AB AC =,BD AC ⊥,垂足为E .(1)若40BAC ∠=︒,求ADC ∠的度数;(2)求证:2BAC DAC ∠=∠.29.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.30.如图,在平面直角坐标系xOy 中,A (0,1),点P (t ,0)为x 轴上一动点(不与原点重合).以P 为圆心,PA 为半径的⊙P 与x 轴正半轴交于点B ,连接AB ,以AB 为直角边在AB 的右上方作等腰直角三角形ABC ,且∠BAC =90°,直线BC 于⊙P 的另一个公共点为F ,连接PF .(1)当t = 2时,点C的坐标为(,);(2)当t >0时,过点C作x轴的垂线l.①判断当点P运动时,直线l的位置是否发生变化?请说明理由;②试说明点F到直线l的距离始终等于OP的长;(3)请直接写出t为何值时,CF=2BF.。

新人教版九年级数学上册《第二十四章圆》测试题(含答案)

新人教版九年级数学上册《第二十四章圆》测试题(含答案)

九年级上册第二十四章圆测试题(答案)学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 12 小题,每小题 3 分,共 36 分)1.如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r2.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180∘B.150∘C.135∘D.120∘3.弧长等于半径的圆弧所对的圆心角是()A.360∘πB.180∘πC.90∘πD.60∘4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠DB.CB^=BD^C.∠ACB=90∘D.∠COB=3∠D5.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90∘B.OE=BEC.BD=BCD.△BDE∽△CAE6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40∘,则∠P的度数为()A.140∘B.70∘C.60∘D.40∘7.如图,平面直角坐标系中,A、B两点的坐标分别为(6, 0)、(0, 8),以AB为直径的圆与直线y=x交于点P,则点P的坐标是()A.(6.5, 6.5)B.(7, 7)C.(7.5, 7.5)D.(8, 8)8.如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为()A.1B.√2C.√3D.2√39.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定10.一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为()A.6B.12C.24D.2√311.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()A.1 12πr2B.16πr2 C.14πr2 D.124πr212.如图,AB是⊙O的直径,C是半圆AB^上一点,连AC、OC,AD平分∠BAC,交BC^于D,交OC于E,连OD,CD,下列结论:①BD^=CD^;②AC // OD;③∠ACD=∠OED;④当C是半圆AB^的中点时,则CD=DE.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④二、填空题(共 6 小题,每小题 3 分,共 18 分)13.已知⊙O的半径为4cm,A为线段OP的中点,当OP=7cm时,点A与⊙O的位置关系是________.14.已知⊙O的半径为10cm,如果圆心O到直线的距离为10cm,那么圆和直线的位置关系________.15.如图,实线部分是半径为15m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长是________m.16.某中学的铅球场如图所示,已知扇形OAB的面积是18π米2,弧AB的长度为6π米,那么圆心角为________度.17.一个圆锥的底面半径为3cm,高为4cm,则这个圆锥的表面积为________.18.如图,菱形ABCD中,对角线AC、BD交于O点,分别以A、C为圆心,AO、CO为半径画圆弧,交菱形各边于点E、F、G、H,若AC=2√3,BD=2,则图中阴影部分的面积是________.三、解答题(共 6 小题,每小题 11 分,共 66 分)19.如图,在���形铁片ABCE上剪下以A为圆心,AD为半径的扇形,再在余下的部分剪下一个尽可能大的圆形铁片,如果要使这个圆形铁片恰好是扇形铁片所做成的圆锥的底面,那么矩形铁片的长a和宽b应满足什么条件?20.如图,已知点A、点B、点C、点D在⊙O上,CD为∠ACE的角平分线.求证:△ABD为等腰三角形.21.一圆柱形排水管的截面如图所示,已知排水管的半径为5m,水面宽AB为8m.由于天气干燥,水管水面下降,此时排水管水面宽变为6m,求水面下降的高度.22.如图,点A、B、C、D为⊙O上的一点,若∠A=40∘,求∠OCB的度数.23.如图所示,已知一个圆的外切正方形的边长为4cm,求这个圆的内接正三角形的边心距?边长?24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30∘,DE=1cm,求BD的长.答案1.B2.A3.B4.D5.B6.B7.B8.D9.C10.A11.B12.B13.点A在圆内14.相切15.40π16.18017.24πcm218.2√3−π19.解:∵AB=b,∠B=90∘,∴AE^=90πb180=bπ2,设⊙O与AD、CD分别相切于F、G,连接FO并延长交BC于H,则FH垂直于AD,OG垂直于CD,可得矩形ABHF、矩形CDFH、矩形CGOH和正方形DFOG,∴FE⊥BC,设OG=OF=r,则2πr=bπ2,解得:r=b4,∴AD=BC=a=AF+FD=b+b4,整理得:4a=5b.20.证明:∵点A、点B、点C、点D在⊙O上,∴∠DCB+∠DAB=180∘,∵∠DCB+∠DCE=180∘,∴∠DCE=∠DAB.∵CD为∠ACE的角平分线,∴∠DCE=∠DCA,∵∠DCA=∠DBA,∴∠DBA=∠DAB,∴△ABD为等腰三角形.21.水面下降了1米.22.解:∵∠A=40∘,∴∠BOC=80∘,∵BO=CO,∴∠OCB=(180∘−80∘)÷2=50∘.23.解:连接OG,过点O作OE⊥GF于点E,∵圆的外切正方形的边长为4cm,∴OG=2cm.∵△FHF是正三角形,∴∠OGE=30∘,∴OE=12OG=1m,GE=OG⋅cos30∘=1×√32=√32,∴GF=2GE=√3.24.(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA // CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90∘.∵∠DBC=30∘,∠BDC=60∘,∴∠BDE=120∘.∵DA平分∠BDE,∴∠BDA=∠EDA=60∘.∴∠ABD=∠EAD=30∘.∵在Rt△AED中,∠AED=90∘,∠EAD=30∘,∴AD=2DE.∵在Rt△ABD中,∠BAD=90∘,∠ABD=30∘,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.。

九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文

九年级数学上册《第二十四章 圆》单元测试卷带答案(人教版)精选全文

可编辑修改精选全文完整版九年级数学上册《第二十四章圆》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是()A.AB经过圆心O B.AB是直径C.AB是直径,B是切点D.AB是直线,B是切点2.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25∘,则∠BOD的度数是()A.25∘B.30∘C.40∘D.50∘3.如图,⊙O的半径OD垂直于弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为()A.2√15B.8C.2√10D.2√134.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO.则图中阴影部分的面积之和()A.10−32πB.14−52πC.12 D.145.如图,点A,B,C在⊙O上,若∠BOC=72∘,则∠BAC的度数是( )A.72∘B.36∘C.18∘D.54∘6.如图,在半径为5的⊙O中AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A.3B.4C.3√2D.4√27.如图,已知OB为⊙C的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD长为( )A.3cm B.6cm C.12cm D.24cm8.如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(−1,2),则点Q的坐标是( )A.(−4,2)B.(−4.5,2)C.(−5,2)D.(−5.5,2)二、填空题9.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120∘,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为.(结果保留π)10.在半径为3cm的圆中,120∘的圆心角所对的弧长等于.11.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50∘,则∠AOD=.12.如图所示,点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP= 4,PB=2则PC的长为.13.如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9则⊙O的半径是.三、解答题14.已知:点I是△ABC的内心,AI的延长线交外接圆于D.则DB与DI相等吗?为什么?15.如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且∠DAE=∠DAC.求证:DB=DC.16.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.17.如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)如果DC⊥OE,求证:△ABE是等边三角形.18.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC.(2)若PC=2 √5,求⊙O的半径.参考答案1.C2.A3.C4.B5. B6. C7. C8. A9. 350πcm210. 2πcm11. 80°12. 2√213. 514.解:ID=BD.理由:如图所示:连接BI.由三角形的外角的性质可知:∠1+∠2=∠BIA.∵点I是△ABC的内心∴∠1=∠4,∠2=∠3.又∵∠4=∠5∴∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD.∴ID=BD.15.证明:∵∠DAE是⊙O的内接四边形ABCD的一个外角,∴∠DAE=∠DCB,又∠DAE=∠DAC,∴∠DCB=∠DAC,又∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC16.解:如图,连接OD∵OD=OA∴∠ODA=∠DAB=30°∴∠DOB=∠ODA+∠DAB=60°∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°即OD⊥BD∴直线BD与⊙O相切.17.(1)证明:∵四边形ABCD是⊙O的内接四边形∴∠A=∠DCE∵DC=DE∴∠DCE=∠DEC∴∠A=∠AEB(2)证明:∵DC⊥OE∴DF=CF∴OE是CD的垂直平分线∴ED=EC,又DE=DC∴△DEC为等边三角形∴∠AEB=60°,又∠A=∠AEB∴△ABE是等边三角形.18.(1)证明:连接OB∵OB=OP∴∠OPB=∠OBP∵∠OPB=∠APC∴∠OBP=∠APC∵AB与⊙O相切于点B∴OB⊥AB∴∠ABO=90°∴∠ABP+∠OBP=90°∵OA⊥AC∴∠OAC=90°∴∠ACB+∠APC=90°∴∠ABP=∠ACB∴AB=AC(2)证明:设⊙O的半径为r在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2 在Rt△ACP中,AC2=PC2﹣PA2AC2=(2 √5)2﹣(5﹣r)2∵AB=AC∴52﹣r2=(2 √5)2﹣(5﹣r)2 解得:r=3则⊙O的半径为3。

人教版九年级数学上《第二十四章圆》单元测试题含答案

人教版九年级数学上《第二十四章圆》单元测试题含答案

第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。

人教版九年级上册数学 第二十四章 圆 能力提升测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 能力提升测试卷(含答案解析)

人教版九年级上册数学第二十四章圆能力提升测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.如图,OA,OB是O的两条半径,点C在O上,若80∠的度数为( )∠=︒,则CAOBA.30︒B.40︒C.50︒D.60︒2.下列说法中,不正确的是( )A.圆既是轴对称图形,又是中心对称图形B.圆绕着它的圆心旋转任意角度,都能与自身重合C.圆的对称轴有无数条,对称中心只有一个D.圆的每一条直径都是它的对称轴3.如图,AB为O的直径,弦CD ABBE=,则O的直径为CD=,4⊥于点E,已知16( )A.8B.10C.15D.204.如图,ABCAC=,5BC=,D,E分别是AC,AB的中点,则以DEAB=,4△中,3为直径的圆与BC的位置关系是( )A.相切B.相交C.相离D.无法确定5.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿AC折叠,AC恰好经过点O,则BC与AC的关系是( )A.12BC AC =B.13BC AC =C.BC AC =D.不能确定6.如图,四边形ABCD 内接于O ,点I 是ABC 的内心,124AIC ∠=︒,点E 在AD 的延长线上,则CDE ∠的度数是( )A.56°B.62°C.68°D.78°7.如图,M 的半径为2,圆心M 的坐标为()3,4,点P 是M 上的任意一点,PA PB ⊥,且PA ,PB 与x 轴分别交于A ,B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A.3B.4C.6D.88.如图,O 的周长等于4πcm ,则它的内接正六边形ABCDEF 的面积是( )23cm B.233 C.23 D.23cm9.如图,AB 是O 的直径,将弦AC 绕点A 顺时针旋转30°得到AD ,此时点C 的对应点D 落在AB 上,延长CD ,交O 于点E ,若4CE =,则图中阴影部分的面积为( )A.2πB.2C.24π-π- D.22210.13O中,弦AB与CD交于点E,75AB=,∠=︒,6DEBAE=,则CD的长是( )1A.26B.210C.211D.43二、填空题(每小题4分,共20分)11.图①是由若干个相同的图形(图②)组成的美丽图案的一部分,图②中,图形的相关数据:半径2AOB∠=︒.则图②的周长为____________cm(结果保留π).OA=cm,12012.如图,O的两条相交弦AC,BD,60AC=,连接AB,则OACB CDB∠=∠=︒,23的面积是___________.13.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出3AB=cm,则此光盘的直径是____________cm.。

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。

人教版九年级上册数学第二十四章测试卷附答案

人教版九年级上册数学第二十四章测试卷附答案

人教版九年级上册数学第二十四章测试题一、单选题1.下列说法正确的是( )A .同圆或等圆中弧相等,则它们所对的圆心角也相等B .90°的圆心角所对的弦是直径C .平分弦的直径垂直于这条弦D .三点确定一个圆2.已知⊙O 的直径为4cm ,点P 与圆心O 之间的距离为4cm ,那么点P 与⊙O 的位置关系为( )A .在圆上B .在圆内C .在圆外D .不能确定 3.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶44.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .83π-B .163π-C .163π-D .83π-5.如图,王大伯家屋后有一块长12m 、宽8m 的长方形空地,他在以较长边BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过( )A .3mB .4mC .5mD .6m6.如图,AB 、CD 是O 的两条弦,且AB CD =.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,连接OP .下列结论正确的个数是( ) ①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠A.1个B.2个C.3个D.4个7.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A B.C D.8.在截面为半圆形的水槽内装有一些水,如图水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽度变为8分米.则该水槽截面半径为()A.3分米B.4分米C.5分米D.10分米9.如图,已知圆周角∠BAC=40°,那么圆心角∠BOC的度数是()A.40B.60C.80D.10010.已知如图,在⊙O中,OA⊥OB,∠A=35°,则弧CD的度数为()A.20°B.25°C.30°D.35°二、填空题11.如图,小明做实验时发现,当三角板中30°角的顶点A在⊙O上移动,三角板的两边与⊙O相交于点P、Q时,PQ的长度不变.若⊙O的半径为9,则PQ长为________.12.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5BC的长为_____.13.如图,边长相等的正五边形和正六边形拼接在一起,则∠ABC的度数为________.14.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是________.15.如图,⊙O是△ABC的外接圆,∠OCB=30°,则∠A的度数等于____.三、解答题16.已知:如图,A,B,C,D是⊙O上的点,且AB=CD,求证:∠AOC=∠BOD.17.如图,点A,B,C,D在⊙O上,连结AB,CD,BD,若AB=CD.求证:∠ABD=∠CDB.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,AB的长.19.如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B 重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数.20.已知等边三角形ABC.(1)用尺规作图找出△ABC外心O.(2)记外心O到三角形三边的距离和为d,到三角形三个顶点的距离和为D,求dD的值21.如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE22.已知:如图,AB为半圆O的直径,C、D是半圆O上的两点,若直径AB的长为4,且BC=2,∠DAC=15°.(1)求∠DAB的度数;(2)求图中阴影部分的面积(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB于点E,在上取点G,连结CG,DG,AC.求证:∠DGC=2∠BAC.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.参考答案1.A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】A选项:弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B选项:90°的圆周角所对的弦是直径,故本选项错误;C选项:应强调这条弦不是直径,故本选项错误;D选项:不在同一直线上的三点确定一个圆,故本选项错误.故选A.【点睛】考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.2.C【分析】直接根据点与圆的位置关系进行解答即可.【详解】∵⊙O的半径为2cm,点P与圆心O的距离为4cm,4cm>2cm,∴点P在圆外.故选C.【点睛】考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d<r时,点P在圆内是解答此题的关键.3.D【分析】利用圆内接四边形的对角互补判断即可.【详解】∵四边形ABCD内接于⊙O,∴∠A+∠C=180°=∠B+∠D,故选D .【点睛】考查了圆内接四边形的性质,关键是根据内接四边形的对角互补的性质解答.4.B【分析】连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 扇形AOC -S 菱形ABCO 可得答案.【详解】连接OB 和AC 交于点D ,如图所示:∵圆的半径为4,∴OB=OA=OC=4,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=2, 在Rt △COD 中利用勾股定理可知:CD=224223,243AC CD -===,∵sin ∠COD=CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =11422OB AC ⨯=⨯⨯∴S 扇形=21204163603ππ⨯⨯=,则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =163π-故选B.【点睛】 考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π.5.B【详解】连接OA,交O于E点,在Rt△OAB中,OB=6m,BA=8m,所以;又因为OE=OB=6m,所以AE=OA−OE=4m.因此拴羊的绳长最长不超过4m.故选B.6.D【分析】如图连接OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN即可解决问题.【详解】解:如图连接OB、OD;∵AB=CD,∴AB CD=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC ,故③正确,故选:D .【点睛】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.7.C【详解】试题分析:过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ,∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3,∴OD=AD ﹣OA=2,Rt △OBD 中,根据勾股定理,得:C .考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.8.C【分析】如图,油面AB 上升1分米得到油面CD,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC,由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1,在Rt OAE ∆中和Rt OCF ∆中,根据勾股定理求得OA 、OC 的长度,然后由OA OC =,列方程求x 即可求半径OA,得出直径MN.【详解】:如图,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC, 由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1, 在Rt OAE ∆中, 222OA AE OE =+,在Rt OCF ∆中, 222OC CF OF =+,OA OC =,()2222341x x ∴+=+-, 解得x=4,∴半径OA =5分米,故选C.【点睛】本题考查了垂径定理的运用.关键是利用垂径定理得出两个直角三角形,根据勾股定理表示半径的平方,根据半径相等列方程求解.9.C【分析】根据圆周角定理∠BOC=2∠BAC 即可解决问题.【详解】解:∵∠BOC=2∠BAC ,∠BAC=40°,∴∠BOC=80°,故选C .【点睛】本题考查圆周角定理、圆心角、弧、弦之间的关系解题的关键是熟练掌握基本知识,属于中考基础题.10.A【解析】【分析】连接OC ,根据三角形内角和定理可得∠AOB=90°和∠OBC 的度数,又得∠DOC 的度数,根据弧的度数等于所对圆心角的度数,可得结论.【详解】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°﹣35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°﹣70°=20°,∴弧CD的度数为20°,故选:A.【点睛】本题考查了圆心角、弧、弦之间的关系,等腰三角形性质,三角形内角和定理,正确作出辅助线是解题的关键.11.3π.【详解】试题分析:连结OP、OQ,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得出∠POQ=2∠A=60°,再根据弧长公式列式计算即可.解:如图,连结OP、OQ,则∠POQ=2∠A=60°.∵⊙O的半径为9,∴的长==3π.故答案为3π.考点:弧长的计算.12.8【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC 中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴.∵AC=6,∴.故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.13.24°【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的每个内角为108°和正六边形的每个内角为120°,然后根据周角的定义和等腰三角形性质可得结论.【详解】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=(180132)242-︒=︒故答案是:24︒.【点睛】考查了正多边形的内角与外角、等腰三角形的性质,熟练掌握正五边形的内角和正六边形的内角求法是解题的关键.14.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;本题可由勾股定理等性质算出点与圆心的距离d,当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】∵CA>4,∴点C在⊙A外.∵AD═4,∴点D在⊙A上外;AB=3<4,∴点B在⊙A内.故答案为C.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.60 º【分析】根据等腰三角形的性质由OB=OC得∠OBC=∠OCB=30°,再根据三角形内角和定理计算出∠BOC=120°,然后根据圆周角定理求解.【详解】∵OB=OC,∴∠OBC=∠OCB=30°,∴∠BOC=180°−30°−30°=120°∠BOC=60°.∴∠A=12【点睛】本题考查了圆周角定理,解题的关键是掌握圆周角定理的用法.16.由AB=CD可得弧AB=弧CD,则可得弧AC=弧BD,从而证得结论.【详解】试题分析:∵AB=CD∴弧AB=弧CD∴弧AC=弧BD∴∠AOC=∠BOD.考点:圆周角定理点评:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.17.详见解析.【分析】欲证明∠ABD=∠CDB,只要证明AD BC=即可.【详解】证明:∵AB=CD,∴AB CD=,∴AB AC CD AC-=-,∴,AD BC=,∴∠ABD=∠CDB.【点睛】考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.18.(1)证明见解析(2)8【分析】()1根据180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒得到,B EDC ∠=∠因为,AB AC =根据等边对等角得到,B C ∠=∠根据等量代换得到,EDC C ∠=∠根据等角对等边即可证明. ()2连接,AE 根据等腰三角形三线合一的性质得到2BC EC ==证,ABC EDC ∽根据相似三角形的性质即可求出AB 的长.【详解】(1)证明: 180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒∴,B EDC ∠=∠又∵,AB AC =∴,B C ∠=∠∴,EDC C ∠=∠∴ .ED EC =(2)连接,AE∵AB 是直径,∴,AE BC ⊥又∵,AB AC =∴2BC EC ==∵,.B EDC C C ∠=∠∠=∠∴,ABC EDC ∽∴::,AB EC BC CD =又∵3,EC BC CD ===∴8.AB =【点睛】考查了圆周角定理,等腰三角形的判定和性质,勾股定理,相似三角形的判定与性质等,正确的作出辅助线是解题的关键.19.(1)(2)100°【详解】试题分析:(1)如图,过O作OE⊥AB于E,根据垂径定理知道E是AB的中点,然后在Rt△OEB中利用已知条件即可求解;(2)首先根据三角形的外角和内角的故选得到可以得到∠BOD=∠B+∠A+∠D,接着利用圆周角和圆心角的关系和已知条件即可求出∠BOD的度数.试题解析:(1)如图,过O作OE⊥AB于E,∴E是AB的中点,在Rt△OEB中,OB=2,∠B=30°,∴OE=1,∴∴(2)解法一:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.∴∠BOD=∠B+∠A+∠D.…又∵∠BOD=2∠A,∠B=30°,∠D=20°,∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,…∴∠BOD=2∠A=100°.…解法二:如图,连接OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D.…又∵∠B=30°,∠D=20°,∴∠DAB=50°,…∴∠BOD=2∠DAB=100°考点:1.垂径定理;2.圆周角定理.20.(1)详见解析;(2)12.【分析】(1)作AB,AB的垂直平分线交于点O,则点O即为所求;(2)求出AO.OD,即可得到结论.【详解】(1)用直尺和圆规分别作线段AB、BC的垂直平分线CF、AE,两条垂直平分线相较于点O,点O即为△ABC的外心;(2)设△ABC的外接圆的半径为R,∵三角形ABC是等边三角形,∴∠OCB= 30 °,则OE=12 R,∴外心O到三角形三边的距离和d=32 R,外心O到三角形三个顶点的距离和D=3R,∴dD=31232RR.【点睛】考查了三角形的外接圆与外心,三角形的内接圆与内心,等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.21.(1)∠CBE=86°;(2)证明见解析.【详解】试题分析:(1)根据圆内接四边形的性质计算即可;(2)证明△ADC≌△EBC即可.试题解析:(1)∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°.又∵∠ADC= 86°,∴∠ABC= 94°,∴∠CBE=180° - 94°=86°.(2)∵ AC=EC,∴∠E=∠CAE ,∵ AC平分∠BAD,∴∠DAC=∠CAB ,∴∠DAC= ∠E.∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°,又∵∠CBE+∠ABC = 180°, ,∴∠ADC= ∠CBE,∴△ADC ≌△EBC ,∴ AD=BE .22.(1)45°;(2)π-2.【分析】(1)根据含30°角的直角三角形性质求出∠CAB,即可得出答案;(2)连接OD,求出∠DOA,分别求出扇形AOD和△AOD面积,即可得出答案.【详解】(1)解:∵AB 是直径∴∠ACB=90°,又∵BC=2,AB=4,∴ BC= 12 AB,∴∠BAC=30°,∴∠DAB=∠DAC+∠BAC=15°+30°=45°;(2)解:连接OD,∵直径AB=4,∴半径OD=OA=2,∵OA=OD,∠DAB=45°,∴∠ADO=∠DAB=45°,∴∠AOD=90°,∴阴影部分的面积S=S扇形AOD-S△AOD=290213622022ππ⨯⨯-⨯⨯=-.【点睛】考查了含30°角的直角三角形性质,扇形的面积计算,圆周角定理等知识点,能求出∠CAB=30°和∠AOD=90°是解此题的关键.23.证明见解析.【解析】【分析】由AB是⊙O的直径,CD⊥AB,根据垂径定理的即可求得弧BC=弧BD=12弧CD,从而求得2∠BAC=2∠BAD=∠DAC,由圆周角定理易证得:∠DGC=2∠BAC;【详解】证明:连结AD,∵弦CD⊥直径AB,∴2∠BAC=2∠BAD=∠DAC(垂径定理),又∵∠DGC=∠DAC(圆周角定理),∴∠BAC=∠DGC,∴∠DGC =2∠BAC .【点睛】此题考查垂径定理、圆周角定理.此题难度不大,注意掌握辅助线的作法与数形结合思想的应用.24.(1)证明见解析;(2)6π-【分析】(1)连接BO 并延长交⊙O 于点E ,连接DE .由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC 是⊙O 的切线;(2)分别求出等边三角形DOB 的面积和扇形DOB 的面积,即可求出答案.【详解】(1)证明:连接BO 并延长交⊙O 于点E ,连接DE,∵BE 是直径,∴∠EDB =90°,∴∠E +∠EBD =90°∵=,∴∠E =∠A又∵∠DBC =∠BAC ,∴∠DBC =∠E∴∠DBC +∠EBD =90°,∴∠EBC =90°,∴BC ⊥EB.又∵OB 是半径(B 在⊙O 上),∴BC 与⊙O 相切.(2)∵=,∴∠BOD =2∠A =60°S 阴影= S 扇形OBD -S △OBD =π36×60360-6π-【点睛】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB 和三角形DOB 的面积.25.(1)45°;(2)26°.【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 单元测试卷(含答案解析)

人教版九年级上册数学 第二十四章 圆 单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆 2.若点(,0)B a 在以点(1,0)A 为圆心,2为半径的圆内,则a 的取值范围为( )A.1a <-B.3a >C.13a -<<D.1a ≥-且0a ≠3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长尺(1AB =尺10=寸),问:这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC 的长为( )A.13寸B.20寸C.26寸D.28寸4.如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,84AOC ∠=︒,则E ∠等于( )A.42°B.28°C.21°D.20°5.如图,AB 是半圆O 的直径,点C 在半圆上(不与A ,B 重合),DE AB ⊥于点D ,交BC 于点F ,下列条件中能判定CE 是半圆O 的切线的是( )A.E CFE∠=∠∠=∠ B.E ECFC.ECF EFC∠=︒∠=∠ D.60ECF6.如图,在O中,OC AB⊥,32∠=︒,则OBA∠的度数是( )ADCA.64°B.58°C.32°D.26°7.如图,PA,PB分别与O相切于点A,B,70∠的度数P∠=︒,C为O上一点,则ACB为( )A.110°B.120°C.125°D.130°8.如图,在O中,AB是直径,CD是弦,AB CD⊥,下列结论错误的是( )A.AC OD== B.BC BDC.AOD CBD∠=∠∠=∠ D.ABC ODB9.如图,ABC内接于O,将BC沿BC翻折,BC交AC于点D,连接BD.若∠的度数是( )∠=︒,则ABDBAC66A.66°B.44°C.46°D.48° 10.如图,抛物线2144y x =-与x 轴交于A ,B 两点,P 是以点(0,3)C 为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ ,则线段OQ 的最大值是( )A.3B.412C.72D.4二、填空题(每小题4分,共20分)11.如图所示,点,,A B C 在同一直线上,点M 在直线AC 外,经过图中的三个点作圆,可以作__________个.12.如图,已知AB ,CD 是O 的两条直径,且50AOC ∠=︒.过点A 作//AE CD 交O 于点E ,则AOE ∠的度数为___________.13.如图,在O 的内接四边形ABCD 中,142BCD ∠=︒,则BOD ∠=___________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.已知⊙O 的半径是4,OP =3,则点P 与⊙O 的位置关系是( ) A .点P 在圆内 B .点P 在圆上 C .点P 在圆外 D .不能确定2.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( ) A .AC =AB B .∠C =12∠BODC .∠C =∠BD .∠A =∠BOD第2题图 第3题图 第5题图3.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .54.下列说法正确的是( ) A .平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若两个圆有公共点,则这两个圆相交5.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E .若∠AOB =3∠ADB ,则( )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB 6.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是( )A .24cmB .48cmC .96cmD .192cm7.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12mmB .123mmC .6mmD .63mm8.如图,直线AB ,AD 与⊙O 分别相切于点B ,D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( )A .70°B .105°C .100°D .110°第8题图 第9题图 第10题图9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3 C .π- 3 D.2π3- 3 10.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC的内切圆,则PQ 的长是( )A.52B. 5C.52D .2 2 二、填空题(每小题3分,共24分)11.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB =________°.第11题图 第12题图 第13题图12.如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 的直径AB 的延长线于点D .若∠D =40°,则∠A 的度数为_______.13.如图,两同心圆的大圆半径长为5cm ,小圆半径长为3cm ,大圆的弦AB 与小圆相切,切点为C ,则弦AB 的长是_________.14.如图,⊙O 是△ABC 的外接圆,直径AD =4,∠ABC =∠DAC ,则AC 的长为_______.第14题图 第15题图 第16题图15.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为__________.16.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB (阴影部分)的面积为__________.17.如图,圆O 的直径AB 为13cm ,弦AC 为5cm ,∠ACB 的平分线交圆O 于点D ,则CD 的长是____________cm.第17题图 第18题图18.如图,在矩形ABCD 中,AD =8,E 是边AB 上一点,且AE =14AB .⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线交于另一点F ,且EG ∶EF =5∶2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是______.三、解答题(共66分)19.(8分)如图,已知⊙O 中直径AB 与弦AC 的夹角为30°,过点C 作⊙O 的切线交AB 的延长线于点D ,OD =30cm.求直径AB 的长.20.(8分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =70°,求∠CAD 的度数; (2)若AB =4,AC =3,求DE 的长.21.(8分)如图,已知四边形ABCD 内接于圆O ,连接BD ,∠BAD =105°,∠DBC =75°. (1)求证:BD =CD ;(2)若圆O 的半径为3,求BC ︵的长.22.(10分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.23.(10分)如图,AB 是⊙O 的直径,点C ,D 在圆上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,分别交OA 的延长线与OC 的延长线于点E ,F ,连接BF .(1)求证:BF 是⊙O 的切线;(2)已知⊙O 的半径为1,求EF 的长.24.(10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,AB =8.(1)利用尺规,作∠CAB 的平分线,交⊙O 于点D (保留作图痕迹,不写作法); (2)在(1)的条件下,连接CD ,OD .若AC =CD ,求∠B 的度数;(3)在(2)的条件下,OD 交BC 于点E ,求由线段ED ,BE ,BD ︵所围成区域的面积(其中BD ︵表示劣弧,结果保留π和根号).25.(12分)如图,在平面直角坐标系中,O (0,0),A (0,-6),B (8,0)三点在⊙P 上. (1)求⊙P 的半径及圆心P 的坐标;(2)M 为劣弧OB ︵的中点,求证:AM 是∠OAB 的平分线; (3)连接BM 并延长交y 轴于点N ,求N ,M 点的坐标.答案1.A2.B3.A4.B5.D6.B7.A8.C9.A10.B 解析:∵四边形ABCD 为矩形,∴△ACD ≌△CAB ,∴⊙P 和⊙Q 的半径相等.在Rt △ABC 中,AB =4,BC =3,∴AC =AB 2+BC 2=5,∴⊙P 的半径r =AB +BC -AC2=3+4-52=1.连接点P ,Q ,过点Q 作QE ∥BC ,过点P 作PE ∥AB 交QE 于点E ,则∠QEP =90°.在Rt △QEP 中,QE =BC -2r =3-2=1,EP =AB -2r =4-2=2,∴PQ =QE 2+EP 2=12+22= 5.故选B.11.60 12.25° 13.8cm 14.22 15.15π 16.18 17.172218.4或12 解析:当边BC 所在的直线与⊙O 相切时,如图①,过点G 作GN ⊥AB ,垂足为N ,∴EN =NF .又∵GN =AD =8,∴设EN =x ,则GE =5x ,根据勾股定理得(5x )2-x 2=64,解得x =4,∴GE =4 5.设⊙O 的半径为r ,连接OE ,由OE 2=EN 2+ON 2得r 2=16+(8-r )2,∴r =5,∴OK =NB =5,∴EB =9.又AE =14AB ,∴14AB +9=AB ,∴AB=12.同理,当边AD 所在的直线与⊙O 相切时,如图②,连接OH ,∴OH =AN =5,∴AE=1.又AE =14AB ,∴AB =4.故答案为4或12.19.解:∵∠A =30°,OC =OA ,∴∠ACO =∠A =30°,∴∠COD =60°.(3分)∵DC 切⊙O 于C ,∴∠OCD =90°,∴∠D =30°.(6分)∵OD =30cm ,∴OC =12OD =15cm ,∴AB=2OC =30cm.(8分)20.解:(1)∵AB 是半圆O 的直径,∴∠ACB =90°,∴∠CAB =90°-∠B =90°-70°=20°.(1分)∵OD ∥BC ,∴∠AEO =∠ACB =90°,即OE ⊥AC ,∠AOD =∠B =70°.(2分)∵OA =OD ,∴∠DAO =∠ADO =180°-∠AOD 2=180°-70°2=55°,∴∠CAD =∠DAO-∠CAB =55°-20°=35°;(4分)(2)在直角△ABC 中,BC =AB 2-AC 2=42-32=7.(5分)∵OE ⊥AC ,∴AE =EC .又∵OA =OB ,∴OE =12BC =72.(7分)又∵OD =12AB =2,∴DE =OD -OE =2-72.(8分)21.(1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD =180°.(1分)∵∠BAD =105°,∴∠DCB =180°-105°=75°.∵∠DBC =75°,∴∠DCB =∠DBC =75°,∴BD =CD ;(4分)(2)解:∵∠DCB =∠DBC =75°,∴∠BDC =30°,(5分)由圆周角定理,得BC ︵的度数为60°,故BC ︵的长为n πR 180=60π×3180=π.(8分)22.(1)证明:连接OC .∵AC =CD ,∠ACD =120°,∴∠A =∠D =30°.(2分)∵OA=OC ,∴∠2=∠A =30°.∴∠OCD =∠ACD -∠2=120°-30°=90°.(4分)即OC ⊥CD ,∴CD 是⊙O 的切线;(5分)(2)解:∵∠A =∠2=30°,∴∠1=2∠A =60°.∴S 扇形BOC =60π×22360=2π3.(7分)在Rt △OCD 中,∠D =30°,OC =2,∴OD =4,∴CD =2 3.∴S Rt △OCD =12OC ×CD =12×2×23=2 3.(9分)∴图中阴影部分的面积为23-2π3.(10分) 23.(1)证明:连接OD ,∵四边形AOCD 是平行四边形,而OA =OC ,∴四边形AOCD 是菱形,∴△OAD 和△OCD 都是等边三角形,∴∠AOD =∠COD =60°,∴∠FOB =60°.∵EF 为切线,∴OD ⊥EF ,∴∠FDO =90°.(2分)在△FDO 和△FBO 中,∴△FDO ≌△FBO ,∴∠OBF =∠ODF =90°,∴OB ⊥BF ,∴BF 是⊙O 的切线;(5分)(2)解:在Rt △OBF 中,∵∠OFB =90°-∠FOB =30°,OB =1,∴OF =2,∴BF = 3.(8分)在Rt △BEF 中,∵∠E =90°-∠AOD =90°-60°=30°,∴EF =2BF =2 3.(10分)24.解:(1)如图所示,AP 即为所求的∠CAB 的平分线;(3分)(2)如图所示,∵AC =CD ,∴∠CAD =∠ADC .(4分)又∵∠ADC =∠B ,∴∠CAD =∠B .∵AD 平分∠CAB ,∴∠CAD =∠DAB =∠B .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠B =90°,∴3∠B =90°,∴∠B =30°;(6分)(3)由(2)得∠CAD =∠BAD =∠B =30°.又∵∠DOB =∠DAB +∠ADO =2∠DAB ,∴∠BOD =60°,∴∠OEB =90°.(7分)在Rt △OEB 中,OB =12AB =4,∴OE =12OB =2,∴BE =OB 2-OE 2=42-22=2 3.∴△OEB 的面积为12OE ·BE =12×2×23=23,扇形BOD 的面积为60π·42360=8π3,(9分)∴线段ED ,BE ,BD ︵所围成区域的面积为8π3-2 3.(10分)25.(1)解:∵O (0,0),A (0,-6),B (8,0),∴OA =6,OB =8,∴AB =62+82=10.(2分)∵∠AOB =90°,∴AB 为⊙P 的直径,∴⊙P 的半径是5.∵点P 为AB 的中点,∴P (4,-3);(4分)(2)证明:∵M 点是劣弧OB 的中点,∴OM ︵=BM ︵,∴∠OAM =∠MAB ,∴AM 为∠OAB 的平分线;(8分)(3)解:连接PM 交OB 于点Q .∵OM ︵=BM ︵,∴PM ⊥OB ,BQ =OQ =12OB =4.(9分)在Rt △PBQ 中,PQ =PB 2-BQ 2=52-42=3,∴MQ =2,∴M 点的坐标为(4,2).(10分)∵PM ⊥OB ,AN ⊥OB ,∴MQ ∥ON ,而OQ =BQ ,∴MQ 为△BON 的中位线,∴ON =2MQ =4,∴N 点的坐标为(0,4).(12分)。

相关文档
最新文档