复杂网络简介PPT课件
合集下载
复杂网络 PPT课件
二十一世纪(二十世纪末),系统成为主要的研 究对象,整合成为主要方法;
整合的方法在于了解细部以后,研究“如何组合”的
问题,这导致复杂网络结构的研究; 如:普列高津的耗散结构理论、哈肯的协同学、混沌 和复杂系统理论、系统生物学、…
复杂系统与复杂网络
复杂系统与复杂网络的概念
系统:集合(具体元素)+ 系统的结构是什么?
统失控等一系列不同网络间的连锁反应。
(4)网络分层结构的复杂性
行政管理网络是具有层结构的,多数网络都有节点的
分层结构,只是在许多网络中没有意识到是一种造成 复杂性的重要结构。
对复杂网络的理解
复杂网络是二十一世纪科学研究的思想和理念, 它启发我们用什么观点理解这个世界:整个世界 以及组成世界的任何细部都是由网络及其变化形 成的; 复杂网络也是研究复杂系统的一种技术和方法, 它关注系统中个体相互作用的拓扑结构,是理解 复杂系统性质和功能的基本方法。
复杂网络 Complex Network
为什么研究复杂网络?
二十一世纪涌现的新现象
互联网是怎样“链”接的? 从一个页面到另一个页面,
平均需要点击多少次鼠标?
美国航空网
城市公共交通网
为什么两者结构差异如此之大? 这种差异是必然还是偶然的? 城市交通涌堵的原因是什么?
• 非典发现在广州,为什么却 在北京爆发呢? • 传染病是怎样扩散和消失的?
互联网 病毒传播网
计算机病毒是怎样传播的? 为什么“好事不出门,坏事 行千里”呢?……
神经网络
生态网络
社交网络
电力网络
电信网络航空网络Biblioteka Facebook 全球友谊图
复杂网络基础8课件
复杂网络的重要性
揭示现实世界的内在规律
解决实际问题
复杂网络理论可以用于揭示各种自然 现象和社会现象的内在规律,如生态 系统的食物链、社交网络中的人际关 系等。
复杂网络理论可以用于解决许多实际 问题,如网络安全、交通拥堵、疾病 传播等,为政策制定和工程实践提供 理论支持。
推动跨学科研究
复杂网络理论涉及到数学、物理、计 算机科学等多个学科,可以促进这些 学科之间的交叉融合,推动科学技术 的进步。
提高网络鲁棒性的方法
1 2 3
增加冗余节点和边 在网络中增加冗余的节点和边可以提高网络的容 错性和恢复力,从而提高网络的鲁棒性。
优化节点和边的连接结构 优化节点和边的连接结构可以提高网络的连通性 和稳定性,从而提高网络的鲁棒性。
引入超边和超节点 在网络中引入超边和超节点可以提高网络的连通 性和稳定性,从而提高网络的鲁棒性。
技术网络分析
技术网络分析的概
念
技术网络分析是对技术系统中各 种要素之间相互作用的研究,包 括计算机网络、交通网络等。
技术网络分析的应
用
技术网络分析在计算机网络管理、 交通规划、故障诊断等领域有重 要作用,有助于提高技术系统的 可靠性和效率。
技术网络分析的工
具
技术网络分析工具包括Wireshark、 Gephi等,这些工具提供了丰富 的可视化功能和统计分析方法, 方便研究者进行深入分析。
复杂网络的应用领域
社会学
研究社交网络中的人际 关系、信息传播、群体
行为等。
生物学
研究生物体内的分子相 互作用、生态系统的食
物链等。
计算机科学
研究计算机网络的结构 和演化、计算机病毒的
传播等。
物理学
PPT—复杂网络.ppt
20
三、社区结构
整个网络是由若干个“社区"或“组’’构成的。每个社 区内部的结点间的连接相对非常紧密,但是各个社区之间 的连接相对来说却比较稀疏(网络中的顶点可以分成组, 组内连接稠密而组间连接稀疏)。我们将复杂网络的这种 结构特征称之为复杂网络的社团结构或社区结构。
社区结构是复杂网络的一个重要的特性,社区也被称为簇, 大量研究表明网络是由各种不同类型的节点构成的,一般 情况下,在不同类型的节点间存在较少的边,而在相同类 型的节点间会有较多的边。位于一个子图内的节点和边组 成一个社团。 复杂网络社区结构还有一个很重要的特性,即是它的层次特
复杂网络的统计特征
网络的聚类系数C:所有节点i的聚类系数Ci的平均值。
(0C1) C=0网络中所有节点都是孤立点 C=1网络中任意节点间都有边相连
★ 网络节点间联系的密切程度, 体现网络的凝聚力
★ 许多大规模的实际网络都具有明显的聚类效应。事实 上,在很多类型的网络(如社会关系网络)中,你的朋友同 时也是朋友的概率会随着网络规模的增加而趋向于某个非 零常数,即当N→∞时,C=O(1)。这意味着这些实际的复杂 网络并不是完全随机的,而是在某种程度上具有类似于社 会关系网络中“物以类聚,人以群分”的特性。
性现实中的网络是由一个个较小的社团组成,而这些社团又可 以包括更小的社团。发现网络中的社团结构,对于了解网络结 构,分析网络特性都具有很重要的意义。
复杂网络研究内容
1)复杂网络模型 典型的复杂网络:随机网、小世界网、无标度网等; 实际网络及其分类。
2)网络的统计量及与网络结构的相关性 度分布的定义和意义,聚集性、连通性的统计量及其实际 意义等。
节点的数目。
★ 直观上看,一个节点的度越大就意味着这个节点在
三、社区结构
整个网络是由若干个“社区"或“组’’构成的。每个社 区内部的结点间的连接相对非常紧密,但是各个社区之间 的连接相对来说却比较稀疏(网络中的顶点可以分成组, 组内连接稠密而组间连接稀疏)。我们将复杂网络的这种 结构特征称之为复杂网络的社团结构或社区结构。
社区结构是复杂网络的一个重要的特性,社区也被称为簇, 大量研究表明网络是由各种不同类型的节点构成的,一般 情况下,在不同类型的节点间存在较少的边,而在相同类 型的节点间会有较多的边。位于一个子图内的节点和边组 成一个社团。 复杂网络社区结构还有一个很重要的特性,即是它的层次特
复杂网络的统计特征
网络的聚类系数C:所有节点i的聚类系数Ci的平均值。
(0C1) C=0网络中所有节点都是孤立点 C=1网络中任意节点间都有边相连
★ 网络节点间联系的密切程度, 体现网络的凝聚力
★ 许多大规模的实际网络都具有明显的聚类效应。事实 上,在很多类型的网络(如社会关系网络)中,你的朋友同 时也是朋友的概率会随着网络规模的增加而趋向于某个非 零常数,即当N→∞时,C=O(1)。这意味着这些实际的复杂 网络并不是完全随机的,而是在某种程度上具有类似于社 会关系网络中“物以类聚,人以群分”的特性。
性现实中的网络是由一个个较小的社团组成,而这些社团又可 以包括更小的社团。发现网络中的社团结构,对于了解网络结 构,分析网络特性都具有很重要的意义。
复杂网络研究内容
1)复杂网络模型 典型的复杂网络:随机网、小世界网、无标度网等; 实际网络及其分类。
2)网络的统计量及与网络结构的相关性 度分布的定义和意义,聚集性、连通性的统计量及其实际 意义等。
节点的数目。
★ 直观上看,一个节点的度越大就意味着这个节点在
PPT—复杂网络
随机图——节点42,边118
平均度为5.62,集聚系数为0.133。
ER模型
Erdös和Rényi (ER)最早提出随机网络 模型并进行了深入研究,他们是用概率统 计方法研究随机图统计特性的创始人。
给定N个节点,没有边,以概率p用边连接 任意一对节点,用这样的方法产生一随机 网络。
ER模型
小世界实验--- 六度分离
米尔格伦的实验过程是:他计划通过人传人的送信方式来统 计人与人之间的联系。
首先把信交给志愿者A,告诉他信最终要送给收信人S。如果 他不认识S,那么就送信到某个他认识的人B手里,理由是A认 为在他的交集圈里B是最可能认识S的。但是如果B也不认识S, 那么B同样把信送到他的一个朋友C手中,……,就这样一步 步最后信终于到达S那里。这样就从A到B到C到……最后到S连 成了一个链。斯坦利•米尔格伦就是通过对这个链做了统计后 做出了六度分离的结论。
性现实中的网络是由一个个较小的社团组成,而这些社团又可 以包括更小的社团。发现网络中的社团结构,对于了解网络结 构,分析网络特性都具有很重要的意义。
复杂网络研究内容
1)复杂网络模型 典型的复杂网络:随机网、小世界网、无标度网等; 实际网络及其分类。
2)网络的统计量及与网络结构的相关性 度分布的定义和意义,聚集性、连通性的统计量及其实际 意义等。
度(degree):节点 i 的度 ki 定义为与该节点连接的其他
节点的数目。
★ 直观上看,一个节点的度越大就意味着这个节点在
某种意义上越“重要”(“能力大”)。
网络的平均度:网络中所有节点的度和的平均值
dv
vV G
,记作<k>。
p
度分布函数p(k):随机选定节点的度恰好为k的概率
复杂网络理论和应用研究-PPT课件
k C N
网络(图)的基本概念
7
2
5
2
5 1 3 7
5
3
1 5
网络(图)的基本概念
节点1到7之间的最短路13,平均路径长度5.47,
平均度为3.4,集群系数为0.48。
3、规则图和随机图
规则图的特征 如果系统中节点及其与边的关系是固定的, 每个节点都有相同的度数,就可以用规 则图来表示这个系统。 随机图的特征 如果系统中节点及其与边的关系不确定, 就只能用随机图来表示这个系统。
因特网是一个复杂网络。(本图绘制于2019年 2月6日,描绘了从某一测试站点到其他约10万 个站点的最短连结路径。图中以相同的颜色来 表示相类似的站点。Nature 2000)
1 引论
复杂网络具有如下5个特征:
•
网络的大规模性和行为的统计性:网络节点数可以有成百上千万, 甚至更多,超大规模网络的行为具有统计特性。 节点动力学行为的复杂性: 各个节点本身可以是各非线性系统 (可以有离散的和连续微分方程描述), 具有分岔和混沌等非 线性动力学行为。 网络连接的稀疏性:一个有N个节点的具有全局耦合结构的网络 的连接数目为O(N ^2),而实际大型网络的连接数目通常为 O(N)。 连接结构的复杂性: 网络连接结构既非完全规则也非完全随机, 但却具有其内在的自组织规律。 网络的时空演化的复杂性: 复杂网络具有空间和时间的演化复 杂性, 展示出丰富的复杂行为,特别是网络节点之间的不同类型 的同步化运动。
b
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 ) 度为 k 的节点的概率 p ( k随节点 度 的变化规律。 k
网络(图)的基本概念
复杂网络理论和应用研究PPT课件
最近的研究文献揭示了复杂网络的许多重 要特性,其中最有影响的是小世界(smallworld)特性和无标度(scale-free)特性。
早期网络模型-ER模型
Erdös和Rényi (ER)最早提出随机网 络模型并对模型进行了深入研究,他们 是用概率统计方法研究随机图统计特性 的创始人。
在模型开始阶段给定N个节点,没有边, 以概率p用边连接任意一对节点,用这样 的方法产生一随机网络。
~ 1.5 Poisson distribution
小世界模型
为了描述从一个局部有序系统到一个随机 网络的转移过程,Watts和 Strogatz (WS)提出了一个新模型,通常称为小 世界网络模型。
WS模型始于一具有N个节点的一维网络, 网络的节点与其最近的邻接点和次邻接点 相连接,然后每条边以概率p重新连接。 约束条件为节点间无重边,无自环。
成的一张图。
中国教科网
中国教科网拓扑结构
网络(图)的基本概念
• 关联与邻接 • 度、平均度 • 节点的度分布 • 最短路径与平均路径长度 • 群系数
网络(图)的基本概念
a
b
c
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 度为 k的节点的概率 p(k随) 节点
度 的变k化规律。
网络(图)的基本概念
规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p任意连
接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。
早期网络模型-ER模型
Erdös和Rényi (ER)最早提出随机网 络模型并对模型进行了深入研究,他们 是用概率统计方法研究随机图统计特性 的创始人。
在模型开始阶段给定N个节点,没有边, 以概率p用边连接任意一对节点,用这样 的方法产生一随机网络。
~ 1.5 Poisson distribution
小世界模型
为了描述从一个局部有序系统到一个随机 网络的转移过程,Watts和 Strogatz (WS)提出了一个新模型,通常称为小 世界网络模型。
WS模型始于一具有N个节点的一维网络, 网络的节点与其最近的邻接点和次邻接点 相连接,然后每条边以概率p重新连接。 约束条件为节点间无重边,无自环。
成的一张图。
中国教科网
中国教科网拓扑结构
网络(图)的基本概念
• 关联与邻接 • 度、平均度 • 节点的度分布 • 最短路径与平均路径长度 • 群系数
网络(图)的基本概念
a
b
c
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 度为 k的节点的概率 p(k随) 节点
度 的变k化规律。
网络(图)的基本概念
规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p任意连
接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。
《复杂网络简介》课件
100%
小世界网络
指网络中节点间的平均距离很短 ,即信息在网络中传播的速度很 快。
80%
随机网络
节点和边的出现是随机过程的结 果,网络结构相对均匀。
03
复杂网络的演化
网络演化的基本规律
自相似性
复杂网络在演化过程中表现出 自相似性,即在不同尺度上网 络的结构和性质具有相似性。
无标度性
复杂网络中节点的度分布遵循 幂律分布,即少数节点拥有大 量连接,而大多数节点只有少 数连接。
小世界效应
复杂网络中的节点平均距离较 小,信息在网络中传播迅速。
网络演化的机制
01
02
03
增长
随着时间的推移,网络中 的节点数量不断增加,新 的节点通过与已有节点建 立连接加入网络。
优先连接
新加入的节点更倾向于与 已有节点中连接数较多的 节点建立连接,从而形成 层次结构。
自组织
网络中的节点通过局部规 则和相互作用,在演化过 程中形成复杂的结构和模 式。
复杂网络的重要性
揭示现实世界中复杂系统的内在规律和机制
复杂网络是描述现实世界中复杂系统的重要工具,可以帮助我们 揭示系统内在的规律和机制。
促进跨学科研究
复杂网络涉及多个学科领域,如数学、物理、计算机科学、社会 学等,通过复杂网络的研究可以促进跨学科的合作与交流。
复杂网络的应用领域
01
02
03
04
网络控制的基本概念
1 2
状态反馈控制
通过测量节点的状态,并利用状态反馈控制方法 调整节点的输入,实现网络的控制。
输出反馈控制
通过测量节点的输出,并利用输出反馈控制方法 调整节点的输入,实现网络的控制。
3
复杂网络概述 ppt课件
ppt课件
9
小世界实验---Erdos数
Erdos从来没有一个固定的职位,从来不定居在一 个地方,也没有结婚,带着一半空的手提箱,穿 梭于学术研讨会,浪迹天涯,颇富传奇色彩。有 人称他为流浪学者(wande ring scholar)。
他效忠的是科学的皇后, 而非一特定的地方。各 地都有热心的数学家提供他舒适的食宿,安排他 的一切,他则对招待他的主人,给出一些挑战性 的数学难题,或给予研究上的指导做为回馈。 他可以和许多不同领域的数学家合作。数学家常 将本身长久解决不了的问题和他讨论,于是很快 地一篇论文便诞生了。
ppt课件 6
小世界实验--- Bacon数
截止到几天前,世界电影史上共产生了大约 23万 部电影,78多万名电影演员(参见互联网电影库 ). Kavin Bacon在许多部电影中饰演小角色。 几 年 前 ,Virginia 大 学 的 计 算 机 专 家 Brett Tjaden 设计了一个游戏,他声称电影演员 Kevin Bacon是电影界的中心。 在游戏里定义了一个所谓的 Bacon 数:随便想一 个演员,如果他(她)和 Kavin Bacon 一起演过 电影,那么他(她)的 Bacon 数就为 1 ;如果他 (她)没有和Bacon演过电影,但是和Bacon数为 1 的演员一起演过电影,那么他的 Bacon 数就为 2 ; 依此类推。 发现: 在曾经参演的美国电影演员中,没有一个 人的Bacon数超过4。
Virginia大学计算机系的科学家建立了一个电影演员的数据库,放在
网上供人们随意查询。网站的数据库里目前总共存有近60万个世界各 地的演员的信息以及近30万部电影信息。通过简单地输入演员名字就
可以知道这个演员的Bacon数。
复杂网络概述 ppt课件
ppt课件 7
小世界实验--- Bacon数
在网上有一个网页。网站的数据库里总共存有有783940个世界 各地的演员的信息以及231,088部电影信息。
通过简单地输入演员名字就可以知道这个演员的 bacon 数。目 前比如输入Stephen Chow(周星驰)就可以得到这样的结果: 周星驰在 1991 年的《豪门夜宴 (Haomen yeyan)》 中与洪金宝 (Sammo Hung Kam-Bo) 合作;而洪金宝又在李小龙的最后一部 电影,即 1978 年的《死亡的游戏 ( Game of Death )》 中与 Colleen Camp 合作; Colleen Camp 在去年的电影《Trapped》 中与Kevin Bacon 合作。这样周星驰的Bacon数为3。 对78万个演员所做的统计:演员的最大Bacon数仅仅为8,平均 Bacon数仅为2.948。
ppt课件 6小世界实验--- Bac Nhomakorabean数
截止到几天前,世界电影史上共产生了大约 23万 部电影,78多万名电影演员(参见互联网电影库 ). Kavin Bacon在许多部电影中饰演小角色。 几 年 前 ,Virginia 大 学 的 计 算 机 专 家 Brett Tjaden 设计了一个游戏,他声称电影演员 Kevin Bacon是电影界的中心。 在游戏里定义了一个所谓的 Bacon 数:随便想一 个演员,如果他(她)和 Kavin Bacon 一起演过 电影,那么他(她)的 Bacon 数就为 1 ;如果他 (她)没有和Bacon演过电影,但是和Bacon数为 1 的演员一起演过电影,那么他的 Bacon 数就为 2 ; 依此类推。 发现: 在曾经参演的美国电影演员中,没有一个 人的Bacon数超过4。
小世界实验--- Bacon数
在网上有一个网页。网站的数据库里总共存有有783940个世界 各地的演员的信息以及231,088部电影信息。
通过简单地输入演员名字就可以知道这个演员的 bacon 数。目 前比如输入Stephen Chow(周星驰)就可以得到这样的结果: 周星驰在 1991 年的《豪门夜宴 (Haomen yeyan)》 中与洪金宝 (Sammo Hung Kam-Bo) 合作;而洪金宝又在李小龙的最后一部 电影,即 1978 年的《死亡的游戏 ( Game of Death )》 中与 Colleen Camp 合作; Colleen Camp 在去年的电影《Trapped》 中与Kevin Bacon 合作。这样周星驰的Bacon数为3。 对78万个演员所做的统计:演员的最大Bacon数仅仅为8,平均 Bacon数仅为2.948。
ppt课件 6小世界实验--- Bac Nhomakorabean数
截止到几天前,世界电影史上共产生了大约 23万 部电影,78多万名电影演员(参见互联网电影库 ). Kavin Bacon在许多部电影中饰演小角色。 几 年 前 ,Virginia 大 学 的 计 算 机 专 家 Brett Tjaden 设计了一个游戏,他声称电影演员 Kevin Bacon是电影界的中心。 在游戏里定义了一个所谓的 Bacon 数:随便想一 个演员,如果他(她)和 Kavin Bacon 一起演过 电影,那么他(她)的 Bacon 数就为 1 ;如果他 (她)没有和Bacon演过电影,但是和Bacon数为 1 的演员一起演过电影,那么他的 Bacon 数就为 2 ; 依此类推。 发现: 在曾经参演的美国电影演员中,没有一个 人的Bacon数超过4。
复杂网络基础理论(ppt)
IP
朋
地
友
址 网
关系
网
数理统计基础
概率论基础 数理统计基础 统计假设及检验 一元线性回归分析
图论的基本概念
图的基本概念 图的路和连通性 图的基本运算 树与生成树 图的矩阵表示
复杂网络的研究内容和意义
研究的主要内容包括:网络的几何性质,网络 的形成机制,网络演化的统计规律,网络上的模 型性质,网络的结构稳定性,网络的演化动力学 机制等。
间的距离dij和从节点vj到vi之间的距离dji是不同的。距离dij 定义为从节点vi出发沿着同一方向到达节点vj所要经历的弧的 最少数目,而它的倒数1/dij称为从节点vi到节点vj的效率, 记为εij。
有向连通简单网络的平均距离L
因为效率可以用来描述非连通网络,所以可以定义有向网 络的效率LC为
介数
介数 节点的介数Bi定义为
式中,Njl表示从节点vj到vl的最短路径条数,Njl(i)表示 从节点vj到vl的最短路径经过节点vi的条数。 边的介数Bij定义为
式中,Nlm表示从节点vl到vm的最短路径条数,Nlm(eij )表示从节点vl到vm的最短路径经过边eij(方向相同)的 条数。
加权网络的静态特征
核度 一个图的k-核是指反复去掉度值小于k的节点及其连线后
,所剩余的子图,该子图的节点数就是该核的大小。 节点核度的最大值叫做网络的核度。 节点的核度可以说明节点在核中的深度,核度的最大值自然
就对应着网络结构中最中心的位置。
度中心性
度中心性分为节点度中心性和网络度中心性。 节点vi的度中心性CD(vi)定义为
网络G的度中心性CD定义为
介数中心性
介数中心性分为节点介数中心性和网络介数中心性。 节点vi的介数中心性CB(vi)定义为
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021n/e3t/w7ork becomes increasingly disordered until CfoHr Ep=N1LaI ll edges are rewired randomly.
9
• Fig. 2 An example of scale-free network.
2021/3/7
• 在复杂网络的研究过程中,人们将网络中的节点用1, 2,…,N表出(注意:网络中的节点个数N可以是动态变 化的,也就是说网络可以而且应该是一个不断演化的过 程),网络建模主要考虑的是点与点之间的连边机制,下 面详细说明一下这四种网络的生成过程。
2021/3/7
CHENLI
7
• (i)规则网络(Lattice):节点个数N为不变的参数,将
这N个编号的节点通过以下的连边机制:每个节点连接到
• 它(的ii)K随临机近网的络节(点ERi)1,i:2节,...,点iK个2 ,数这N为里不K是变一的个参偶数整,数将。这
N个编号的节点通过以下的连边机制:节点 的概率为 p 。
i
和节点
j
连接
• (iii)小世界网络(WS):节点个数N为不变的参数,将 这N个编号的节点通过以下两个过程的连边机制:(1) 初始化:构造一个Lattice网络;(2)随机化:将网络中 的每一条边以概率 p 进行重连(即遍历选取每一条边,固 定边的一个节点,以概率选择另一个节点进行连接)。显 然WS网络是规则网络当 p 0 ,是随机网络当 p 1 。
复杂网络研究的是介于确定和随机之间的现实中的系统。 一个典型的网络由节点和连接两个节点的边组成。很长时 间以来,网络被考虑成点和边的随意集合,在数学上用随 机图表示。近几年,由于计算机数据处理和运算能力的飞 速发展,这种状况发生了根本性的改变。人们开始研究大 规模复杂网络的拓扑结构,研究发现,尽管很多网络具有 明显的复杂性和随机性,但也会出现可以用数学和统计语 言来描述的清晰的模式和规律,其中最重要的是小世界效 应(small-world effect),(Watts & Strogatz, 1998)和无标 度特性(scale-free property),(Barabási & Albert, 1999)。
• (iv)无标度网络(BA):节点个数N不断增加的演化网
络,点边机制是通过以下两个过程生成的:(1)增长性:
初始网络为 个节m 0点,在每一个时间步增加一个新的节点,
同时这个新节点与网络中
个m(已m经m0)存在的节点相连;
20(连率的21/2接规3/7)概模偏率N好。p。i 连正程接比k序ji k:与j的p 新i 节终节点止点的条选度件择C,是HE节即N事L点I选先进择给行节定连点的接时进是间行有步连偏或i 接好者的的网概,络 8
2021/3/7
CHENLI
1
复杂网络简介
• 第一部分:引言 • 第二部分:几种经典的网络模型 • 第三部分:网络研究中常见的统计量
2021/3/7
CHENLI
2
第一部分 引言
• 1.1 网络的概念以及相关研究 • 1.2 与交通相关的网络研究
2021/3/7
CHENLI
3
第一部分 引言
1.1 网络的概念以及相关研究
CHENLI
10
第三部分 网络研究中常见的统计量
• 3.1 各种常见统计量的求解过程 • 3.2 部分统计量的关系图
2021/3/7
CHENLI
11
第三部分 网络研究中常见的统计量
3.1 各种常见统计量的求解过程
• 在复杂网络的研究中,人们经常用到的统计量有:度分布 (degree distribution)、平均最短距离(average shortest path length)、群聚系数(clustering coefficient)、度相关 系数(assortativity coefficient)、介中性(betweenness centrality)等,下面将详述它们的求解过程。
2021/3/7
CHENLI
4
第一部分 引言
1.2 与交通相关的网络研究
迄今为止,对交通系统及相关网络复杂性的研究成果还十 分有限,较少的研究也主要集中在航空、地铁和铁路网络 上。Amaral et. al.(2000)研究了世界航空网络的拓扑结 构;Latora和Marchiori(2002)对波士顿地铁的网络特性 进行了初步研究; Sen et. al.(2002)研究了印度铁路网络 的小世界特性; Jiang和Claramunt(2004)对城市道路网 络进行了研究,以实例说明了此网络具有小世界特性; Wu et. al. (2004a) 以北京市为例,说明了城市公交网络为 无标度网络;借助于SIR传播模型,Wu et. al. (2004b) 提出 了一种交通拥堵的演化模型。但是城市交通网络的相关研 究结果并不十分深入,其理论也并不完善。如何深入理解 城市交通网络的演化机制,是合理设计网络的基础。
2021/3/7
CHENLI
5
第二部分 几种经典的网络模型
• 2.1 网络的生成过程 • Байду номын сангаас.2 网络图
2021/3/7
CHENLI
6
第二部分 几种经典的网络模型
2.1 网络的生成过程
• 在这一部分,我们将主要讨论以下几种网络模型:规则网 络(Lattice network)、随机网络(ER模型)、小世界网 络(WS模型)、无标度网络(BA模型)。
第二部分 几种经典的网络模型
2.2 网络图
• 对应的网络如图1(规则网络、随机网络和小世界网络) 和图2(无标度网络):
• Fig. 1 The random rewiring procedure of the Watts-Strogatz model, which interpolates between a regular ring lattice and a random network without altering the number of nodes or edges. We start with N=20 nodes, each connected to its four nearest neighbors. For p=0 the original ring is unchanged; as p increases the