电子测量技术的基本概念和原理
电子测量的原理概括
电子测量的原理概括
电子测量是利用电子技术和电子仪器进行物理量测量的过程。
其基本原理概括如下:
1. 数字化处理:电子测量常采用模拟信号转换为数字信号的方式进行处理。
例如,使用模数转换器将模拟信号转换为数字信号,然后利用数字信号处理方法进行测量和分析。
2. 传感器原理:电子测量中常使用各种传感器实现对物理量的测量。
传感器通过感知被测量的物理量,将其转换为与之相关联的信号,然后通过电子仪器进行信号处理和测量。
3. 电路原理:电子测量中的电路原理包括信号调理、放大、滤波、调制等。
这些电路能够将传感器输出的信号进行调理和处理,以便进行准确的测量和分析。
4. 数据采集和处理:电子测量往往需要对信号进行采集和处理。
采集可以通过模数转换器实现,然后再利用数字信号处理方法对采集的数据进行滤波、分析和展示。
总之,电子测量的原理主要包括模拟信号转换为数字信号的处理、传感器原理、电路原理和数据采集与处理等方面。
这些原理相互配合,使得电子测量能够实现
对物理量的准确测量和分析。
电子测量技术教案《2》
电子测量技术教案《2》教案:电子测量技术《2》一、教学目标本课程旨在培养学生对电子测量技术的基本概念和方法的理解,并能够应用于电子测量领域的实际问题中。
二、教学内容1.电子测量技术的基本概念和方法介绍2.电子测量仪器的使用和操作3.电子测量技术的实例应用三、教学方法本课程采用理论与实践相结合的教学方法,通过理论讲解和实验操作相结合的方式进行教学,以培养学生的实际操作能力和解决问题的能力。
四、教学过程1.理论讲解1.1电子测量技术的基本概念和方法介绍-电子测量技术的定义和作用-电子测量仪器的分类和特点-电子测量技术的基本原理和测量范围-电子测量技术的误差分析和校准方法2.实验操作2.1电子测量仪器的使用和操作-示波器的使用和操作方法-多用表的使用和操作方法-信号发生器的使用和操作方法-频谱仪的使用和操作方法3.实例应用3.1电子测量技术的实例应用-温度测量-电压测量-频率测量-电流测量五、教学评估本课程的评估主要通过实验报告和考试成绩来进行,考察学生对电子测量技术的理解和实践能力。
同时,也将对学生的课堂参与和表现进行评估。
六、教学资源1.电子测量仪器:示波器、多用表、信号发生器、频谱仪等2.教材和参考书籍3.实验报告模板和评估表七、教学总结通过本课程的学习,学生将对电子测量技术有更为深入的了解,能够熟练运用电子测量仪器进行实验操作,并能够应用所学的电子测量技术解决实际问题。
同时,还能提高学生的实际操作能力和解决问题的能力,为今后从事相关工作打下坚实的基础。
电子测量技术教案
电子测量技术教案第一章:电子测量技术概述1.1 教学目标让学生了解电子测量技术的定义、作用和分类。
让学生掌握电子测量技术的基本原理和常用测量方法。
1.2 教学内容电子测量技术的定义和作用电子测量技术的分类电子测量技术的基本原理常用测量方法及其适用范围1.3 教学方法采用讲解、示例和实验相结合的方式进行教学。
1.4 教学步骤引入电子测量技术的概念,让学生了解其定义和作用。
讲解电子测量技术的分类,让学生了解不同类型的测量技术。
讲解电子测量技术的基本原理,让学生理解其工作原理。
介绍常用测量方法及其适用范围,让学生了解不同测量方法的应用场景。
通过示例和实验,让学生实际操作并加深对电子测量技术的理解。
第二章:电压测量2.1 教学目标让学生掌握电压测量的基本原理和方法。
让学生了解不同类型电压测量仪器的特点和选用原则。
2.2 教学内容电压测量的基本原理电压测量方法及其适用范围电压测量仪器的类型及特点电压测量仪器的选用原则2.3 教学方法采用讲解、示例和实验相结合的方式进行教学。
2.4 教学步骤讲解电压测量的基本原理,让学生理解电压测量的过程。
介绍不同类型的电压测量方法及其适用范围,让学生了解选择合适的测量方法的重要性。
讲解不同类型电压测量仪器的特点和选用原则,让学生了解不同仪器的适用场景。
通过示例和实验,让学生实际操作并加深对电压测量的理解。
第三章:电流测量3.1 教学目标让学生掌握电流测量的基本原理和方法。
让学生了解不同类型电流测量仪器的特点和选用原则。
3.2 教学内容电流测量的基本原理电流测量方法及其适用范围电流测量仪器的类型及特点电流测量仪器的选用原则3.3 教学方法采用讲解、示例和实验相结合的方式进行教学。
3.4 教学步骤讲解电流测量的基本原理,让学生理解电流测量的过程。
介绍不同类型的电流测量方法及其适用范围,让学生了解选择合适的测量方法的重要性。
讲解不同类型电流测量仪器的特点和选用原则,让学生了解不同仪器的适用场景。
电子测量原理
电子测量原理电子测量是一种利用电子设备进行物理量测量的技术方法。
在科学研究、工程技术以及生产制造等领域,电子测量得到了广泛的应用。
本文将介绍电子测量的原理、常用的电子测量仪器以及应用案例。
一、电子测量原理概述电子测量的基本原理是将待测物理量转化为电信号,通过电子设备进行测量和处理。
电子测量可分为直接和间接两种方式。
直接测量是指将待测物理量转化为电信号进行测量,常见的有电压、电流和电阻等。
间接测量是通过某种物理效应将待测物理量转化为电信号,再进行测量,如温度、压力、位移等。
二、电子测量仪器1.示波器示波器是电子测量中最常用的仪器之一,用于显示待测信号的波形。
示波器可以显示信号的幅值、频率、相位等信息,通过观察波形来判断信号是否合格。
示波器有模拟示波器和数字示波器两种类型,数字示波器具有更高的精度和功能。
2.万用表万用表是一种多功能的电子测量仪器,可以测量电压、电流、电阻、电容等基本物理量。
万用表常用于电路维修、实验室研究以及工程测量等领域。
随着科技的发展,万用表也在不断更新,新一代的数字万用表功能更加强大。
3.频谱分析仪频谱分析仪用于测量信号的频谱特性,能够将复杂的电信号分解成不同频率的分量。
频谱分析仪在通信、无线电、音频等领域有广泛的应用,可以用于信号分析、故障诊断以及无线电频道分配等。
三、电子测量应用案例1.温度测量温度测量是电子测量中常见的应用之一。
利用热敏电阻、热电偶、红外线传感器等测温元件,可以测量物体的温度。
温度测量在工业自动化、气象观测、医疗设备等方面都有广泛的应用。
2.压力测量压力测量广泛应用于石油化工、水处理、汽车工业等领域。
常用的压力传感器有电容式传感器、电阻式传感器和压阻式传感器等。
通过测量物体受力变形或流体压强,可以准确测量压力大小。
3.位移测量位移测量用于测量物体的位置移动或形变。
常用的位移传感器有光电编码器、应变测量电阻和激光测距仪等。
位移测量在机器人技术、建筑工程和制造业等方面有广泛的应用。
电子测量原理重点内容
《电子测量原理》重点考察内容突出:学以致用,基本技能,综合应用一、基本概念、原则;狭义测量的定义:测量是为了确定被测对象的量值而进行的实验过程。
测量的基本原理是通过比较来识别被测对象,测量就是比较。
比较可采用直接或间接的方法进行,比较通常需要用专门的设备(测量仪器)才能实现。
广义测量的定义:测量不仅对被测的物理量进行定量的测量,而且还包括对更广泛的被测对象进行定性、定位的测量。
例如故障诊断、无损探伤、遥感遥测、矿藏勘探、地震源测定、卫星定位等。
而测量结果也不仅仅是由量值和单位来表征的一维信息,还可以用二维或多维的图形、图像来显示被测对象的属性特征、空间分布、拓朴结构等。
测量的基本要素:从测量的定义可知,测量要有对象(测量的客体),测量要由人(测量主体)来实施,测量需要专门的仪器设备(硬件)作工具,测量要有理论和方法(软件)作指导,测量总是在一个特定的环境中进行的,因此构成测量的基本要素是:被测对象、测量仪器、测量技术、测量人员和测量环境。
测量环境测量环境是指测量过程中人员、对象和仪器系统所处空间的一切物理和化学条件的总和。
它包括温度、湿度、力场、电磁场、辐射、化学气雾和粉尘,霉菌以及有关电磁量(工作电压、电压、源阻抗、负载阻抗、地磁场、雷电等)的数值、范围及其变化。
忽视测量环境,常会导致测量误差过大,甚至产生差错,有时甚至可能对人员、测量对象或仪器系统造成损伤或破坏。
环境对测量的影响表现在下列三个方面:(1)环境对被测对象的影响;(2)环境对仪器系统的影响;(3)环境对测量人员的影响;测量误差的定义测量的目的:获得被测量的真值。
真值:在一定的时间和空间环境条件下,被测量本身所具有的真实数值。
测量误差:所有测量结果都带有误差。
研究误差的目的,就是要正确认识误差的性质,分析误差产生的原因及其发生规律,寻求减小或消除测量误差的方法,识别出测量结果中存在的各种性质的误差,学会数据处理的方法,使测量结果更接近于真值。
电子测量原理
电子测量原理电子测量是现代科技领域中不可或缺的一部分,通过电子设备测量物理量的数值。
电子测量的原理主要包括测量基本原理、测量仪表原理、测量方法等方面的内容。
本文将从这些方面对电子测量原理进行探讨。
1. 测量基本原理电子测量的基本原理是通过电子仪器测量物理量的数值。
测量基本原理可以分为四个方面:传感器原理、信号处理原理、数据采集原理以及数据处理原理。
(1)传感器原理传感器是电子测量中关键的组成部分,它能将一种待测量的物理量转换为电信号,再通过电子仪器进行处理。
传感器的种类繁多,常见的传感器有温度传感器、压力传感器、湿度传感器等。
(2)信号处理原理信号处理是将传感器输出的电信号进行放大、滤波等处理,以便更好地观测和分析物理量的变化情况。
(3)数据采集原理数据采集是利用模拟-数字转换技术将模拟信号转换为数字信号,并进行必要的编码和校验,以便于后续的数据处理。
(4)数据处理原理数据处理是对采集到的数字信号进行分析、计算、显示等操作,从而获得所需的测量结果。
2. 测量仪表原理测量仪表是进行电子测量的工具,它包括测量仪器、测量传感器、测量电缆等。
测量仪表的原理可以分为仪表传感器接口、测量电路、显示装置等方面。
(1)仪表传感器接口仪表传感器接口是将传感器和仪表连接起来,将传感器采集到的信号传递给测量仪器,实现测量功能。
(2)测量电路测量电路是测量仪表中的核心部分,它通过适当的电路设计,将传感器接口传递过来的信号进行放大、滤波等处理,以获得准确的测量结果。
(3)显示装置显示装置是用于展示测量结果的部分,常见的显示装置有数码管、液晶显示屏等。
3. 测量方法电子测量有多种方法,常见的有直接测量法、间接测量法和对比测量法。
(1)直接测量法直接测量法是最常见、最直接的测量方法,它通过测量仪表直接测量待测量物理量的数值,如使用温度计测量温度、使用电压表测量电压等。
(2)间接测量法间接测量法是通过已知和未知量之间的关系进行测量的方法,通常需要通过公式或者其他方法来计算得到待测量物理量的数值。
任务 1 认识电子测量(电子测量技术)
任务 1 认识电子测量在人们的日常生活中经常需要进行测量,如用尺子测量物品长度,用体温计测量体温,用 血压计测量血压等,测量可以说无处不在 。
不仅日常生活中离不开测量,生产制造和科学研究 等领域更离不开测量技术 。
测量是使用合适的仪器设备 、采用一定的测量方法以获得被测对 象量值的过程 。
电子测量是测量学的一个重要分支,通过本任务的学习,我们来了解什么是电 子测量,以及电子测量的特点 、内容 、分类等,逐步培养工程意识 。
1.电子测量的基本概念 (1) 电子测量的定义随着电子技术的发展,电子测量技术也得到迅速发展 。
本课程所说的电子测量是指利用 电子技术对各种电参量 、电性能进行的测量,如用万用表测量电压 、电流 、电阻等,即对各种电 参量 、电性能的测量技术和常用电子测量仪器的使用 。
(2) 电子测量的主要内容① 电能量的测量,如电流 、电压 、电功率等的测量 。
② 电信号特征的测量,如电信号的频率 、周期 、相位 、失真度等的测量 。
③ 电子元件参数的测量,如电阻 、电感 、电容以及晶体管 、集成电路等元件各种参数的 测量 。
④ 电路性能参数的测量,如增益 、通频带 、灵敏度 、信噪比等的测量 。
⑤ 特性曲线的测量,如半导体元件的伏安特性曲线 、电路的频率特性曲线等的测量。
2.电子测量的特点 (1) 测量频率的范围宽随着技术不断发展,新元件 、新工艺的采用使电子测量的频率范围越来越宽 。
电子测量不 仅能测量直流电量,也能测量交流电量,其频率范围可达 10-6~1012Hz 。
但是需要注意,不同 的测量仪器,即使测量同一种电量,其工作原理和测量方法也各不相同,所能测量的频率范围 也是不同的 。
因此要根据具体的测量要求,选择合适的测量仪器和测量方法 。
(2) 测量仪器的量程宽量程是指仪器所测量参数的范围 。
电子测量仪器的量程很宽,如数字式万用表可以测量 的电压范围从纳伏至千伏,量程可达 12 个数量级 。
电子测量的应用与原理
电子测量的应用与原理1. 什么是电子测量电子测量是指利用电子仪器、设备和技术进行各种物理量、电信号和波形的测量和分析的方法。
电子测量广泛应用于各个领域,包括通信、电力、工业控制、医疗、科研等。
通过电子测量可以获取准确的数据和信号,进而进行各种分析和判断。
2. 电子测量的原理电子测量的原理主要包括以下几个方面:2.1 电压测量原理电压测量是电子测量中最基本的一项。
电压是指电流通过导线时所产生的电势差,也可以理解为电子流动的动力。
电压测量的原理是利用电压表或示波器引入测量电路中,通过测量电路中的电压来获取所需的电压数值。
2.2 电流测量原理电流测量是电子测量中另一个重要的参数。
电流是指单位时间内的电荷通过导线的数量。
电流测量的原理是利用电流表或感性元件引入测量电路中,通过测量电路中的电流来获取所需的电流数值。
2.3 频率测量原理频率测量是电子测量中常见的一种方法。
频率是指单位时间内事件重复发生的次数。
频率测量的原理一般是利用计数器或定频电路来统计事件发生的次数,然后通过计算得到频率数值。
2.4 相位测量原理相位测量是电子测量中用于测量信号相位差的方法。
相位是指两个周期性信号的某一特定时刻之间的时间差。
相位测量的原理一般是利用触发电路或相位比较器对信号进行比较,从而获取信号相位差的数值。
3. 电子测量的应用电子测量在各个领域中有着广泛的应用,下面列举一些常见的应用场景:3.1 通信领域•信号质量测量:利用电子测量仪器对通信信号的电平、偏移、噪声等进行测量,以判断信号质量是否满足要求。
•码率测量:通过对数字通信信号的脉冲码序列进行测量和分析,获取信号的码率信息。
•频谱分析:通过对通信信号的频谱进行测量和分析,了解信号的频率分布情况。
3.2 电力领域•电力质量监测:通过电子测量仪器对电力系统中的电压、电流、功率因数等参数进行测量和分析,判断电力质量是否稳定。
•耗电量测量:利用电子测量仪器对电力设备和系统的耗电量进行实时监测,以提高能源利用效率。
电子测量的基本知识(电子测量技术课件)
1)能量的测量,如电流(I)、电压(U)、电功率(P)、电能(W)等。 2)电路特征的测量,如电阻(R)、电容(C)、电感(L)等。 3)电信号特性的测量,如频率(f)、相位(φ)、功率因数(cosc)、失真度(k)等。 4)电子电路性能的测量,如放大倍数(A)、通频带(BW)、灵敏度(S) 5)非电量的测量,如压力(p)、温度(T)、速度(v)等。
(3)数据域测量 数据域测量也称辑量测量,主要是对数字信号或电路的逻辑 状态进行测量,如用逻辑分析仪等设备测量计数器的状态。随着微电子技术 的发展需要,数据域测量及测量智能化、自动化显得越来越重要。
(4)随机测量随机测量统计测要对各类噪声信号进行动态测量和统计分析。 这是一项新的测量技术,尤其在通信领域有着广泛应用。
惠斯登电桥是最常用的直流电桥。当B、D两点间电势不等时,有电流通过
检流计,电桥不平衡。调节 RS ,使检流计中电流为零( I G =0),此时B、
D两点间电势相等,电桥达到平衡,于是有:
I1R1 I2R2
I1Rx I2 Rs
I1R1 I2 R2 I1Rx I2Rs
Rx
R1 R2
Rs
CR s
各种方法均有优、缺点,要根据具体条件选择合适的方法进行测量。
课堂讨论:用电压表测量电压属于哪种测量方法?为什么?用惠斯登电 桥测量电阻属于哪种测量方法?为什么?
用惠斯登电桥测电阻
桥式电路是最常见的电路,由桥式电路制成的电桥,是一各种精密的电学测 量仪器,可用来测量电阻、电容、电感和电平等电学量。并能通过转换测量,测 出其它非电学量,如温度压力、频率、真空度等。
电子测量技术基础
电子测量技术基础1. 概述电子测量技术是用于测量电子组件、电路和电子设备特性的一种技术。
它是电子工程中非常重要的一部分,涉及到电流、电压、电阻、功率等参数的测量,同时也包括相位、频率、波形等信号特性的测量。
本文将介绍电子测量技术的基础知识,包括测量仪器的分类、常用的测量方法以及一些常见的测量技术。
2. 测量仪器分类根据测量目的和测量对象的不同,测量仪器可以分为以下几类:2.1 仪表类2.1.1 电压表电压表是用来测量电压的仪器,其工作原理是利用电压的作用力将电流转化为示数。
常见的电压表有模拟电压表和数字电压表两种。
2.1.2 电流表电流表是用来测量电流的仪器,其工作原理是利用串联电流表在测量电路中产生电流,然后将电流转化为示数。
常见的电流表有模拟电流表和数字电流表两种。
2.2 信号发生器类2.2.1 函数信号发生器函数信号发生器是用来生成各种频率、振幅和波形的信号的仪器。
它可以用来测试各种电子设备的输入敏感度、频率响应等。
2.2.2 波形信号发生器波形信号发生器是用来产生各种波形信号的仪器,如正弦波、方波、脉冲波等。
它在电路实验和故障分析中常用来模拟各种信号条件。
2.3 示波器类2.3.1 端子示波器端子示波器是一种用于观察和测量电路中电压波形的仪器。
它可以显示电路中的信号变化情况,帮助工程师分析和诊断电路问题。
2.3.2 数字存储示波器数字存储示波器是一种将模拟信号转换为数字信号,并以数字形式存储和显示的示波器。
它具有存储和回放信号的功能,方便分析长时间的信号波形。
3.1 电阻测量电阻测量是测量电路中电阻值的方法。
常用的电阻测量方法有两线法、四线法和电桥法。
其中,四线法和电桥法可以消除电阻引线的电阻影响,提高测量的准确性。
3.2 电流测量电流测量是测量电路中电流值的方法。
常用的电流测量方法有串联电流表法和分流电流表法两种。
3.3 电压测量电压测量是测量电路中电压值的方法。
常用的电压测量方法有直流电压测量和交流电压测量两种。
电子测量与仪器
电子测量与仪器电子测量与仪器是电子与电气工程领域中的重要分支,它涵盖了测量技术、仪器设备以及相关的理论与应用。
在现代社会中,电子测量与仪器在工业、科研、医疗、通信等领域发挥着不可或缺的作用。
本文将对电子测量与仪器的基本概念、发展历程以及应用进行探讨。
一、电子测量的基本概念电子测量是指通过使用电子技术手段,对电信号、物理量或其他相关信息进行测量、分析和处理的过程。
它主要涉及到电流、电压、功率、频率、温度、压力等各种物理量的测量。
电子测量的基本原理是将待测物理量转换为电信号,然后通过电子仪器进行信号的放大、滤波、调制等处理,最终得到准确的测量结果。
二、电子测量与仪器的发展历程电子测量与仪器的发展可以追溯到19世纪末的电气工程初期。
当时,电流表、电压表等基本仪器的出现为电子测量奠定了基础。
20世纪初,随着电子技术的快速发展,电子测量与仪器逐渐成为一个独立的学科。
在20世纪中叶,随着半导体技术的突破,电子仪器的性能得到了极大的提升。
现代电子测量与仪器已经实现了数字化、自动化和智能化的发展,为各个领域提供了更加高效、精确的测量手段。
三、电子测量与仪器的应用领域1. 工业自动化电子测量与仪器在工业自动化中起着至关重要的作用。
它可以实现对生产过程中各种物理量的测量与控制,从而提高生产效率和产品质量。
例如,通过使用温度传感器和控制器,可以实现对工业炉温度的精确控制,提高炉内产品的质量和生产效率。
2. 科学研究科学研究中需要进行各种物理量的测量与实验。
电子测量与仪器为科学家们提供了准确、可靠的实验手段。
例如,在物理实验中,可以使用示波器、频谱仪等仪器对电信号进行测量和分析,从而研究电子的行为规律。
3. 医疗诊断与治疗在医疗领域,电子测量与仪器被广泛应用于诊断和治疗过程中。
例如,心电图仪可以通过测量心脏电信号来判断心脏的健康状况;医用超声仪器可以通过测量超声波的回波来获得人体内部器官的影像,用于诊断和治疗。
4. 通信与信息技术电子测量与仪器在通信与信息技术领域扮演着重要的角色。
电子测量的基本原理和主要方法
电子测量的基本原理和主要方法测量是指为确定被测对象的量值而进行的实验过程。
电子测量是测量的一个重要分支,它是指以电子技术为理论基础,以电子测量设备和仪器为工具,对各种电量进行的测量。
通常情况下的电子测量是指对电子技术中各种电参量的测量,包括各种电量、电路元器件特性、电路特性的测量。
通过传感器把非电量转换成电量后进行测量。
对同一性质的被测量目标进行测量时,由于测量原理不同,选择的测试仪器、采用的测量手段也可能不一样。
常用的有直接测量、间接测量和组合测量3种。
1.直接测量通常测量仪表已标定好,用它对某个未知量进行测量时,能直接读出测量值,称为直接测量。
例如,用磁电式仪表测电流、电压,用弹簧管式压力表测量锅炉压力,用频率计测频等就属直接测量。
直接测量的优点是测量过程简单、迅速,缺点是测量精度不容易达到很高。
这种测量方法在一般的工程中大量采用。
2.间接测量间接测量是指当待测量由于某种原因不能直接测量时,可以对与未知待测量y有确切函数关系的其他变量x(或n 个变量)进行直接测量,然后再通过函数关系计算出待测量y,这种测量称为间接测量。
y=f(Xl,X2,…,Xn)间接测量广泛用于科学实验中,放大电路的电压放大倍数、输入电阻和输出电阻都是采用间接测量的方法测量出来的。
3.组合测量组合测量是指当某项测量结果需要用多个未知参数表达时,可通过改变测量条件进行多次测量,根据函数关系列出方程组求解,从而得到被测量的值,这种兼用直接测量与间接测量的方法称为组合测量。
这种方法通过计算机软件进行求解,速度更快。
3.按测量方式分类按测量方式可分为直读法和比较法。
(1)直读法直读法是用直接指示被测量大小的指示仪表进行测量,能够直接从仪表刻度盘上或从显示器上读取被测量数值的测量方法。
例如,用欧姆表测量电阻时,从指示的数值可以直接读出被测电阻的阻值。
这种方法是由于欧姆表的数值事先用标准电阻进行了校验,标准电阻已将它的量值和单位传递给欧姆表,因而间接地参与了测量。
电子测量原理
电子测量原理电子测量是现代科技中不可或缺的一部分。
从电子设备到通信系统,从医疗仪器到环境监测,电子测量在各个领域都有着广泛的应用。
本文将介绍电子测量的原理及其应用。
一、电子测量的基本原理电子测量是通过对电信号的测量来获取所需的信息。
电信号可以是电压、电流或其他电磁波的形式。
电子测量的基本原理包括信号的采集、处理和显示。
1. 信号采集信号采集是将待测信号转换为电压或电流的过程。
常用的信号采集方法包括传感器测量、放大器放大和模数转换。
传感器是用于测量物理量的器件,如温度传感器、压力传感器等。
传感器将物理量转换为电信号,然后经过放大器放大,使得信号能够被后续电路处理。
模数转换是将连续的模拟信号转换为离散的数字信号。
模数转换器(ADC)将连续信号的幅值转换为数字代码,以便后续处理和显示。
2. 信号处理信号处理是对采集到的信号进行滤波、分析和计算等操作,以提取有用的信息。
信号处理可以通过模拟电路或数字电路实现。
滤波是对信号进行频率选择,去除不需要的频率分量。
滤波可以采用模拟滤波器或数字滤波器实现,常见的滤波器类型包括低通滤波器、高通滤波器和带通滤波器。
分析是对信号进行频谱分析、时域分析等操作,以获取信号的特征。
频谱分析可以通过傅里叶变换等方法实现,时域分析可以通过时间窗口和自相关函数等方法实现。
计算是对信号进行数学处理,以获得所需的结果。
计算可以包括峰值检测、平均值计算、功率计算等操作。
3. 信号显示信号显示是将处理后的信号以适当的形式展示给用户。
信号显示可以采用数字显示器、示波器、图形终端等设备。
数字显示器可以直接显示数字结果,如温度值、电压值等。
示波器可以以波形图的形式显示信号的变化。
图形终端可以将信号以图形的方式展示给用户,如频谱图、时域图等。
二、电子测量的应用电子测量在多个领域都有着广泛的应用。
以下是几个常见的应用领域以及相应的电子测量方法。
1. 通信系统在通信系统中,电子测量用于测量信号的质量和性能。
电子测量概论
第1章 电子测量概论 1.4.1 测量仪器的功能 各类测量仪表一般具有物理量的变换、信号的传 输和测量结果的显示等三种最基本的功能。
第1章 电子测量概论 (1) 变换功能 对于电压、电流等电学量的测量,是通过测量各种 电效应来达到目的的。例如,作为模拟式仪表最基本构 成单元的动圈式检流计(电流表),就是将流过线圈的电 流强度,转化成与之成正比的扭矩而使仪表指针偏转初 始位置一个角度,根据角度偏转大小(这可通过刻度盘上 的刻度获得)得到被测电流的大小,这就是一种很基本的 变换功能。对非电量的测量,如压力、位移、温度、湿 度、亮度、颜色、物质成份等,通过各种对之敏感的敏 感元件(通常称为传感器),转换成与之相关的电压、电 流等,而后再通过对电压、电流的测量,得到被测物理 量的大小。
功率,可高达108W以上,两者之比为1:1022。一般情况
下,使用同一台仪器,同一种测量方法,是难以覆盖 如此宽广的量程的。如前所述,随着电子测量技术的
不断发展,单台测量仪器的量程也可以达到很高。
第1章 电子测量概论
(3) 测量准确度高
相对其它测量方法,电子测量的准确度要高得多。 例如,长度测量的最高准确度为10-8量级,而对频率和时 间的测量,由于采用原子频标和原子秒作为基准,使得 测量准确度可以达到10-15的量级,这是目前人类在测量 准确度方面达到的最高指标。
第1章 电子测量概论 (5) 可以进行遥测 电子测量依据的是电子的运动和电磁波的传播,因 此可以: 现场各待测量转换成易于传输的电信号,用有 线或无线的方式传送到测试控制台(中心),从而实现遥
测和遥控。这使得对那些远距离的,高速运动的,或其
他人们难以接近地方的信号测量成为可能.
电子测量技术基础知识点
第1章电子测量的基本概念测量环境是指测量过程中人员、对象和仪器系统所处空间的一切物理和化学条件的总和。
电子测量的特点:①测量频率范围宽②测量量程广⑧测量准确度高低相差悬殊①测量速度快⑤可实现遥测⑥易于实现测量智能化和自动化⑦测量结果影响因素众多,误差分析困难测量仪器的主要性能指标:①精度;②稳定性;③输入阻抗;④灵敏度;⑤线性度;⑥动态特性。
精度:精密度(精密度高意味着随机误差小,测量结果的重复性好)正确度(正确度高则说明系统误差小)准确度(准确度高,说明精密度和正确度都高)第2章测量误差和测量结果处理误差=测量值-真值误差=测量值-真值修正值C = - 绝对误差Δx示值相对误差(标称相对误差)满度相对误差分贝误差当n 足够大时,残差得代数和等于零。
实验偏差与标准偏差:nn x ni i /1112σσυσ=-=∑=极限误差常用函数的合成误差和函数:差函数积商函数数据修约规则:(1)小于5舍去——末位不变。
(2)大于5进1——在末位增1。
(3)等于5时,取偶数——当末位是偶数,末位不变;末位是奇数,在末位增1(将末位凑为偶数)第3章信号发生器振荡器是信号发生器的核心。
通常用频率特性、输出特性和调制特性(俗称三大指标)来评价正弦信号发生器的性能。
合成信号发生器相干式(直接合成):频率切换迅速且相位噪声很低 锁相式(间接合成):频率切换时间相对较长但易于集成化和点频法相比,扫频法具有以下优点: 1.可实现网络的频率特性的自动或半自动测量2.扫频信号的频率是连续变化的,不会出现由于点频法中的频率点离散而遗漏掉细节的问题3.扫频测量法是在一定扫描速度下获得被测电路的动态频率特性,而后者更符合被测电路的应用实际第4章 电子示波器示波器的核心部件是示波管,由电子枪、电子偏转系统和荧光屏三部分组成为了示波器有较高的测量灵敏度,Y 偏转板置于靠近电子枪的部位,而X 偏转板在Y 的右边为了示波器有较高的测量灵敏度,Y 偏转板置于靠近电子枪的部位,而X 偏转板在Y 的右边电子示波器结构框图:为实现扫描回程光迹消隐,应产生加亮(增辉)信号交替方式(ALT):适合于观察高频信号断续方式(CHOP):适用于被测信号频率较低的情况当数字示波器处于存储工作模式时,其工作过程一般分为存储和显示两个阶段第5章频率时间测量对比测频与测周原理图测频图测周图要提高频率测量的准确度:1.提高晶振频率的准确度和稳定度以减小闸门时间误差2.扩大闸门时间T或倍频被测信号频率以减小±1误差3.被测信号频率较低时,采用测周期的方法测量一般选用高精确度的晶振,测频误差主要决定于量化误差(即土1误差) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章:电子测量
第一节:电子测量的基本概念
一. 电子测量的定义:
测量是用实验方法,将被测量与所选用的作为标准的同类量进行比较,从而确定它的量值的过程.
电子测量是以电子技术理论为依据,以电子测量设备和仪器为手段,对待测的电量或非电量所进行的测量.
二. 电子测量的内容:
根据本课程的任务,这里对电子测量的主要内容加以分类介绍,以使读者在学习测量技术之前,有一个大慨的认识.
1.关于电能量的测量:包括电流,电压,功率等
2.关于电路参数的测量:包括电阻,电感,电容,阻抗,品质因子等.
3.关于电信号波形特征的测量:包括频率,周期,时间,相位等.
4.电路性能方面的测量:包括放大倍数,衰减量,灵敏度.
5.半导体器件方面的测量:包括二极管,三极管,稳压管,场效应管等的各种参数.
三. 电子测量的方法:
采用正确的测量方法,可以得到比较精确的测量结果,否则会出现测量数据不准确或错误,甚至会损坏测量仪器或损坏被测组件和设备等现象.例如用万用表的R x1档测量,小功率三极管的发射结电阻时,由芜仪表的内阻很小,使三极管基极注入的电流过大,结果晶体管尚未使用就会在测试过程中被损坏.
四. 测量数据的舍入规则:
1.有效数字
由于在测量中不可避免地存在误差,并且仪器的分辨能力有一定的限制,测量数据就不可能完全准确.同时,在对测量数据进行计算时,遇到像π,e 等无理数,实际计算时也只能取近似值,因此得到的数据通常只是一个进似
值.当我们用这个数据表示一个量时,为了表示得确切,通常规定误差不得超过末位单位数字的一半.例如末位数字是个位,则包含的误差绝对值应不大于0.5;若末位是十位,则包含的误差绝对值应不大于5.对于这种误差不大于末位单位数字一半的数,从它左边第一个不为零的数字起,直到右面一个数字止,都叫作有效数字.例如375,123.08,3.10等,只要其中误差不大末位数字之半.它们就都是有效数字.值得注意的是,在数据左边的零不是有效数据,而数字中间和右面的零都是有效数字.例0.0038KΩ,左面的三个零就不是有效数字,因为它们可以通过单位变换变为3.8.可见只有两位有效数字.此外,对于像391000HZ这样的数,若实际上在百位数上就包含了误差,即只有四位有效数字,这时百分位数字上的零是有效数字,不能去掉,这时为了区别右面三个
零的不同,10的乘幂的形式,即写为3.910*10 HZ,它清楚地表明有效数字只有四位,误差绝对值不大于50HZ.
1. 数字的舍入规则
当需要几位有效数字时,对超过几位的数字就根据舍入规则进行处理.例如对某电压进形四次测量,每次测量值均可用四位有效数字表示.例如四次测量值分别为U1=38.71V,U2=38.68V,U3=38.70V,U4=38.72V时,它们的平均值为:
U=U1+U2+U3+U4/4=38.7052V
所以在小数点后第三,四位可以根据舍入规则处理掉.
五. 误差的基本慨念
一个量值是本身所具有的直实大小,称为真值.在测量过程中,测量工具不准确,测量手段不完善或测量工作中的疏忽等原因,都会使测量结果与被测量的直值不同,这个差异称为误差.
1. 测量误差的表示法
测量的结果与被测量的直值的差异,称为测误差,用△x表示,
即:
△x=X-A0 (1-1)
当X>A0时,△x是正值; X<A0时,△x是负值;所以△x是有大小,正负,有单位
的数值,它的大小和符号分别表示测量值偏离真值的数值和方向.
如:一个被测电压,其真值U0为220V,用一只电压表测量,其指示值U x 为222V,则绝对误差:
△U=U X-U0=222V-220V=+2V
这是正误差,比真值大了2V
式(1-1)中的A0是无法测得的,故该式缺乏实用价值.实际上,可用比使用仪器的精度等级高一级的标准仪器来测量.用它所显示的实际值A来替A0.
其实A中仍包含误差,只不过小一点,那么(1-1)式应改写成:
△x=X-A (1-2)
这是绝对误差的表达式.
与绝对误差△x相等而符号相反的值称为修正值,用C表示
C=-△x=A-X (1-3)
通过校验,由上一级标准仪器给出受检仪器的修正值.
在测量时,利用测得的结果与已知的修正值相加,即:
A=X+C (1-4)
如一个量程为10V的电压表,当用它进行测量时,指示值为8V,若检定时8V刻度处的修正值为-0.1V,求被测电压的实际值.
解:实际值U=8V+(-0.1)V=7.9V
根据国家标准GB776-65<<电气测量指示仪器通用技术条例>>的规定,常用电气测量仪表的准确度写为0.1,0.2,0.5,1.0,1.5,2.5,5.0等七个等级,0.2级仪器的引用误差在0.1%到0.2%之间;1.0级仪表的误差在0.5%到1.0%之间.
△U=U*5%
如:若要测一个10V左右的电压,手上有两快电压表,其中一块量程为
150V,1.5级;另一块量程为1.5V,2.5级.选用哪一块合适?
解:若使用量程为150V,1.5级的电压表
△U=U*5%=150*(±1.5%)= ±2.25V
若表头示值为10V, 则被测电压的真值是在10V±2.25V的范围内,误差值是相当大.
若使用量程为15V,2.5级的电压表.
△U=U*5%=15*(±2.5%)= ±0.375V
若表头示值为10V,则被测电压的真值是在10V±0.375V的范围内,误差值小得很多,因此应选用1.5V的2.5 级电压表.。