2020年重庆市中考数学试卷(B卷)

合集下载

2022年重庆市中考数学B卷试题及答案解析

2022年重庆市中考数学B卷试题及答案解析

2022年重庆市中考数学试卷(B卷)一、选择题(本大题共12小题,共48.0分)1.−2的相反数是( )A. −2B. 2C. −12D. 122.下列北京冬奥会运动标识图案是轴对称图形的是( )A. B.C. D.3.如图,直线a//b,直线m与a,b相交,若∠1=115°,则∠2的度数为( )A. 115°B. 105°C. 75°D. 65°4.如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为( )A. 3时B. 6时C. 9时D. 12时5.如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是( )A. 1:2B. 1:4C. 1:3D. 1:96.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A. 15B. 13C. 11D. 97.估计√54−4的值在( )A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间8.学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是( )A. 625(1−x)2=400B. 400(1+x)2=625C. 625x2=400D. 400x2=6259.如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为( )A. 50°B. 55°C. 65°D. 70°10.如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3√3,则PB的长为( )A. √3B. 32C. 2√3D. 311.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A. 13B. 15C. 18D. 2012.对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A. 0B. 1C. 2D. 3二、填空题(本大题共4小题,共16.0分)13.|−2|+(3−√5)0=______.14.在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为______.15.如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为______.(结果保留π)16. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为______.三、解答题(本大题共9小题,共86.0分) 17. 计算:(1)(x +y)(x −y)+y(y −2); (2)(1−m m+2)÷m 2−4m+4m 2−4.18. 我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为ℎ的三角形的面积公式为S =12aℎ.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D.(只保留作图痕迹) 在△ADC 和△CFA 中, ∵AD ⊥BC , ∴∠ADC =90°. ∵∠F =90°, ∴①______. ∵EF//BC , ∴②______. 又∵③______, ∴△ADC≌△CFA(AAS). 同理可得:④______.S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12aℎ.19.在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=______,b=______,c=______.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)20.反比例函数y=4x 的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=4x的图象交于A(m,4),B(−2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<4x的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.21.为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:√3≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)23.对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两为整数,求出满足条件的所有数A.位数记为G(A),若F(A)+G(A)16x2+bx+c与x轴交于点A(4,0),与y轴24.如图,在平面直角坐标系中,抛物线y=−34交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求AM的最大值及此时点P的坐标;PM+65x2+bx+c的对称轴对称.将抛(3)在(2)的条件下,点P′与点P关于抛物线y=−34x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线物线y=−34上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.25.在△ABC中,∠BAC=90°,AB=AC=2√2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=√2AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.答案和解析1.【答案】B【解析】解:−2的相反数是:−(−2)=2,故选:B.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】C【解析】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.根据轴对称图形的概念求解.本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】A【解析】解:∵a//b,∴∠1=∠2,∵∠1=115°,∴∠2=115°,故选:A.根据平行线的性质,可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.【答案】C【解析】解:由图形可知,在这一时段内心跳速度最快的时刻约为9时,故选:C.直接由图形可得出结果.本题主要考查了折线统计图的意义,理解横纵轴表示的意义是解题的关键.5.【答案】A【解析】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.根据两三角形位似,周长比等于相似比即可求解.本题考查了位似三角形的性质,明确两三角形位似,周长比等于相似比是解题的关键.6.【答案】C【解析】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n−1)=(2n−1)个,∴第⑥个图案中有2×6−1=11个菱形,故选:C.根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n−1)个,从而得出答案.本题主要考查了图形的变换规律,归纳出第n个图案中菱形的个数为2n−1,是解题的关键.,体现了从特殊到一般的数学思想.7.【答案】D【解析】解:∵49<54<64,∴7<√54<8,∴3<√54−4<4,故选:D.用夹逼法估算无理数的大小即可得出答案.本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.【答案】B【解析】解:根据题意得:400(1+x)2=625,故选:B.第三年的植树量=第一年的植树量×(1+年平均增长率)2,把相关数值代入即可.考查列一元二次方程解决实际问题,读懂题意,找到等量关系列方程是解决本题的关键.9.【答案】C【解析】解:∵ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠FAO=20°.在△AOF和△BOE中,{OA=OB∠AOF=∠BOE=90°OF=OE,∴△AOF≌△BOE(SAS).∴∠FAO=∠EOB=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.10.【答案】D【解析】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90°+x=180°,∴x=30°,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tanP=OCPC,∴√33=r3√3,∴r=3,∴PB=OP−OB=2r−r=r=3.故选:D.连结OC,根据切线的性质得到∠PCO=90°,根据OC=OA,得到∠A=∠OCA,根据AC= PC,得到∠P=∠A,在△APC中,根据三角形内角和定理求得∠P=30°,根据含30度角的直角三角形的性质得到OP=2OC=2r,在Rt△POC中,根据tanP=OCPC求出⊙O的半径r即可得出答案.本题考查了切线的性质,体现了方程思想,在△APC中,根据三角形内角和定理求得∠P= 30°是解题的关键.11.【答案】D【解析】解:解分式方程得:x=a−2,∵x>0且x≠3,∴a−2>0且a−2≠3,∴a>2且a≠5,解不等式组得:{y ≥5y >a+32, ∵不等式组的解集为y ≥5,∴a+32≤5,∴a ≤7,∴2<a ≤7且a ≠5,∴所有满足条件的整数a 的值之和=3+4+6+7=20,故选:D .解分式方程得得出x =a −2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出{y ≥5y >a+32,结合题意得出a ≤7,进而得出2<a ≤7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.12.【答案】D【解析】解:①如(x −y)−z −m −n =x −y −z −m −n ,(x −y −z)−m −n =x −y −z −m −n ,故①符合题意;②x −y −z −m −n 的相反数为−x +y +z +m +n ,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x −(y −z)−m −n =x −y +z −m −n ;第3种:x −(y −z)−(m −n)=x −y +z −m +n ;第4种:x −(y −z −m)−n =x −y +z +m −n ;第5种:x −(y −z −m −n)=x −y +z +m +n ;第6种:x −y −(z −m)−n =x −y −z +m −n ;第7种:x −y −(z −m −n)=x −y −z +m +n ;第8种:x −y −z −(m −n)=x −y −z −m +n ;故③符合题意;正确的个数为3,故选:D .根据括号前是“+”,添括号后,各项的符号都不改变判断①;根据相反数判断②;通过例举判断③.本题考查了整式的加减,解题的关键是注意可以添加1个括号,也可以添加2个括号.13.【答案】3【解析】解:原式=2+1=3.故答案为:3.根据绝对值的性质和零指数幂的性质计算可得答案.本题考查实数的运算,熟练掌握实数的运算性质是解题关键.14.【答案】49【解析】解:画树状图如下:共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,∴两次摸出的球都是红球的概率为49,故答案为:49.画树状图,共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,再由概率公式求解即可.此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.【答案】13π【解析】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB=ABBE =12,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S =30π×22360=13π, 故答案为:13π. 先根据锐角三角函数求出∠AEB =30°,再根据扇形面积公式求出阴影部分的面积. 本题考查有关扇形面积的相关计算、矩形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出角的度数是解题关键.16.【答案】4:3【解析】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x ,3x ,2x ,每包麻花的成本为y 元,每包米花糖的成本为a 元,则每包桃片的成本是2y 元,由题意得:20%⋅2y ⋅x +30%⋅a ⋅3x +20%⋅y ⋅2x =25%(2xy +3ax +2xy), 15a =20y ,∴a y =43, 则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.先根据比例设该店五月份销售桃片、米花糖、麻花的数量分别为x ,3x ,2x ,每包麻花的成本为y 元,每包米花糖的成本为a 元,则每包桃片的成本是2y 元,由三种特产的总利润是总成本的25%列方程可得a y =43,从而解答此题.本题考查三元高次方程的应用,解本题要理解题意,通过找出等量关系即可求解. 17.【答案】解:(1)(x +y)(x −y)+y(y −2)=x 2−y 2+y 2−2y=x 2−2y ;(2)原式=m+2−m m+2÷(m−2)2(m−2)(m+2) =2m+2⋅m+2m−2=2m−2.【解析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.本题考查分式的混合运算、平方差公式和单项式乘多项式,解答本题的关键是明确它们各自的计算方法.18.【答案】∠ADC=∠F∠1=∠2AC=AC△ADB≌△BEA(AAS)【解析】证明:∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴∠ADC=∠F,∵EF//BC,∴∠1=∠2,∵AC=AC,在△ADC与△CFA中{AC=AC∠1=∠2∠ADC=∠F,∴△ADC≌△CFA(AAS).同理可得:④△ADB≌△BEA(AAS),∴S△ABC=S△ADC+S△ABD=12S矩形ADCF+12S矩形AEBD=12S矩形BCFE=12aℎ.故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).根据矩形的性质、垂直的定义得出∠F=∠ADC=90°,再根据EF//BC,推出∠1=∠2,进而证明△ADC≌△CFA(AAS),同理可得:④△ADB≌△BEA(AAS),最后得出三角形的面积公式为S=12aℎ.本题主要考查了基本作图、全等三角形、矩形的判定与性质,掌握5种基本作图,全等三角形、矩形的判定与性质的应用,其中全等的证明是解题关键.19.【答案】88.565%【解析】解:(1)七年级学生的课外阅读时长出现次数最多的是8小时,因此七年级学生的课外阅读时长的众数是8小时,即a=8;将八年级学生的课外阅读时长从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5小时,即b =8.5;c =3+6+3+120×100%=65%,故答案为:8,8.5,65%;(2)400×820=160(人),答:七年级在主题周活动期间课外阅读时长在9小时及以上的大约有160人;(3)八年级参与的积极性更高,理由:八年级学生课外阅读时长的中位数,众数均比七年级的高.(1)根据众数的定义可求出七年级学生的课外阅读时长的众数,即a 的值;根据中位数的定义可求出八年级学生的课外阅读时长的中位数,即b 的值,根据频率=频数总数可求出八年级学生的课外阅读时长在8小时及以上所占百分比,即C 的值;(2)求出样本中七年级学生课外阅读时长在9小时及以上的学生所占的百分比,即可估计总体中所占的百分比,进而求出相应人数;(3)由中位数、众数的比较得出结论.本题考查中位数、众数、平均数以及样本估计总体,理解中位数、众数的定义是正确解答的前提.20.【答案】解:(1)∵(m,4),(−2,n)在反比例函数y =4x 的图象上,∴4m =−2n =4,解得m =1,n =−2,∴A(1,4),B(−2,−2),把(1,4),(−2,−2)代入y =kx +b 中得{k +b =4−2k +b =−2, 解得{k =2b =2, ∴一次函数解析式为y =2x +2.画出函数y =2x +2图象如图;(2)由图象可得当0<x<1或x>2时,直线y=−2x+6在反比例函数y=4图象下方,x∴kx+b<4的解集为x<−2或0<x<1.x(3)把y=0代入y=2x+2得0=2x+2,解得x=−1,∴点C坐标为(−1,0),×1×4=2.∴S△AOC=12【解析】(1)将A,B两坐标先代入反比例函数求出m,n,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x的取值范围求解.(3)由直线解析式求得C点的坐标,然后根据三角形面积公式即可求解.本题考查反比例函数与一次函数的交点问题,解题关键是掌握函数与方程及不等式的关系.21.【答案】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x−20)米,由题意可得:5(x−20)+2x=600,解得x=100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)= 1.2m米,由题意可得:360m +900−3601.2m=900100,解得m=90,经检验,m=90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【解析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.22.【答案】解:(1)如图,延长CB到D,则CD⊥AD于点D,根据题意可知:∠NAC=∠CAB=30°,BC=900米,BC//AN,∴∠C=∠NAC=30°=∠BAD,∴AB=BC=900米,∵∠BAD=30°,∴BD=450米,∴AD=√3BD=450√3(米),∴AC=2AD=900√3≈1559(米)答:湖岸A与码头C的距离约为1559米;(2)设快艇在x 分钟内将该游客送上救援船,∵救援船的平均速度为150米/分,快艇的平均速度为400米/分,∴150x +(400x −900)=1559,∴x ≈4.5,答:快艇能在5分钟内将该游客送上救援船.【解析】(1)延长CB 到D ,则CD ⊥AD 于点D ,根据题意可得∠NAC =∠CAB =30°,BC =900米,BC//AN ,所以∠C =∠NAC =30°=∠BAD ,然后根据含30度角的直角三角形即可解决问题;(2)设快艇在x 分钟内将该游客送上救援船,根据救援船的平均速度为150米/分,快艇的平均速度为400米/分,列出方程150x +(400x −900)=1559,进而可以解决问题. 本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.23.【答案】解:(1)∵357÷(3+5+7)=357÷15=23……12,∴357不是“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”;(2)设A =abc −(a +b +c =12,a >b >c),由题意得:F(A)=ab −,G(A)=cb −,∴F(A)+G(A)16=ab −+cb−16=10a+b+10c+b 16=10(a+c)+2b 16,∵a +c =12−b ,F(A)+G(A)16为整数, ∴F(A)+G(A)16=10(12−b)+2b 16=120−8b 16=112+8−8b 16=7+12(1−b), ∵1<b <9,∴b =3,5,7,9,∴a +c =9,7,5,3,①当b =3,a +c =9时,{a =8b =3c =1(舍),{a =7b =3c =2,则A =732或372;②当b =5,a +3=7时,{a =6b =5c =1,则A =156或516;③当b =7,a +c =5时,此种情况没有符合的值;④当b =9,a +c =3时,此种情况没有符合的值;综上,满足条件的所有数A 为:732或372或156或516.【解析】(1)根据“和倍数”的定义依次判断即可;(2)设A =abc −(a +b +c =12,a >b >c),根据“和倍数”的定义表示F(A)和G(A),代入F(A)+G(A)16中,根据F(A)+G(A)16为整数可解答.本题考查了新定义问题,根据新定义问题进行计算是解题关键.24.【答案】解:(1)∵抛物线y =−34x 2+bx +c 与x 轴交于点A(4,0),与y 轴交于点B(0,3). ∴{−12+4b +c =0c =3, ∴{b =94c =3. ∴抛物线的函数表达式为y =−34x 2+94x +3;(2)∵A(4,0),B(0,3),∴OA =4,OB =3,由勾股定理得,AB =5,∵PQ ⊥OA ,∴PQ//OB ,∴△AQM∽△AOB ,∴MQ :AQ :AM =3:4:5,∴AM =53MQ ,65AM =2MQ , ∴PM +65AM =PM +2MQ ,∵B(0,3),A(4,0),∴l AB :y =−34x +3,∴设P(m,−34m 2+94m +3),M(m,−34m +3),Q(m,0),∴PM +2MQ =−34m 2+32m +6=−34(m −1)2+274,∵−34<0,∴开口向下,0<m <4,∴当m =1时,PM +65AM 的最大值为274,此时P(1,92);(3)由y =−34x 2+94x +3知,对称轴x =32,∴P′(2,92), ∵直线l :x =4,∴抛物线向右平移52个单位,∴平移后抛物线解析式为y′=−34x 2+6x −11716, 设D(4,t),C(c,−34c 2+6c −11716),①AP′与DC 为对角线时,{4+2=4+c 0+92=t +(−34c 2+6c −11716),∴{c =2t =4516,∴D(4,4516), ②P′D 与AC 为对角线时,{2+4=4+c 92+t =0+(−34c 2+6c −11716),∴{c =2t =−4516,∴D(4,−4516),③AD 与P′C 为对角线时,{4+4=2+c 0+t =92+(−34c 2+16c −11716),∴{c =6t =9916,∴D(4,9916), 综上:D(4,4516)或(4,−4516)或(4,9916).【解析】(1)将点A 、B 坐标分别代入抛物线解析式,解方程即可;(2)利用△AQM∽△AOB ,得MQ :AQ :AM =3:4:5,则PM +65AM =PM +2MQ ,设P(m,−34m 2+94m +3),M(m,−34m +3),Q(m,0),用含m 的代数式表示出PM +2MQ ,利用二次函数的性质可得答案;(3)根据原来抛物线和新抛物线的对称轴知,抛物线向右平移52个单位,则平移后抛物线解析式为y′=−34x 2+6x −11716,设D(4,t),C(c,−34c 2+6c −11716),分AP′与DC 为对角线或P′D 与AC 为对角线或AD 与P′C 为对角线,分别利用中点坐标公式可得方程,从而解决问题.本题是二次函数综合题,主要考查了二次函数的图象与性质,待定系数法求函数解析式,相似三角形的判定与性质,平行四边形的判定与性质等知识,根据平行四边形的顶点坐标,利用中点坐标公式列方程是解题的关键,同时注意分类讨论.25.【答案】(1)解:如图1,连接CP,由旋转知,CF=CG,∠FCG=90°,∴△FCG为等腰直角三角形,∵点P是FG的中点,∴CP⊥FG,∵点D是BC的中点,BC,∴DP=12在Rt△ABC中,AB=AC=2√2,∴BC=√2AB=4,∴DP=2;(2)证明:如图2,过点E作EH⊥AE交AD的延长线于H,∴∠AEH=90°,由旋转知,EG=EF,∠FEG=90°,∴∠FEG=∠AEH,∴∠AEG=∠HEF,∵AB=AC,点D是BC的中点,∠BAC=45°,∴∠BAD=∠CAD=12∴∠H=90°−∠CAD=45°=∠CAD,∴AE=HE,∴△EGA≌△EFH(SAS),∴AG=FH,∠EAG=∠H=45°,∴∠EAG=∠BAD=45°,∵∠AMF=180°−∠BAD−∠AFM=135°−∠AFM,∵∠AFM=∠EFH,∴∠AMF=135°−∠EFH,∵∠HEF=180°−∠EFH−∠H=135°−∠EFH,∴∠AMF=∠HEF,∵△EGA≌△EFH,∴∠AEG=∠HEF,∵∠AGN=∠AEG,∴∠AGN=∠HEF,∴∠AGN=∠AMF,∵GN=MF,∴△AGN≌△AMF(AAS),∴AG=AM,∵AG=FH,∴AM=FH,∴AF+AM=AF+FH=AH=√2AE;(3)解:∵点E是AC的中点,AC=√2,∴AE=12根据勾股定理得,BE=√AE2+AB2=√10,由折叠直,BE=B′E=√10,∴点B′是以点E为圆心,√10为半径的圆上,由旋转知,EF=EG,∴点G是以点E为圆心,EG为半径的圆上,∴B′G的最小值为B′E−EG,要B′G最小,则EG最大,即EF最大,∵点F在AD上,∴点在点A或点D时,EF最大,最大值为√2,∴线段B′G的长度的最小值√10−√2.【解析】(1)连接CP,判断出△FCG为等腰直角三角形,进而判断出CP⊥FG,进而得BC,再求出BC,即可求出答案;出DP=12(2)过点E作EH⊥AE交AD的延长线于H,先判断出△EGA≌△EFH(SAS),得出AG=FH,∠EAG=∠H=45°,进而判断出△AGN≌△AMF(AAS),即可得出结论;(3)先求出BE=√10,再判断出点B′是以点E为圆心,√10为半径的圆上,再判断出点G 是以点E为圆心,EG为半径的圆上,进而得出EF最大时,B′G最小,即可求出答案.此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,等腰三角形的性质,作出辅助线构造出全等三角形是解本题的关键.。

重庆市2022年中考数学试卷(B卷)附详细答案

重庆市2022年中考数学试卷(B卷)附详细答案

重庆市2022年中考数学试卷(B卷)附详细答案一、选择题(共12个小题,每小题4分,共48分)1.−2 的相反数是()A.-2B.2C.- 12D.122.下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.3.如图,直线a∥b,直线m 与a,b 相交,若∥1=115°,则∥2 的度数为()A.115°B.105°C.75°D.65°4.如图是小颖0 到12 时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.如图,∥ABC 与∥DEF 位似,点O 是它们的位似中心,且相似比为1:2,则∥ABC 与∥DEF 的周长之比是()A.1:2B.1:4C.1:3D.1:96.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.估计√54−4的值在()A.6 到7 之间B.5 到6 之间C.4 到5 之间D.3 到4 之间8.学校连续三年组织学生参加义务植树,第一年共植树400 棵,第三年共植树625 棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1−x)2=400B.400(1+x)2=625C.625x2=400D.400x2=6259.如图,在正方形ABCD 中,对角线AC,BD 相交于点O.E,F 分别为AC,BD 上一点,且OE=OF,连接AF,BE,EF,若∥AFE=25°,则∥CBE 的度数为()A.50°B.55°C.65°D.70°10.如图,AB是∥O的直径,C为∥O上一点,过点C的切线与AB 的延长线交于点P,若AC=PC= 3√3,则PB 的长为()A.√3B.32C.2√3D.311.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.2012.对多项式x-y-z-m-n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x-y)-(z-m-n)=x-y-z+m+n,x-y-(z-m)-n = x-y-z+m-n,……,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8 种不同的结果.以上说法中正确的个数为() A.0B.1C.2D.3二、填空题(共4个小题,每小题4分,共16分)13.|−2|+(3−√5)0=.14.在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.15.如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC 的长为半轻画弧,交AD 于点E.则图中阴影部分的面积为.(结果保留π)16.特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2 倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.三、解答题(共2个小题,每小题8分,共16分)17.计算:(1)(x+ y)(x-y)+y(y-2) (2)(1−mm+2)÷m2−4m+4m2−418.我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h 的三角形的面积公式为S=12aℎ. 想法是:以BC 为边作矩形BCFE,点A 在边FE上,再过点A 作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图..与填空...证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D.(只保留作图痕迹)在∥ADC 和∥CFA 中,∵AD∥BC∴∥ADC=90° .∴∥F= 90°,∴①∵EF∥ BC,∴②又∵③∴∥ADC∥∥CFA (AAS).同理可得:④S△ABC=S△ADC+S△ABD=12S矩形ADCF +12S矩形AEBD=12S矩形BCFE=12aℎ.四、解答题(共7个小题,每小题10分,共70分)19.在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于 6 小时,但不足12 小时,从七,八年级中各随机抽取了20 名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;...以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,根据以上信息,解答下列问题:(1)填空:a = , b =,c = .(2)该校七年级有400 名学生,估计七年级在主题周活动期间课外阅读时长在9 小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)20.反比例函数y=4x的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=4x的图象交于A(m,4),B(-2,n)两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式kx+b<4x的解集;(3)一次函数y=kx+b的图象与x 轴交于点C,连接OA,求∥OAC 的面积.21.为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360 米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头 C 接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知 C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A 与码头C 的距离(结果精确到1 米,参考数据:√3=1.732 );(2)救援船的平均速度为150 米/分,快艇的平均速度为400 米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)23.对于一个各数位上的数字均不为0 的三位自然数N,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247÷(2+4+7)= 247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441 是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c 分别是数A其中一个数位上的数字,且a>b>c在a,b,c 中任选两个组成两位数,其中最大的两位数记为F (A),最小的两位数记为G(A),若F(A)+G(A)16为整数,求出满足条件的所有数A.24.如图,在平面直角坐标系中,抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y 轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ∥x 轴于点Q,交AB于点M,求PM+65AM的最大值及此时点P 的坐标;(3)在(2)的条件下,点P' 与点P关于抛物线y=−34x2+bx+c的对称轴对称.将抛物线y=−34x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C 在新抛物线上,点D在l上,直接写出所有使得以点A、P'、C、D为顶点的四边形是平行四边形的点 D 的坐标,并把求其中一个点D的坐标的过程写出来.25.在∥ ABC中,∥BAC=90° ,AB=AC= 2√2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E 与点C 重合,且GF 的延长线过点 B ,若点P 为FG 的中点,连接PD,求PD的长;(2)如图2,EF 的延长线交AB 于点M,点N在AC上,∥AGN=∥AEG 且GN=MF,求证:AM+AF= √2AE(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将∥ BEH沿EH翻折至∥ABC所在平面内,得到∥ B'EH',连接B'G,直接写出线段B'G的长度的最小值答案解析部分1.【答案】B【解析】【解答】解:-2的相反数是2.故答案为:B.【分析】根据互为相反数的两个数之和为0,即-2+2=0,即可得出正确答案.2.【答案】C【解析】【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故答案为:C.【分析】根据轴对称的定义,即一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据定义逐项判断即可得出正确答案.3.【答案】A【解析】【解答】解:∵a∥b,∥1=115°,∴∥2=∥1=115°.故答案为:A.【分析】根据平行线的性质,即两直线平行,同位角相等,即可求出∥2的度数.4.【答案】C【解析】【解答】解:由心跳速度变化图可知,在9时对应图象的最高点,∴在9时,心跳速度达到最快.故答案为:C.【分析】根据心跳速度变化折线图可知,图象最高点时,对应时刻为9时,即可得出正确答案. 5.【答案】A【解析】【解答】解:∵∥ABC与∥DEF位似,且相似比为1:2,∴AC:DF=1:2,∴∥ABC 与∥DEF 的周长之比为1:2.故答案为:A.【分析】根据位似的性质,即∥ABC与∥DEF相似,且相似比为1:2,则周长比就等于相似比,即可得出正确答案.6.【答案】C【解析】【解答】解:∵第①个图案的菱形个数=1=2×1-1,第②个图案的菱形个数=3=2×2-1第③个图案的菱形个数=5=2×3-1⋮∴第n个图案的菱形个数=2×n-1,∴第⑥个图案的菱形个数=2×6-1=11.故答案为:C.【分析】根据图案增加菱形的个数,列出前三个图案中菱形的个数,得出第n个图案的菱形个数=2×n-1,代入n=6,即可得出正确结果.7.【答案】D【解析】【解答】解:∵√49<√54<√64,∴7<√54<8,∴7-4<√54-4<8-4,∴3<√54-4<4.故答案为:D.【分析】先利用“夹逼法”估算出√54在7和8两数之间,再利用不等式性质可求出√54-4在3和4两个数之间,即可得出正确答案.8.【答案】B【解析】【解答】解:设植树棵数的年平均增长率为x,由题意,得:400(1+x)2=625.故答案为:B.【分析】设植树棵数的年平均增长率为x,根据第一年植树棵树×(1+增长率)2=第三年植树棵树,代入数据可列出方程,即可得出正确答案.9.【答案】C【解析】【解答】解:如图,连接CF,∵正方形ABCD,∴OB=OC=OA=OD,BD∥AC,∴∥AOB=∥DOC=90°,∥OBC=∥OCB=45°,AF=FC,∴∥FAC=∥FCA,∵OE=OF,∴∥OEF=∥OFE=45°,又∵∥AFE=25°,∴∥FAC=∥FCA=20°,易证∥EOB∥∥FOC(SAS),∴∥FCO=∥EBO=20°,∴∥CBE=∥EBO+∥OBC=20°+45°=65°.故答案为:C.【分析】如图,连接CF,由正方形性质得OB=OC=OA=OD,BD∥AC,从而∥AOB=∥DOC=90°,∥OBC=∥OCB=45°,AF=FC,得∥FAC=∥FCA,再由OE=OF,则∥OEF=∥OFE=45°,利用三角形外角性质得∥FAC=∥FCA=20°,易证∥EOB∥∥FOC,得∥FCO=∥EBO=20°,再由∥CBE=∥EBO+∥OBC 代入数据计算即可求出∥CBE的度数.10.【答案】D【解析】【解答】解:如图,分别连接OC、BC,∵AB是∥O的直径,∴∥ACB=90°,∵AC=PC=3√3,OC=OA,∴∥P=∥A=∥OCA,∵PC与∥O相切于点C,∴OC∥PC,即∥OCP=90°,∴∥P+∥BOC=90°,∵∥OCA+∥BCO=90°,∴∥BCO=∥BOC,又∵OB=OC , ∴∥OBC=∥OCB , ∴∥BOC 是等边三角形, ∴∥POC=60°,∥P=∥PCB=30°, ∴PB=BC ,∵BC=OC=PC √3=√3√3=3, ∴PB=3. 故答案为:D.【分析】分别连接OC 、BC ,由圆周角定理得∥ACB=90°,由等腰三角形性质得∥P=∥A=∥OCA ,再由切线性质和圆周角定理得∥P+∥BOC=90°,∥OCA+∥BCO=90°,从而得∥BCO=∥BOC ,进而得到三角形BOC 是等边三角形,即得∥POC=60°,∥P=∥PCB=30°,从而可推出PB=BC ,由直角三角形性质可求出BC=OC=PC √3=3√3√3=3,进而可求得PB 的长. 11.【答案】A【解析】【解答】解:分式方程化简得:3x-a-(x+1)=x-3,整理,解得:x=a-2,∵分式方程的解为正数,x≠3,即a-2>0,且a-2≠3 ∴a >2且a≠5①;∵{y +9≤2(y +2)2y−a3>1的解集为y≥5, ∴原不等式组有解, 整理,解得:y≥5且y >a+32,∴a+32<5,∴a <7②;由①和②式得:2<a <7,且a≠5 ∴符合条件的整数a 为3,4,6, ∴整数a 的值之和=3+4+6=13. 故答案为:A.【分析】先解分式方程,根据分式方程的解为正数,x≠3,求出a >2且a≠5①;再解不等式组,根据不等式组的解集为y≥5,解得a <7②,由①和②式得2<a <7,且a≠5,得符合题意的整数a 为3,4,6,进而求出整数a的值之和即可.12.【答案】D【解析】【解答】解:若原多项式为x-y-z-m-n,“加算操作后”为(x-y)-(z-m-n)=x-y-z+m+n,①令x-y-z-m-n=x-y-z+m+n,∴m+n=0,∴当m和n互为相反数时,存在“加算操作后”的结果与原来多项式相等,∴①说法符合题意;②若原多项式与“加算操作后”的结果和为0,即“加算操作后”的结果=-(x-y-z-m-n)=-x+y+z+m+n,显然-x+y+z+m+n≠x-y-z+m+n,∴不存在任何“加算操作后”的结与原多项式的和为0,∴②说法符合题意;③由①可知,存在一种“加算操作后”的结果与原来多项式相等,即为第1种;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z-m)-n=x-y+z+m-n;第4种:x-(y-z-m-n)=x-y+z+m+n;第5种:x-(y-z)-(m-n)=x-y+z-m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n,∴③说法符合题意,∴①②③说法正确.故答案为:D.【分析】①列出加算操作后”的结果与原来多项式相等的式子,即x-y-z-m-n=x-y-z+m+n,当m和n 互为相反数时,存在“加算操作后”的结果与原来多项式相等;②若原多项式与“加算操作后”的结果和为0,即二者互为相反数,表示出原多项式的相反数后即为“加算操作后”的结果,与加算操作后”的结果比较,显然不相等;③对原多项式从左往右分别加括号,结合①存在一种“加算操作后”的结果与原来多项式相等,可得所有的“加算操作”共有8 种不同的结果.据此逐项分析判断即可得出正确答案.13.【答案】3【解析】【解答】解:原式=2+1=3.故答案为:3.【分析】根据负数的绝对值为它的相反数,非零数的零次幂为1,依次计算即可求解.14.【答案】49【解析】【解答】解:由题意,画树状图如下,∴共有9种等可能情况,其中两次摸出球都是红球的情况有4种,∴两次摸出球都是红球的概率=49.故答案为:49.【分析】由题意,正确画树状图,可得出所有等可能情况的个数,及两次摸出球都是红球的情况个数,再由概率计算公式代入数据,即可求出两次摸出球都是红球的概率.15.【答案】π3【解析】【解答】解:∵矩形ABCD ,∴∥A=∥B=90°,AD∥BC , ∴∥AEB=∥CBE , ∵BE=BC=2,AB=1, ∴∥AEB=30°, ∴∥CBE=30°,∴S 阴影=30π·22360=π3.故答案为:π3.【分析】由矩形性质可得∥A=∥B=90°,AD∥BC ,从而得∥AEB=∥CBE ,再由直角三角形性质,即30°角所对直角边等于斜边一般,推出∥AEB=30°,进而得∥CBE=30°,再由扇形的面积计算公式代入数据计算,即可求出阴影部分的面积.16.【答案】4:3【解析】【解答】解:∵五月份销售桃片、米花糖、麻花的数量之比为 1:3:2,∴设五月份销售桃片、米花糖、麻花的数量分别为x 、3x 、2x ,∵每包桃片的成本是麻花的2倍,∴设每包麻花的成本是y元,则每包桃片的成本是2y元,设每包米花糖的成本是m元,由题意,得:20%·2y·x+30%·m·3x+20%·y·2x=25%(2y·x+m·3x+y·2x),整理,得:3m=4y,∴m:y=4:3,∴每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.【分析】由五月份销售桃片、米花糖、麻花的数量之比为1:3:2,设五月份销售桃片、米花糖、麻花的数量分别为x、3x、2x,再由每包桃片的成本是麻花的2倍,设每包麻花的成本是y元,则每包桃片的成本是2y元,设每包米花糖的成本是m元,由”三种特产的总利润是总成本的25%“和” 每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20% “,可列出关于x、m、y的方程,整理得:3m=4y,即可求得每包米花糖与每包麻花的成本之比.17.【答案】(1)解:原式=x2-y2+y2-2y=x2-2y;(2)解:原式=2m+2·(m+2)(m−2)(m−2)2=2m−2.【解析】【分析】(1)利用平方差公式及单项式乘以多项式运算法则依次计算后,再把所得结果化简整理即可得出结果;(2)先把括号里的异分母进行通分化简,再把括号外的除法运算转化为乘法运算,分子分母因式分解后约分为最简分式即可.18.【答案】解:∥. 如图,以A为圆心AB长为半径画弧交BC于一点,再分别以这一交点和B点为圆心,画弧交BC上下各一点,连接这两点交BC于点D,AD即为BC的垂线;∥. ∵AD∥BC,∴∥ADC=90° ,∴∥F= 90°,∴①∥ADC=∥F,∵EF// BC , ∴②∥1=∥2, 又∵③AC=CA , ∴∥ADC∥∥CFA (AAS),同理可得:④∥ADB∥∥BEA (AAS).S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12aℎ 【解析】【分析】∥. 根据作已知线段的垂线的步骤,即以A 为圆心AB 长为半径画弧交BC 于一点,再分别以这一交点和B 点为圆心,画弧交BC 上下各一点,连接这两点交BC 于点D ,AD 即为BC 的垂线;∥. 根据矩形性质和垂线定义可得∥ADC=∥F ,再由平行线的性质可得∥1=∥2,又AC=CA ,利用“AAS”定理即可证出∥ADC∥∥CFA ,同理可证明∥ADB∥∥BEA ,即可解决问题.19.【答案】(1)8;8.5;65%(2)解:七年级课外阅读时长在9小时及以上的学生人数=400×5+2+120=160人;答:七年级在主题周活动期间课外阅读时长在 9 小时及以上的学生人数为160人. (3)解:∵八年级课外阅读时长的中位数为8.5,大于七年级课外阅读时长的中位数8, ∴八年级的阅读积极性更高.【解析】【解答】解:(1)由七年级抽取学生课外阅读时长统计数据可知:8小时的次数最多,∴a=8,由八年级抽取学生课外阅读时长条形统计图可知:第10个数据为8,第11个数据为9, ∴b=(8+9)÷2=8.5,八年级学生课外阅读时长8小时及以上所占百分比=3+6+3+120×100%=65%,∴c=65%.故答案为:8,8.5,65%;【分析】(1)由七年级抽取学生课外阅读时长统计数据可知8小时的次数最多,即可求出a 的值;由八年级抽取学生课外阅读时长条形统计图可知第10个数据为8,第11个数据为9,再求出两数的平均数即可求出b 的值;由八年级学生课外阅读时长8小时及以上的人数除以抽查的总人数再乘以100%,即可求得课外阅读时长8小时及以上所占百分比;(2)由七年级课外阅读时长在9小时及以上的学生人数除以抽查的总人数再乘以100%,即可求得课外阅读时长8小时及以上所占百分比;(3)从中位数方面看,八年级课外阅读时长的中位数大于七年级课外阅读时长的中位数(也可以从众数方面谈,答案不唯一),即可得出八年级的阅读积极性更高.20.【答案】(1)解:∵一次函数 y=kx+b(k≠0)的图象与y=4x的图象交于A (m , 4),B(-2,n)两点,∴m=1,n=-2,∴点A (1,4),点B (-2,-2),把点A (1,4),点B (-2,-2)代入一次函数解析式y=kx+b 中, ∴4=k+b ,-2=-2k+b , ∴k=2,b=2, ∴y=2x+2,在平面直角坐标系画出一次函数图象如下:(2)解: x <-2或0<x <1 (3)解: 如图所示,∵一次函数y=2x+2的图象与 x 轴交于点 C , ∴点C (-1,0), ∴OC=1,∴S∥OAC=12×OC·y A =12×1×4=2.【解析】【解答】解:(2)∵kx+b <4x,且一次函数与反比例函数交于(1,4),点B (-2,-2),∴x <-2或0<x <1;【分析】(1)把A (m , 4),B(-2,n)分别代入反比例函数解析式,求得m 和n 的值,即得到A 和B 的坐标,再利用待定系数法,求出一次函数解析式中的k 和b ,即可求得一次函数的解析式;(2)由kx+b <4x ,且一次函数与反比例函数交于(1,4),点B (-2,-2)可知,当反比例函数图象在一次函数图象的上方时满足题意,求出此时对应的x 的范围即可;(3)先求出C 点的坐标,即OC 的长,再根据三角形面积计算公式,代入数据计算即可求出∥OAC 的面积.21.【答案】(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,由题意,得:5(x-20)+2x=600, 整理,解得:x=100.答:甲施工队增加人员后每天修建灌溉水渠100米;(2)解:设乙施工队原来每天修建灌溉水渠y 米,则乙施工队更改技术后每天修建水渠(1+20%)y 米,由题意,得:360y +900−360(1+20%)y =900100,整理,解得:y=90,经检验:y=90是原分式方程的解,且符合题意. 答:乙施工队原来每天修建灌溉水渠90米.【解析】【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,由“施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务”,列出关于x 的一元一次方程5(x-20)+2x=600,解之即可解决问题;(2)设乙施工队原来每天修建灌溉水渠y 米,则乙施工队更改技术后每天修建水渠(1+20%)y 米,由“乙施工队与甲施工队同时开工合作修建这条水渠,直至完工”和“乙施工队修建 360 米后,通过技术更新,每天比原来多修建 20%,灌溉水渠完工时,两施工队修建的长度恰好相同”,可列出关于y 的分式方程360y +900−360(1+20%)y =900100,解之并检验确定符合题意,即可解决问题.22.【答案】(1)解:如图,过点A 作AD∥BC ,交BC 的延长线于点D ,由题意可知:∥NAC=30°,∥NAB=60°,∥D=∥NAD=90°, ∴∥CAB=30°,∥CAD=60°,设BD=x,则AD=√3x,AC=2√3x,在Rt∥ADC中,tan∥CAD=tan60°=√3=CDAD=√3x,∴CD=3x,∵CD=CB+BD=900+x,∴3x=900+x,∴x=450,∴CD=900+450=1350,AD=450√3,∴AC=900√3≈900×1.732=1558.8≈1559米.答:湖岸A与码头C的距离为1559米;(2)解:由题意可知,快艇接到游客与救援船相遇所走的路程为AC+CB=1559+900=2459米,∵相遇时间为5s,∴快艇的行驶距离=400×5=2000米,救援船的行驶距离=150×5=750米,∵2000+750>2459,∴快艇能在5分钟内将该游客送上救援船.【解析】【分析】(1)如图,过点A作AD∥BC,交BC的延长线于点D,由题意可知:∥NAC=30°,∥NAB=60°,∥D=∥NAD=90°,从而得∥CAB=30°,∥CAD=60°,由30°角所对直角边等于斜边一般,设BD=x,则AD=√3x,AC=2√3x,在Rt∥ADC中,tan∥CAD=tan60°=√3=CDAD=CD √3x,可得CD=3x,又CD=CB+BD=900+x,即得3x=900+x,解得x从而求得CD=1350,AD=450√3,再由30°角所对直角边等于斜边一般,即可求得AC=900√3,再通过计算即可得出湖岸A与码头C的距离;(2)由题意可知,快艇接到游客与救援船相遇所走的路程为AC+CB=1559+900=2459米,分别求出5分钟快艇的行驶距离=400×5=2000米,救援船的行驶距离=150×5=750米,求得二者距离之和与相遇距离进行比较,即可判断快艇能否在5分钟内将该游客送上救援船.23.【答案】(1)解:∵357÷(3+5+7)=23.8,∴357不是15的“和倍数”,∵441÷(4+4+1)=49,∴441是9的“和倍数”;(2)解:设三位数A=abc,∵A是12的“和倍数”∴a+b+c=12,∵a >b >c ,∴F (A )=ab ,G (A )=cb ,∴F (A )+(GA )16=ab+cb 16=10a+10c+2b 16, ∴10a+10c+2b 16为整数, ∵a+c=12-b ,∴10a+10c+2b 16=10(12−b )+2b 16=120−8b 16=112+8(1−b )16=7+1−b 2, 又∵1<b <9,∴当b=3,5,7,9时,10a+10c+2b 16为整数, ∴当b=3时,a+c=9,则a=8,c=1(不符合题意,舍去)或a=7,c=2,∴三位数A=732;当b=5时,a+c=7,则a=6,c=1(不符合题意,舍去);当b=7时,a+c=5(不符合题意,舍去);当b=9时,a+c=3(不符合题意,舍去),综上所述,这个三位数A 为732.【解析】【分析】(1)根据“和倍数”的定义,即对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,分别判断357和441是否为“和倍数”即可;(2)设三位数A=abc ,根据“和倍数”定义可得a+b+c=12,由a >b >c ,则F (A )=ab ,G (A )=cb ,从而得F (A )+(GA )16=ab+cb 16=10a+10c+2b 16,则10a+10c+2b 16为整数,把a+c=12-b 代入化简得10a+10c+2b 16=7+1−b 2,由1<b <9,则b=3,5,7,9时,10a+10c+2b 16为整数,再分别求出对应的a+c 的值,并根据a >b >c 及三位数A 是12的“和倍数”确定符合题意的数值即可.24.【答案】(1)解: ∵抛物线y=-34x 2+94x+3与x 轴交于点 A(4,0),与 y 轴交于点 B(0,3), ∴c=3,0=-12+4b+3,∴b=94, ∴抛物线的解析式为y=-34x 2+94x+3; (2)解: ∵OA=4,OB=3,∴AB=√32+42=5,∵PQ∥x 轴,∴PQ∥BO ,∴∥AQM∥∥AOB ,∴MQ :AQ :AM=3:4:5,∴AM=53MQ , ∴65AM=2MQ , ∴PM+65AM=PM+2MQ , 设直线AB 的解析式为y=kx+b ,∵A(4,0),与 y 轴交于点 B(0,3),∴y AB =-34x+3, 设点P (m ,-34m 2+94m+3,),M (m ,-34m+3),0<m <4, ∴PM=-34m 2+94m+3-(-34m+3)=-34m 2+3m ,MQ=-34m+3, ∴PM+2MQ=-34m 2+3m+2(-34m+3)=-34m 2+32m+6=-34(m-1)2+274, ∵-34<0, ∴抛物线开口向下,∴当m=1时,PM+2MQ 的值最大,最大为274,即PM+65AM 最大,最大值为274, ∴P (1,-34×12+94×1+3), ∴P (1,92); (3)解: ∵y=-34x 2+94x+3,点P (1,92), ∴点P'(2,92), ∵ 将抛物线 y=-34x 2+94x+3向右平移,使新抛物线的对称轴l 经过点A (4,0), ∴新抛物线的对称轴为x=4,∴平移单位=4-32=52, ∴新抛物线的解析式为y=-34x 2+6x-11716, 设D (4,d ),C (c ,-34c 2+6c-11716),①以DC 和AP'为平行四边形的对角线,∴4+2=4+c ,0+92=d-34c 2+6c-11716, ∴c=2,d=4516, ∴D (4,4516); ②以AC 和P'D 为平行四边形的对角线,∴4+c=2+4,0-34c 2+6c-11716=92+d , ∴c=2,d=-4516; ∴D (4,-4516); ③以AD 和P'C 为平行四边形的对角线,∴4+4=2+c ,0+d=92-34c 2+6c-11716, ∴c=6,d=9916, ∴D (4,9916), 综上所述,D 的坐标为(4,4516)或(4,-4516)或(4,9916). 【解析】【分析】(1)把点 A(4,0),与 y 轴交于点 B(0,3)代入二次函数解析式,求出b 、c 的值,即可求出抛物线的表达式;(2)由勾股定理求得AB 的长,由PQ∥BO 易证∥AQM∥∥AOB ,由相似性质得MQ :AQ :AM=3:4:5,从而得到65AM=2MQ ,进而得PM+65AM=PM+2MQ ,设直线AB 的解析式为y=kx+b ,待定系数法求得yAB=-34x+3,设点P (m ,-34m 2+94m+3,),M (m ,-34m+3),0<m <4,表示出PM=-34m 2+94m+3-(-34m+3)=-34m 2+3m ,MQ=-34m+3,从而得PM+2MQ=-34m 2+3m+2(-34m+3)=-34m 2+32m+6=-34(m-1)2+274,再利用二次函数性质得,当m=1时,PM+2MQ 的值最大,最大为274,即PM+65AM 最大,最大值为274,进而求出P 点坐标; (3)由题意求出平移后新抛物线的解析式为y=-34x 2+6x-11716,设D (4,d ),C (c ,-34c 2+6c-11716),分三种情况:①以DC 和AP'为平行四边形的对角线,②以AC 和P'D 为平行四边形的对角线,③以AD 和P'C 为平行四边形的对角线,利用平行四边形性质及中点坐标公式求D 点坐标即可.25.【答案】(1)解:如图,连接CP ,∵∥ABC=90°,AB=AC=2√2,∴BC=4,∵点P为FG的中点,线段EF绕点E顺时针旋转90°得到线段EG,∴∥FEG为等腰直角三角形,EP∥FG,∵D为BC的中点,∴PD=12BC=12×4=2;(2)证明:如图,过点E作EH∥AD的延长线于点H,∴∥FEG=∥HEF=90°,∴∥HEF+∥FEN=∥FEN+∥AEG,∴∥HEF=∥AEG,∵D为BC中点,∥ABC=90°,AB=AC=2√2,∴∥HAE=∥H=45°,∴AE=HE,又∵FE=GE,∴∥FEH∥∥GEA(SAS),∴HF=AG,∥H=∥GAE,∵HE∥BA,∥AGN=∥AEG∴∥H=∥MAF=∥GAN,∥HEF=∥AMF=∥AEG=∥AGN,又∵GN=MF,∴∥ANG∥∥AFM (AAS ),∴AM=AG ,∴AM=HF ,∴AM+AF=HF+AF=AH=√2AE ,即AM+AF=√2AE ;(3)解: √10-√2【解析】【解答】解:(3)∵E 为AC 的中点,D 为BC 中点,∥ABC=90°,AB=AC=2√2, ∴AE=√2, ∴BE=√(2√2)2+(√2)2=√10,∵∥ BEH 沿EH 翻折至∥ABC 所在平面内,得到∥ BEH',∴BE=B'E=√10,∴B'的轨迹为以E 为圆心,√10为半径的圆上运动,又∵线段EF 绕点E 顺时针旋转 90°得到线段EG ,∴EF=EG ,∴G 点的轨迹为以E 为圆心,EG 为半径的圆上运动,如图所示,∵B'G+EG≥B'E ,∴B'G≥B'E-EG ,∴当G 与E 、B'共线时,B'G=B'E-EG ,∵F 在AD 上运动,当F 运动的A 点或D 点时,EF 最大,最大为12AE ,即EF max =√2, ∴EG max =√2,∴B'G min =B'E-EG max =√10-√2.【分析】(1)如图,连接CP ,由等腰三角形性质可求出BC=4,再由旋转性质推得∥FEG 为等腰直角三角形,EP∥FG ,又D 为BC 的中点,进而求得PD=12BC ,代入数据计算即可求解;(2)如图,过点E作EH∥AD的延长线于点H,则∥FEG=∥HEF=90°,推出∥HEF=∥AEG,由D 为BC中点,∥ABC=90°,AB=AC=2√2,推出AE=HE,证得∥FEH∥∥GEA,即得HF=AG,∥H=∥GAE,再由平行线性质得∥H=∥MAF=∥GAN,∥HEF=∥AMF=∥AEG=∥AGN,进而证得∥ANG∥∥AFM,由全等性质及线段等量代换可得AM+AF=HF+AF=AH,进而得出AM+AF=√2AE;(3)由等腰直角三角形性质求得AE=√2,BE√10,再由翻折性质得BE=B'E=√10,即点B'的轨迹为以E为圆心,√10为半径的圆上运动,由旋转性质得EF=EG,即G点的轨迹为以E为圆心,EG 为半径的圆上运动,由B'G+EG≥B'E,即B'G≥B'E-EG,当G与E、B'共线时,B'G=B'E-EG,根据F点的运动情况得EF最大为12AE,即EF max=√2,可求得EG max=√2,进而由B'G min=B'E-EG max代入数据计算即可求解.。

2021年重庆市数学中考试题(B卷)及解析

2021年重庆市数学中考试题(B卷)及解析

2021年重庆市中考数学试卷(B卷)一.选择题(本大题共12个小题,每小题4分,共48分,每小题的四个选项中只有一个是正确的)1.(4分)(2015•常州)﹣3的绝对值是( ) A.3B.﹣3C.D.2.(4分)(2015•重庆)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A.B.C.D.3.(4分)(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是( ) A.对重庆市中学生每天学习所用时间的调查 B.对全国中学生心理健康现状的调查 C.对某班学生进行6月5日是“世界环境日”知晓情况的调查 D.对重庆市初中学生课外阅读量的调查4.(4分)(2015•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)(2015•重庆)计算3﹣的值是( ) A.2B.3C.D.26.(4分)(2015•重庆)某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是( ) A.9.7B.9.5C.9D.8.87.(4分)(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是( ) A.五边形B.六边形C.七边形D.八边形8.(4分)(2015•重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是( ) A.有两个不相等的实数根B.有两个相等的实数根 C.两个根都是自然数D.无实数根9.(4分)(2015•重庆)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为( ) A.70°B.60°C.55°D.35°10.(4分)(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是( ) A.32B.29C.28D.2611.(4分)(2015•重庆)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是( ) A.小强从家到公共汽车在步行了2公里 B.小强在公共汽车站等小明用了10分钟 C.公共汽车的平均速度是30公里/小时 D.小强乘公共汽车用了20分钟12.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是( ) A.6B.﹣6C.12D.﹣12二.填空题(本大题6个小题,每小题4分,共24分)13.(4分)(2015•重庆)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为 .14.(4分)(2015•重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上中线的比为 .15.(4分)(2015•重庆)计算:(3.14﹣)0+(﹣3)2= .16.(4分)(2015•重庆)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是 (结果保留π).17.(4分)(2015•重庆)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为 .18.(4分)(2015•重庆)如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .三.解答题(本大题2个小题,每小题7分,共14分)19.(7分)(2015•重庆)解二元一次方程组.20.(7分)(2015•重庆)如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE 上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.四.解答题(本大题4个小题,每小题10分,共40分)21.(10分)(2015•重庆)化简下列各式:(1)2(a+1)2+(a+1)(1﹣2a)。

2020年重庆市中考数学试卷(B卷)(后附答案)

2020年重庆市中考数学试卷(B卷)(后附答案)

2020年重庆市中考数学试卷(B卷)(后附答案).. .2020年中考数学试卷(B 卷)题号⼀⼆三四总分得分⼀、选择题(本⼤题共12⼩题,共48.0分) 1. 5的绝对值是()A. 5B. ?5C. 15D. ?152. 如图是⼀个由5个相同正⽅体组成的⽴体图形,它的主视图是()A.B.C.D.3. 下列命题是真命题的是()A. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为2:3B. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为4:9C. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为2:3D. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为4:94. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为()A. 60°B. 50°C. 40°D. 30°5.抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=?2C. 直线x=1D. 直线x=?16.某次知识竞赛共有20题,答对⼀题得10分,答错或不答扣5分,⼩华得分要超过120分,他⾄少要答对的题的个数为()A. 13B. 14C. 15D. 167.估计√5+√2×√10的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间8.根据如图所⽰的程序计算函数y的值,若输⼊x的值是7,则输出y的值是-2,若输⼊x的值是-8,则输出y的值是()A. 5B. 10C. 19D. 219.如图,在平⾯直⾓坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反⽐例函数y=xx(k>0,x>0)经过点C,则k的值等于()A. 10B. 24C. 48D. 50第2页,共34页.. .10. 如图,AB 是垂直于⽔平⾯的建筑物.为测量AB 的⾼度,⼩红从建筑物底端B 点出发,沿⽔平⽅向⾏⾛了52⽶到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC =BC .在点D 处放置测⾓仪,测⾓仪⽀架DE ⾼度为0.8⽶,在E 点处测得建筑物顶端A 点的仰⾓∠AEF 为27°(点A ,B ,C ,D ,E 在同⼀平⾯内).斜坡CD 的坡度(或坡⽐)i =1:2.4,那么建筑物AB 的⾼度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 65.8⽶B. 71.8⽶C. 73.8⽶D. 119.8⽶11. 若数a 使关于x 的不等式组{x32≤14(x ?7),6x ?2x>5(1?x )有且仅有三个整数解,且使关于y的分式⽅程1?2xx ?1-x1?x =-3的解为正数,则所有满⾜条件的整数a 的值之和是()A. ?3B. ?2C. ?1D. 112. 如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折⾄△ABC 所在的平⾯内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为()A. 8B. 4√2C. 2√2+4D. 3√2+2⼆、填空题(本⼤题共6⼩题,共24.0分) 13. 计算:(√3-1)0+(12)-1=______.14. 2019年1⽉1⽇,“学习强国”平台全国上线,截⾄2019年3⽉17⽇⽌,重庆市党员“学习强国”APP 注册⼈数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000⽤科学记数法表⽰为______.15.⼀枚质地均匀的骰⼦,骰⼦的六个⾯上分别刻有1到6的点数.连续掷两次骰⼦,在骰⼦向上的⼀⾯上,第⼆次出现的点数是第⼀次出现的点数的2倍的概率是______.16.如图,四边形ABCD是矩形,AB=4,AD=2√2,以点A为圆⼼,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的⾯积是______.17.⼀天,⼩明从家出发匀速步⾏去学校上学.⼏分钟后,在家休假的爸爸发现⼩明忘带数学书,于是爸爸⽴即匀速跑步去追⼩明,爸爸追上⼩明后以原速原路跑回家.⼩明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(⼩明被爸爸追上时交流时间忽略不计).两⼈之间相距的路程y(⽶)与⼩明从家出发到学校的步⾏时间x(分钟)之间的函数关系如图所⽰,则⼩明家到学校的路程为______⽶.18.某磨具⼚共有六个⽣产车间,第⼀、⼆、三、四车间毎天⽣产相同数量的产品,第五、六车间每天⽣产的产品数量分別是第⼀车间每天⽣产的产品数量的34和83.甲、⼄两组检验员进驻该⼚进⾏产品检验,在同时开始检验产品时,每个车间原有成品⼀样多,检验期间各车间继续⽣产.甲组⽤了6天时间将第⼀、⼆、三第4页,共34页.. .车间所有成品同时检验完;⼄组先⽤2天将第四、五车间的所有成品同时检验完后,再⽤了4天检验完第六车间的所有成品(所有成品指原有的和检验期间⽣产的成品).如果每个检验员的检验速度⼀样,则甲、⼄两组检验员的⼈数之⽐是______.三、计算题(本⼤题共1⼩题,共10.0分) 19. 计算:(1)(a +b )2+a (a -2b );(2)m -1+2x ?6x 2?9+2x +2x +3.四、解答题(本⼤题共7⼩题,共68.0分) 20. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .21.为落实视⼒保护⼯作,某校组织七年级学⽣开展了视⼒保健活动.活动前随机测查了30名学⽣的视⼒,活动后再次测查这部分学⽣的视⼒.两次相关数据记录如下:活动前被测查学⽣视⼒数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学⽣视⼒数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学⽣视⼒频数分布表第6页,共34页...4.8≤x <5.0 12 5.0≤x <5.24根据以上信息回答下列问题:(1)填空:a =______,b =______,活动前被测查学⽣视⼒样本数据的中位数是______,活动后被测查学⽣视⼒样本数据的众数是______;(2)若视⼒在4.8及以上为达标,估计七年级600名学⽣活动后视⼒达标的⼈数有多少?(3)分析活动前后相关数据,从⼀个⽅⾯评价学校开展视⼒保健活动的效果.22.在数的学习过程中,我们总会对其中⼀些具有某种特性的数进⾏研究,如学习⾃然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究⼀种特殊的⾃然数-“纯数”.定义:对于⾃然数n,在通过列竖式进⾏n+(n+1)+(n+2)的运算时各位都不产⽣进位现象,则称这个⾃然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产⽣进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产⽣了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不⼤于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有⾮常重要的作⽤,下⾯我们就⼀类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所⽰;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如图所⽰.第8页,共34页.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前⾯的系数相同,则图象的开⼝⽅向和形状完全相同,只有最⾼点和对称轴发⽣了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的⽅向和距离.(3)拓展应⽤:在所给的平⾯直⾓坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,⽐较y1,y2的⼤⼩.24.某菜市场有2.5平⽅⽶和4平⽅⽶两种摊位,2.5平⽅⽶的摊位数是4平⽅⽶摊位数的2倍.管理单位每⽉底按每平⽅⽶20元收取当⽉管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎⽉可收取管理费4500元,求该菜市场共有多少个4平⽅⽶的摊位?. .(2)为推进环保袋的使⽤,管理单位在5⽉份推出活动⼀:“使⽤环保袋送礼物”,2.5平⽅⽶和4平⽅⽶两种摊位的商户分别有40%和20%参加了此项活动.为提⾼⼤家使⽤环保袋的积极性,6⽉份准备把活动⼀升级为活动⼆:“使⽤环保袋抵扣管理费”,同时终⽌活动⼀.经调査与测算,参加活动⼀的商户会全部参加活动⼆,参加活动⼆的商户会显著增加,这样,6⽉份参加活动⼆的2.5平⽅⽶摊位的总个数将在5⽉份参加活动⼀的同⾯积个数的基础上增加2a%,毎个摊位的管理费将会减少310a%;6⽉份参加活动⼆的4平⽅⽶摊位的总个数将在5⽉份参加活动⼀的同⾯积个数的基础上增加6a%,每个摊位的管理费将会减少14a%.这样,参加活动⼆的这部分商户6⽉份总共缴纳的管理费⽐他们按原⽅式共缴纳的管理费将减少518a%,求a的值.25.在?ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的⾯积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.第10页,共34页.. .26. 在平⾯直⾓坐标系中,抛物线y =-√34x 2+√32x +2√3与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上⽅抛物线上⼀动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最⼤时,求PH +HK +√32KG 的最⼩值及点H 的坐标.(2)如图2,将抛物线沿射线AC ⽅向平移,当抛物线经过原点O 时停⽌平移,此时抛物线顶点记为D ′,N 为直线DQ 上⼀点,连接点D ′,C ,N ,△D ′CN 能否构成等腰三⾓形?若能,直接写出满⾜条件的点N 的坐标;若不能,请说明理由.第12页,共34页.. . 答案和解析1.【答案】A【解析】解:在数轴上,数5所表⽰的点到原点0的距离是5;故选:A.根据绝对值的意义:数轴上⼀个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为⾮负数;即可得解.本题考查了绝对值,解决本题的关键是⼀个正数的绝对值是它本⾝,⼀个负数的绝对值是它的相反数,0的绝对值是0.2.【答案】D【解析】解:从正⾯看易得第⼀层有4个正⽅形,第⼆层有⼀个正⽅形,如图所⽰:.故选:D.找到从正⾯看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正⾯看得到的视图.3.【答案】B【解析】解:A、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为4:9,是假命题;B、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为4:9,是真命题;C、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为16:81,是假命题;D、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为16:81,是假命题;故选:B.根据相似三⾓形的性质分别对每⼀项进⾏分析即可.此题考查了命题与定理,⽤到的知识点是相似三⾓形的性质,关键是熟练掌握有关性质和定理.4.【答案】B【解析】解:∵AC是⊙O的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选:B.由题意可得AB⊥AC,根据直⾓三⾓形两锐⾓互余可求∠ABC=50°.本题考查了切线的性质,直⾓三⾓形两锐⾓互余,熟练运⽤切线的性质是本题的关键.5.【答案】C【解析】解:∵y=-3x2+6x+2=-3(x-1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.将抛物线的⼀般式配⽅成为顶点式,可确定顶点坐标及对称轴.第14页,共34页.本题考查了⼆次函数的性质.抛物线y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h.6.【答案】C【解析】解:设要答对x道.10x+(-5)×(20-x)>120,10x-100+5x >120,15x >220,解得:x>,根据x必须为整数,故x取最⼩整数15,即⼩华参加本次竞赛得分要超过120分,他⾄少要答对15道题.故选:C.根据竞赛得分=10×答对的题数+(-5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.此题主要考查了⼀元⼀次不等式的应⽤,得到得分的关系式是解决本题的关键.7.【答案】B【解析】解:=+2=3,∵3=,6<<7,故选:B.化简原式等于3,因为3=,所以<<,即可求解;. .本题考查⽆理数的⼤⼩;能够将给定的⽆理数锁定在相邻的两个整数之间是解题的关键.8.【答案】C【解析】解:当x=7时,可得,可得:b=3,当x=-8时,可得:y=-2×(-8)+3=19,故选:C.把x=7与x=-8代⼊程序中计算,根据y值相等即可求出b的值.此题考查了函数值,弄清程序中的关系式和理解⾃变量取值范围是解本题的关键.9.【答案】C【解析】解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)第16页,共34页.∵若反⽐例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.由菱形的性质和锐⾓三⾓函数可求点C(6,8),将点C坐标代⼊解析式可求k的值.本题考查了反⽐例函数性质,反⽐例函数图象上点的坐标特征,菱形的性质,锐⾓三⾓函数,关键是求出点C坐标.10.【答案】B【解析】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡⽐)i=1:2.4,BC=CD=52⽶,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20⽶,CG=48⽶,∴EG=20+0.8=20.8⽶,BG=52+48=100⽶.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100⽶,BM=EG=20.8⽶.在Rt△AEM中,∵∠AEM=27°,∴AM=EM?tan27°≈100×0.51=51⽶,. .∴AB=AM+BM=51+20.8=71.8⽶.故选:B.过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡⽐)i=1:2.4可设CD=x,则CG=2.4x,利⽤勾股定理求出x的值,进⽽可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐⾓三⾓函数的定义求出AM的长,进⽽可得出结论.本题考查的是解直⾓三⾓形的应⽤-仰⾓俯⾓问题,根据题意作出辅助线,构造出直⾓三⾓形是解答此题的关键.11.【答案】A【解析】解:由关于x 的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴-<a<3;由关于y 的分式⽅程-=-3得1-2y+a=-3(y-1),∴y=2-a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴-<a<2,且a≠1,∴所有满⾜条件的整数a的值为:-2,-1,0,其和为-3.故选:A.第18页,共34页.先解不等式组根据其有三个整数解,得a的⼀个范围;再解关于y的分式⽅程-=-3,根据其解为正数,并考虑增根的情况,再得a的⼀个范围,两个范围综合考虑,则所有满⾜条件的整数a的值可求,从⽽得其和.本题属于含参⼀元⼀次不等式组和含参分式⽅程的综合计算题,⽐较容易错,属于易错题.12.【答案】D【解析】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°-∠ABC=45°,∴△ABD是等腰直⾓三⾓形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB-∠ADG=∠EDG-∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直⾓三⾓形,. .。

2020年重庆市中考招生考试数学试题(B卷)(解析版)

2020年重庆市中考招生考试数学试题(B卷)(解析版)

A. 23 米
B. 24 米
C. 24.5 米
D. 25 米
2x 1 3x 2
10.若关于
x的一元一次不等式组x 2a Nhomakorabea1
的解集为 x≥5,且关于 y 的分式方程
y
y
2
2
a
y
1 有非负整数解,则符合条件的所有整数
a
的和为(

A. -1
B. -2
C. -3
D. 0
11.如图,在△ABC 中,AC= 2 2 ,∠ABC=45°,∠BAC=15°,将△ACB 沿直线 AC 翻折至△ABC 所在的平
上一动点,点 N 为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A, E,M,N 为顶点的四边形为平行四边形,若存在,直接写出点 N 的坐标;若不存在,请说明理由.
四、解答题(本大题 1 个小题,共 8 分) 26.△ABC 为等边三角形,AB=8,AD⊥BC 于点 D,E 为线段 AD 上一点,AE= 2 3 .以 AE 为边在直线 AD
4.如图,AB 是⊙O 的切线,A 为切点,连接 OA,OB,若∠B=35°,则∠AOB 的度数为( )
重庆市 2020 年初中学业水平暨高中招生考试数学试题(B 卷)
(全卷共四个大题,满分 150 分,考试时间 120 分钟)
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为( b ,4ac b2 ),对称轴公式为 x= b .
2a 4a
2a
一、选择题(本大题 12 个小题,每小题 4 分,共 48 分)
为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为____元.

2022年重庆市中考数学试卷(b卷)

2022年重庆市中考数学试卷(b卷)

2022年重庆市中考数学试卷(B卷)一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)2-的相反数是()A.2-B.2C.12-D.122.(4分)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.3.(4分)如图,直线//a b,直线m与a,b相交,若1115∠=︒,则2∠的度数为()A.115︒B.105︒C.75︒D.65︒4.(4分)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.(4分)如图,ABC ∆与DEF ∆位似,点O 是它们的位似中心,且相似比为1:2,则ABC ∆与DEF ∆的周长之比是( )A .1:2B .1:4C .1:3D .1:96.(4分)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,⋯,按此规律排列下去,则第⑥个图案中菱形的个数为( )A .15B .13C .11D .97.(4分)估计544-的值在( )A .6到7之间B .5到6之间C .4到5之间D .3到4之间8.(4分)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A .2625(1)400x -=B .2400(1)625x +=C .2625400x =D .2400625x =9.(4分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O .E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为( )A .50︒B .55︒C .65︒D .70︒10.(4分)如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,若33AC PC ==,则PB 的长为( )A 3B .32C .23D .3 11.(4分)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a ++⎧⎪-⎨>⎪⎩的解集为5y ,则所有满足条件的整数a 的值之和是( ) A .13 B .15 C .18 D .2012.(4分)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,⋯,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)0|2|(35)-+= .14.(4分)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为 .15.(4分)如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半径画弧,交AD于点E.则图中阴影部分的面积为.(结果保留)π16.(4分)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.三.解答题(共2个小题,每小题8分,共16分)17.(8分)计算:(1)()()(2)x y x y y y+-+-;(2)2244 (1)24m m mm m-+-÷+-.18.(8分)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为12S ah=.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在ADC∆和CFA∆中,AD BC⊥,90ADC∴∠=︒.90F∠=︒,∴①.//EF BC,∴②.又③,()ADC CFA AAS∴∆≅∆.同理可得:④.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah ∆∆∆=+=+==矩形矩形矩形.三.解答题(共7个小题,每小题10分,共70分)19.(10分)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x <,记为6;78x <,记为7;89x <,记为8;⋯以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级 八年级 平均数8.3 8.3 众数a 9 中位数8 b 8小时及以上所占百分比75%c 根据以上信息,解答下列问题:(1)填空:a = ,b = ,c = .(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)20.(10分)反比例函数4yx=的图象如图所示,一次函数(0)y kx b k=+≠的图象与4yx=的图象交于(,4)A m,(2,)B n-两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式4kx bx+<的解集;(3)一次函数y kx b=+的图象与x轴交于点C,连接OA,求OAC∆的面积.21.(10分)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.(10分)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30︒方向上,B在A的北偏东60︒方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:3 1.732)≈;(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)23.(10分)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:247(247)2471319÷++=÷=,247∴是13的“和倍数”.又如:214(214)2147304÷++=÷=⋯⋯,214∴不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a b c>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若()()16F AG A+为整数,求出满足条件的所有数A.24.(10分)如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标; (3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.25.(10分)在ABC ∆中,90BAC ∠=︒,22AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90︒得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:2AM AF AE +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH ∆沿EH 翻折至ABC ∆所在平面内,得到△B EH ',连接B G ',直接写出线段B G '的长度的最小值.2022年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)2-的相反数是()A.2-B.2C.12-D.12【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:2-的相反数是:(2)2--=,故选:B.2.(4分)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.3.(4分)如图,直线//a b,直线m与a,b相交,若1115∠=︒,则2∠的度数为()A .115︒B .105︒C .75︒D .65︒【分析】根据平行线的性质,可以得到12∠=∠,然后根据1∠的度数,即可得到2∠的度数.【解答】解://a b ,12∴∠=∠,1115∠=︒,2115∴∠=︒,故选:A .4.(4分)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为( )A .3时B .6时C .9时D .12时【分析】直接由图形可得出结果.【解答】解:由图形可知,在这一时段内心跳速度最快的时刻约为9时,故选:C .5.(4分)如图,ABC ∆与DEF ∆位似,点O 是它们的位似中心,且相似比为1:2,则ABC ∆与DEF ∆的周长之比是( )A.1:2B.1:4C.1:3D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:ABC∆位似,点O是它们的位似中心,且相似比为1:2,∆与DEF∆的周长之比是1:2,∴∆与DEFABC故选:A.6.(4分)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,⋯,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(21)n-个,从而得出答案.【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即123+=,第③个图案中有5个菱形即1225++=,⋯⋯则第n个图案中菱形有12(1)(21)+-=-个,n n⨯-=个菱形,∴第⑥个图案中有26111故选:C.7.(4544的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解答】解:495464<<,∴<<,7548∴<-<,35444故选:D.8.(4分)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A .2625(1)400x -=B .2400(1)625x +=C .2625400x =D .2400625x =【分析】第三年的植树量=第一年的植树量(1⨯+年平均增长率)2,把相关数值代入即可.【解答】解:根据题意得:2400(1)625x +=,故选:B .9.(4分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O .E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为( )A .50︒B .55︒C .65︒D .70︒【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:ABCD 是正方形,90AOB AOD ∴∠=∠=︒,OA OB OD OC ===.OE OF =,OEF ∴∆为等腰直角三角形,45OEF OFE ∴∠=∠=︒,25AFE ∠=︒,70AFO AFE OFE ∴∠=∠+∠=︒,20FAO ∴∠=︒.在AOF ∆和BOE ∆中,90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩,()AOF BOE SAS ∴∆≅∆.20FAO EOB ∴∠=∠=︒,OB OC =,OBC ∴∆是等腰直角三角形,45OBC OCB ∴∠=∠=︒,65CBE EBO OBC ∴∠=∠+∠=︒.故选:C .10.(4分)如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,若33AC PC ==,则PB 的长为( )A 3B .32C .23D .3【分析】连结OC ,根据切线的性质得到90PCO ∠=︒,根据OC OA =,得到A OCA ∠=∠,根据AC PC =,得到P A ∠=∠,在APC ∆中,根据三角形内角和定理求得30P ∠=︒,根据含30度角的直角三角形的性质得到22OP OC r ==,在Rt POC ∆中,根据tan OC P PC =求出O 的半径r 即可得出答案. 【解答】解:如图,连结OC ,PC 是O 的切线,90PCO ∴∠=︒,OC OA =,A OCA ∴∠=∠,AC PC =,P A ∴∠=∠,设A OCA P x ∠=∠=∠=︒,在APC ∆中,180A P PCA ∠+∠+∠=︒,90180x x x ∴++︒+=︒,30x ∴=︒,30P ∴∠=︒,90PCO ∠=︒,22OP OC r ∴==,在Rt POC ∆中,tan OC P PC =, ∴3333r =, 3r ∴=,23PB OP OB r r r ∴=-=-==.故选:D .11.(4分)关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a ++⎧⎪-⎨>⎪⎩的解集为5y ,则所有满足条件的整数a 的值之和是( ) A .13 B .15 C .18 D .20【分析】解分式方程得得出2x a =-,结合题意及分式方程的意义求出2a >且5a ≠,解不等式组得出532y a y ⎧⎪⎨+>⎪⎩,结合题意得出7a ,进而得出27a <且5a ≠,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:2x a =-,0x >且3x ≠,20a ∴->且23a -≠,2a ∴>且5a ≠,解不等式组得:532yay⎧⎪⎨+>⎪⎩,不等式组的解集为5y,∴352a+<,7a∴<,27a∴<<且5a≠,∴所有满足条件的整数a的值之和为34613++=,故选:A.12.(4分)对多项式x y z m n----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n----=--++,()x y z m n x y z m n----=--+-,⋯,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【分析】根据括号前是“+”,添括号后,各项的符号都不改变判断①;根据相反数判断②;通过例举判断③.【解答】解:①如()x y z m n x y z m n----=----,()x y z m n x y z m n----=----,故①符合题意;②x y z m n----的相反数为x y z m n-++++,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:()x y z m n x y z m n----=-+--;第3种:()()x y z m n x y z m n----=-+-+;第4种:()x y z m n x y z m n----=-++-;第5种:()x y z m n x y z m n----=-+++;第6种:()x y z m n x y z m n----=--+-;第7种:()x y z m n x y z m n----=--++;第8种:()x y z m n x y z m n----=---+;故③符合题意;正确的个数为3,故选:D.二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)0|2|(35)-+-=3.【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解答】解:原式213=+=.故答案为:3.14.(4分)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为49.【分析】画树状图,共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,∴两次摸出的球都是红球的概率为49,故答案为:49.15.(4分)如图,在矩形ABCD中,1AB=,2BC=,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为13π.(结果保留)π【分析】先根据锐角三角函数求出30AEB ∠=︒,再根据扇形面积公式求出阴影部分的面积.【解答】解:以B 为圆心,BC 的长为半径画弧,交AD 于点E ,2BE BC ∴==,在矩形ABCD 中,90A ABC ∠=∠=︒,1AB =,2BC =,1sin 2AB AEB BE ∴∠==, 30AEB ∴∠=︒,60EBA ∴∠=︒,30EBC ∴∠=︒,∴阴影部分的面积:230213603S ππ⨯==, 故答案为:13π. 16.(4分)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为 4:3 .【分析】先根据比例设该店五月份销售桃片、米花糖、麻花的数量分别为x ,3x ,2x ,每包麻花的成本为y 元,每包米花糖的成本为a 元,则每包桃片的成本是2y 元,由三种特产的总利润是总成本的25%列方程可得43a y =,从而解答此题. 【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x ,3x ,2x ,每包麻花的成本为y 元,每包米花糖的成本为a 元,则每包桃片的成本是2y 元,由题意得:20%230%320%225%(232)y x a x y x xy ax xy ⋅⋅+⋅⋅+⋅⋅=++,1520a y =, ∴43a y =, 则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.三.解答题(共2个小题,每小题8分,共16分)17.(8分)计算:(1)()()(2)x y x y y y +-+-;(2)2244(1)24m m m m m -+-÷+-. 【分析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)()()(2)x y x y y y +-+-2222x y y y =-+-22x y =-;(2)原式22(2)2(2)(2)m m m m m m +--=÷+-+ 2222m m m +=⋅+- 22m =-. 18.(8分)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D .(只保留作图痕迹) 在ADC ∆和CFA ∆中,AD BC ⊥,90ADC ∴∠=︒.90F ∠=︒,∴① ADC F ∠=∠ .//EF BC ,∴② . 又③ ,()ADC CFA AAS ∴∆≅∆.同理可得:④ .11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah ∆∆∆=+=+==矩形矩形矩形.【分析】根据矩形的性质、垂直的定义得出90F ADC ∠=∠=︒,再根据//EF BC ,推出12∠=∠,进而证明()ADC CFA AAS ∆≅∆,同理可得:④()ADB BEA AAS ∆≅∆,最后得出三角形的面积公式为12S ah =. 【解答】证明:AD BC ⊥,90ADC ∴∠=︒.90F ∠=︒,ADC F ∴∠=∠,//EF BC ,12∴∠=∠,AC AC =,在ADC ∆与CFA ∆中12AC AC ADC F =⎧⎪∠=∠⎨⎪∠=∠⎩, ()ADC CFA AAS ∴∆≅∆.同理可得:④()ADB BEA AAS ∆≅∆,11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah ∆∆∆∴=+=+==矩形矩形矩形.故答案为:①ADC F ∠=∠,②12∠=∠,③AC AC =,④()ADB BEA AAS ∆≅∆. 三.解答题(共7个小题,每小题10分,共70分)19.(10分)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x <,记为6;78x <,记为7;89x <,记为8;⋯以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息, 七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,根据以上信息,解答下列问题:(1)填空:a = 8 ,b = ,c = .(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)【分析】(1)根据众数的定义可求出七年级学生的课外阅读时长的众数,即a 的值;根据中位数的定义可求出八年级学生的课外阅读时长的中位数,即b 的值,根据频率=频数总数可求出八年级学生的课外阅读时长在8小时及以上所占百分比,即C 的值;(2)求出样本中七年级学生课外阅读时长在9小时及以上的学生所占的百分比,即可估计总体中所占的百分比,进而求出相应人数; (3)由中位数、众数的比较得出结论.【解答】解:(1)七年级学生的课外阅读时长出现次数最多的是8小时,因此七年级学生的课外阅读时长的众数是8小时,即8a =;将八年级学生的课外阅读时长从小到大排列,处在中间位置的两个数的平均数为898.52+=,因此中位数是8.5小时,即8.5b =; 3631100%65%20c +++=⨯=, 故答案为:8,8.5,65%; (2)840016020⨯=(人), 答:七年级在主题周活动期间课外阅读时长在9小时及以上的大约有160人;(3)八年级参与的积极性更高,理由:八年级学生课外阅读时长的中位数,众数均比七年级的高.20.(10分)反比例函数4y x =的图象如图所示,一次函数(0)y kx b k =+≠的图象与4y x=的图象交于(,4)A m ,(2,)B n -两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象; (2)观察图象,直接写出不等式4kx b x+<的解集; (3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC ∆的面积.【分析】(1)将A ,B 两坐标先代入反比例函数求出m ,n ,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x 的取值范围求解.(3)由直线解析式求得C 点的坐标,然后根据三角形面积公式即可求解. 【解答】解:(1)(,4)m ,(2,)n -在反比例函数4y x=的图象上, 424m n ∴=-=,解得1m =,2n =-, (1,4)A ∴,(2,2)B --,把(1,4),(2,2)--代入y kx b =+中得422k b k b +=⎧⎨-+=-⎩,解得22k b =⎧⎨=⎩,∴一次函数解析式为22y x =+.画出函数22y x =+图象如图;(2)由图象可得当01x <<或2x <-时,直线26y x =-+在反比例函数4y x=图象下方, 4kx b x∴+<的解集为2x <-或01x <<. (3)把0y =代入22y x =+得022x =+, 解得1x =-,∴点C 坐标为(1,0)-,11422AOC S ∆∴=⨯⨯=.21.(10分)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量600=,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(20)x-米,由题意可得:5(20)2600x x-+=,解得100x=,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠(120%) 1.2m m+=米,由题意可得:3609003609001.2100m m-+=,解得90m=,经检验,90m=是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.22.(10分)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30︒方向上,B在A的北偏东60︒方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1 1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)【分析】(1)延长CB到D,则CD AD∠=∠=︒,NAC CAB⊥于点D,根据题意可得30C NAC BAD∠=∠=︒=∠,然后根据含30度角的直角三角BC AN,所以30BC=米,//900形即可解决问题;(2)设快艇在x分钟内将该游客送上救援船,根据救援船的平均速度为150米/分,快艇的平均速度为400米/分,列出方程150(400900)1559+-=,进而可以解决问题.x x【解答】解:(1)如图,延长CB到D,则CD AD⊥于点D,根据题意可知:30BC=米,//BC AN,∠=∠=︒,900NAC CAB∴∠=∠=︒=∠,C NAC BAD30AB BC∴==米,900∠=︒,30BAD450BD ∴=米,AD ∴=),21559AC AD ∴==≈(米)答:湖岸A 与码头C 的距离约为1559米; (2)设快艇在x 分钟内将该游客送上救援船,救援船的平均速度为150米/分,快艇的平均速度为400米/分, 150(400900)1559x x ∴+-=, 4.5x ∴≈,答:快艇能在5分钟内将该游客送上救援船.23.(10分)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:247(247)2471319÷++=÷=,247∴是13的“和倍数”. 又如:214(214)2147304÷++=÷=⋯⋯,214∴不是“和倍数”. (1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”, a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ),若()()16F AG A +为整数,求出满足条件的所有数A .【分析】(1)根据“和倍数”的定义依次判断即可;(2)设(12,)A abc a b c a b c =++=>>,根据“和倍数”的定义表示F (A )和G (A ),代入()()16F A G A +中,根据()()16F AG A +为整数可解答.【解答】解:(1)357(357)357152312÷++=÷=⋯⋯, 357∴不是“和倍数”; 441(441)441949÷++=÷=,441∴是9的“和倍数”; (2)设(12,)A abc a b c a b c =++=>>, 由题意得:F (A )ab =,G (A )cb =,∴()()101010()216161616F AG A ab cb a b c b a c b+++++++===,12a c b +=-,()()16F AG A +为整数,∴()()10(12)212081128817(1)161616162F AG A b b b b b +-+-+-====+-,19b <<, 3b ∴=,5,7,9, 9a c ∴+=,7,5,3,①当3b =,9a c +=时,831a b c =⎧⎪=⎨⎪=⎩(舍),732a b c =⎧⎪=⎨⎪=⎩,则732A =或372;②当5b =,7a c +=时,651a b c =⎧⎪=⎨⎪=⎩,则156A =或516;③当7b =,5a c +=时,此种情况没有符合的值; ④当9b =,3a c +=时,此种情况没有符合的值; 综上,满足条件的所有数A 为:732或372或156或516.24.(10分)如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B . (1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标; (3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.【分析】(1)将点A 、B 坐标分别代入抛物线解析式,解方程即可; (2)利用AQM AOB ∆∆∽,得::3:4:5MQ AQ AM =,则625PM AM PM MQ +=+,设239(,3)44P m m m -++,3(,3)4M m m -+,(,0)Q m ,用含m 的代数式表示出2PM MQ +,利用二次函数的性质可得答案;(3)根据原来抛物线和新抛物线的对称轴知,抛物线向右平移52个单位,则平移后抛物线解析式为231176416y x x '=-+-,设(4,)D t ,23117(,6)416C c c c -+-,分AP '与DC 为对角线或P D '与AC 为对角线或AD 与P C '为对角线,分别利用中点坐标公式可得方程,从而解决问题.【解答】解:(1)抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .∴12403b c c -++=⎧⎨=⎩,∴943b c ⎧=⎪⎨⎪=⎩. ∴抛物线的函数表达式为239344y x x =-++; (2)(4,0)A ,(0,3)B ,4OA ∴=,3OB =,由勾股定理得,5AB =, PQ OA ⊥, //PQ OB ∴, AQM AOB ∴∆∆∽,::3:4:5MQ AQ AM ∴=, 53AM MQ ∴=,625AM MQ =,625PM AM PM MQ ∴+=+, (0,3)B ,(4,0)A , 3:34AB l y x ∴=-+,∴设239(,3)44P m m m -++,3(,3)4M m m -+,(,0)Q m , 223332726(1)4244PM MQ m m m ∴+=-++=--+, 304-<, ∴开口向下,04m <<, ∴当1m =时,65PM AM +的最大值为274,此时9(1,)2P ; (3)由239344y x x =-++知,对称轴32x =,9(2,)2P '∴,直线:4l x =,∴抛物线向右平移52个单位, ∴平移后抛物线解析式为231176416y x x '=-+-, 设(4,)D t ,23117(,6)416C c c c -+-,①AP '与DC 为对角线时, 2424931170(6)2416ct c c +=+⎧⎪⎨+=+-+-⎪⎩, ∴24516c t =⎧⎪⎨=⎪⎩,45(4,)16D ∴, ②P D '与AC 为对角线时, 2244931170(6)2416c t c c +=+⎧⎪⎨+=+-+-⎪⎩,∴24516c t =⎧⎪⎨=-⎪⎩, 45(4,)16D ∴-, ③AD 与P C '为对角线时,2442931170(16)2416c t c c +=+⎧⎪⎨+=+-+-⎪⎩, ∴69916c t =⎧⎪⎨=⎪⎩, 99(4,)16D ∴, 综上:45(4,)16D 或45(4,)16-或99(4,)16. 25.(10分)在ABC ∆中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90︒得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH ∆沿EH 翻折至ABC ∆所在平面内,得到△B EH ',连接B G ',直接写出线段B G '的长度的最小值.。

2020年重庆市中考数学试卷(B卷)(附答案,解析)

2020年重庆市中考数学试卷(B卷)(附答案,解析)

2020年重庆市中考数学试卷(B卷)一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体3.计算a•a2结果正确的是()A.a B.a2C.a3D.a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.011.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二.填空题(共6小题)13.计算:()﹣1﹣=.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2020年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣【分析】根据倒数的定义,可得答案.【解答】解:5得倒数是,故选:B.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【分析】根据平面与曲面的概念判断即可.【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.3.计算a•a2结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的乘法法则计算即可.【解答】解:a•a2=a1+2=a3.故选:C.4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°【分析】根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1【分析】将a+b的值代入原式=1+(a+b)计算可得.【解答】解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5【分析】根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米【分析】过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4【分析】延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB =∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.二.填空题(共6小题)13.计算:()﹣1﹣=3.【分析】先计算负整数指数幂和算术平方根,再计算加减可得.【解答】解:原式=5﹣2=3,故答案为:3.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:94000000=9.4×107,故答案为:9.4×107.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.【分析】首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.【考点】4A:单项式乘多项式;4C:完全平方公式;6C:分式的混合运算.【专题】512:整式;513:分式;66:运算能力;69:应用意识.【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解答】解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【考点】V5:用样本估计总体;W4:中位数;W5:众数.【专题】542:统计的应用;69:应用意识.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【解答】解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【考点】#3:数的整除性.【专题】32:分类讨论;66:运算能力.【分析】(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.【解答】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.【考点】F3:一次函数的图象;F5:一次函数的性质;FD:一次函数与一元一次不等式;P5:关于x 轴、y轴对称的点的坐标.【专题】533:一次函数及其应用;64:几何直观.【分析】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【解答】解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.【考点】9A:二元一次方程组的应用;AD:一元二次方程的应用.【专题】523:一元二次方程及应用;69:应用意识.【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;32:分类讨论;65:数据分析观念.【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.。

2022年重庆市中考数学试卷(b卷)(解析版)

2022年重庆市中考数学试卷(b卷)(解析版)

2022年重庆市中考数学试卷(B卷)一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)(2022•重庆)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(4分)(2022•重庆)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.3.(4分)(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°4.(4分)(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:96.(4分)(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.(4分)(2022•重庆)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间8.(4分)(2022•重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=6259.(4分)(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°10.(4分)(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB 的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.311.(4分)(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.2012.(4分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y ﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)|﹣2|+(3﹣)0=.14.(4分)(2022•重庆)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.15.(4分)(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为.(结果保留π)16.(4分)(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.三.解答题(共2个小题,每小题8分,共16分)17.(8分)(2022•重庆)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.18.(8分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CF A(AAS).同理可得:④.S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.三.解答题(共7个小题,每小题10分,共70分)19.(10分)(2022•重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=,b=,c=.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)20.(10分)(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.21.(10分)(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.(10分)(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快(接送游客上下船的时间忽略不计)艇能否在5分钟内将该游客送上救援船?请说明理由.23.(10分)(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.24.(10分)(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.25.(10分)(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.2022年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)(2022•重庆)﹣2的相反数是()A.﹣2B.2C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2022•重庆)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°【分析】根据平行线的性质,可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=115°,∴∠2=115°,故选:A.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时【分析】直接由图形可得出结果.【解答】解:由图形可知,在这一时段内心跳速度最快的时刻约为9时,故选:C.【点评】本题主要考查了折线统计图的意义,理解横纵轴表示的意义是解题的关键.5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.【点评】本题考查了位似三角形的性质,明确两三角形位似,周长比等于相似比是解题的关键.6.(4分)(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.【点评】本题主要考查了图形的变换规律,归纳出第n个图案中菱形的个数为2n﹣1,是解题的关键.,体现了从特殊到一般的数学思想.7.(4分)(2022•重庆)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解答】解:∵49<54<64,∴7<<8,∴3<﹣4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.(4分)(2022•重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=625【分析】第三年的植树量=第一年的植树量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:根据题意得:400(1+x)2=625,故选:B.【点评】考查列一元二次方程解决实际问题,读懂题意,找到等量关系列方程是解决本题的关键.9.(4分)(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠F AO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠F AO=∠EOB=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.10.(4分)(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.3【分析】连结OC,根据切线的性质得到∠PCO=90°,根据OC=OA,得到∠A=∠OCA,根据AC=PC,得到∠P=∠A,在△APC中,根据三角形内角和定理求得∠P=30°,根据含30度角的直角三角形的性质得到OP=2OC=2r,在Rt△POC中,根据tan P=求出⊙O的半径r即可得出答案.【解答】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90°+x=180°,∴x=30°,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tan P=,∴=,∴r=3,∴PB=OP﹣OB=2r﹣r=r=3.故选:D.【点评】本题考查了切线的性质,体现了方程思想,在△APC中,根据三角形内角和定理求得∠P=30°是解题的关键.11.(4分)(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.20【分析】解分式方程得得出x=a﹣2,结合题意及分式方程的意义求出a>2且a≠5,解不等式组得出,结合题意得出a≤7,进而得出2<a≤7且a≠5,继而得出所有满足条件的整数a的值之和,即可得出答案.【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.12.(4分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y ﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【分析】根据括号前是“+”,添括号后,各项的符号都不改变判断①;根据相反数判断②;通过例举判断③.【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.【点评】本题考查了整式的加减,解题的关键是注意可以添加1个括号,也可以添加2个括号.二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)|﹣2|+(3﹣)0=3.【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.14.(4分)(2022•重庆)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.【分析】画树状图,共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,∴两次摸出的球都是红球的概率为,故答案为:.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为π.(结果保留π)【分析】先根据锐角三角函数求出∠AEB=30°,再根据扇形面积公式求出阴影部分的面积.【解答】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.【点评】本题考查有关扇形面积的相关计算、矩形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出角的度数是解题关键.16.(4分)(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为4:3.【分析】先根据比例设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由三种特产的总利润是总成本的25%列方程可得=,从而解答此题.【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由题意得:20%•2y•x+30%•a•3x+20%•y•2x=25%(2xy+3ax+2xy),15a=20y,∴=,则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.【点评】本题考查三元高次方程的应用,解本题要理解题意,通过找出等量关系即可求解.三.解答题(共2个小题,每小题8分,共16分)17.(8分)(2022•重庆)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.【分析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)(x﹣y)+y(y﹣2)=x2﹣y2+y2﹣2y=x2﹣2y;(2)原式=÷=•=.【点评】本题考查分式的混合运算、平方差公式和单项式乘多项式,解答本题的关键是明确它们各自的计算方法.18.(8分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①∠ADC=∠F.∵EF∥BC,∴②∠1=∠2.又∵③AC=AC,∴△ADC≌△CF A(AAS).同理可得:④△ADB≌△BEA(AAS).S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.【分析】根据矩形的性质、垂直的定义得出∠F=∠ADC=90°,再根据EF∥BC,推出∠1=∠2,进而证明△ADC≌△CF A(AAS),同理可得:④△ADB≌△BEA(AAS),最后得出三角形的面积公式为S=ah.【解答】证明:∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴∠ADC=∠F,∵EF∥BC,∴∠1=∠2,∵AC=AC,在△ADC与△CF A中,∴△ADC≌△CF A(AAS).同理可得:④△ADB≌△BEA(AAS),∴S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).【点评】本题主要考查了基本作图、全等三角形、矩形的判定与性质,掌握5种基本作图,全等三角形、矩形的判定与性质的应用,其中全等的证明是解题关键.三.解答题(共7个小题,每小题10分,共70分)19.(10分)(2022•重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=8,b=8.5,c=65%.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)【分析】(1)根据众数的定义可求出七年级学生的课外阅读时长的众数,即a的值;根据中位数的定义可求出八年级学生的课外阅读时长的中位数,即b的值,根据频率=可求出八年级学生的课外阅读时长在8小时及以上所占百分比,即C的值;(2)求出样本中七年级学生课外阅读时长在9小时及以上的学生所占的百分比,即可估计总体中所占的百分比,进而求出相应人数;(3)由中位数、众数的比较得出结论.【解答】解:(1)七年级学生的课外阅读时长出现次数最多的是8小时,因此七年级学生的课外阅读时长的众数是8小时,即a=8;将八年级学生的课外阅读时长从小到大排列,处在中间位置的两个数的平均数为=8.5,因此中位数是8.5小时,即b=8.5;c=×100%=65%,故答案为:8,8.5,65%;(2)400×=160(人),答:七年级在主题周活动期间课外阅读时长在9小时及以上的大约有160人;(3)八年级参与的积极性更高,理由:八年级学生课外阅读时长的中位数,众数均比七年级的高.【点评】本题考查中位数、众数、平均数以及样本估计总体,理解中位数、众数的定义是正确解答的前提.20.(10分)(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.【分析】(1)将A,B两坐标先代入反比例函数求出m,n,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x的取值范围求解.(3)由直线解析式求得C点的坐标,然后根据三角形面积公式即可求解.【解答】解:(1)∵(m,4),(﹣2,n)在反比例函数y=的图象上,∴4m=﹣2n=4,解得m=1,n=﹣2,∴A(1,4),B(﹣2,﹣2),把(1,4),(﹣2,﹣2)代入y=kx+b中得,解得,∴一次函数解析式为y=2x+2.画出函数y=2x+2图象如图;(2)由图象可得当0<x<1或x<﹣2时,直线y=﹣2x+6在反比例函数y=图象下方,∴kx+b<的解集为x<﹣2或0<x<1.(3)把y=0代入y=2x+2得0=2x+2,解得x=﹣1,∴点C坐标为(﹣1,0),∴S△AOC==2.【点评】本题考查反比例函数与一次函数的交点问题,解题关键是掌握函数与方程及不等式的关系.21.(10分)(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x ﹣20)米,由题意可得:5(x﹣20)+2x=600,解得x=100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)=1.2m米,由题意可得:,解得m=90,经检验,m=90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.22.(10分)(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快。

2020年重庆市中考数学试卷(B)及答案

2020年重庆市中考数学试卷(B)及答案

重庆市2016年初中毕业曁高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D )A.-4B.4C.41- D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B )4.如图,直线a ,b 被直线c 所截,且a //b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D )A.对重庆市居民日平均用水量的调查;B.对一批LED 节能灯使用寿命的调查;C.对重庆新闻频道“天天630”栏目收视率的调查;D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2-a 有意义,则a 的取值范围是( A )A.a ≥2B.a ≤2C.a >2D.a ≠28.若m =-2,则代数式m 2-2m -1的值是( B )A.9B.7C.-1D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。

,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39π D.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D )B.32.1 米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x <-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫ ⎝⎛+π=____8______. 15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB =40°,则∠C =__25__度.16.点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_ 51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。

2020年重庆市中考数学试卷和答案解析(b卷)

2020年重庆市中考数学试卷和答案解析(b卷)

2020年重庆市中考数学试卷和答案解析(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的倒数是()A.5B.C.﹣5D.﹣解析:根据倒数的定义,可得答案.参考答案:解:5得倒数是,故选:B.知识点:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4分)围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体解析:根据平面与曲面的概念判断即可.参考答案:解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.知识点:本题考查的是立体图形的认识,掌握平面与曲面的概念是解题的关键.3.(4分)计算a•a2结果正确的是()A.a B.a2C.a3D.a4解析:根据同底数幂的乘法法则计算即可.参考答案:解:a•a2=a1+2=a3.故选:C.知识点:本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.4.(4分)如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°解析:根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.参考答案:解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.知识点:本题考查的是切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.5.(4分)已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1解析:将a+b的值代入原式=1+(a+b)计算可得.参考答案:解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.知识点:本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.6.(4分)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5解析:根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.参考答案:解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.知识点:本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.7.(4分)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2解析:设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.参考答案:解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.知识点:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.8.(4分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21解析:根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.参考答案:解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.知识点:本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中实心圆点的个数为2n+n+2的规律.9.(4分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米解析:过点E作EF⊥DC交DC的延长线于点F,过点E作EM ⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF =x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM 是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.参考答案:解:过点E作EF⊥DC交DC的延长线于点F,过点E 作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.知识点:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4分)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0解析:不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.参考答案:解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.知识点:此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(4分)如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4解析:延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.参考答案:解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.知识点:本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.12.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,C 分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.解析:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.参考答案:解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y 轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.知识点:本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:()﹣1﹣=3.解析:先计算负整数指数幂和算术平方根,再计算加减可得.参考答案:解:原式=5﹣2=3,故答案为:3.知识点:本题主要考查实数的运算,解题的关键是掌握负整数指数幂的规定和算术平方根的定义.14.(4分)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:94000000=9.4×107,故答案为:9.4×107.知识点:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.解析:列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.参考答案:解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.知识点:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)解析:由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.参考答案:解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.知识点:本题考查的是扇形面积计算,菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.解析:首先确定甲乙两人的速度,求出总里程,再求出甲到达B 地时,乙离B地的距离即可解决问题.参考答案:解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.知识点:本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.18.(4分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.解析:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.参考答案:解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.知识点:此题主要考查了三元一次不定方程,审清题意,找出相等关系,确定出y的范围是解本题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.解析:(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,参考答案:解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.知识点:本题考查整式、分式的四则运算,掌握计算法则是正确计算的前提.20.(10分)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD 和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.解析:(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.参考答案:解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.知识点:本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.解析:(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.参考答案:解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.知识点:本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.解析:(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.参考答案:解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.知识点:此题主要考查了数的整除问题,新定义,理解并灵活运用新定义是解本题的关键.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.解析:(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.参考答案:解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.知识点:本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.24.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B 两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.解析:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.参考答案:解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.知识点:本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M 为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.解析:(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D ﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.参考答案:解:(1)直线BC的解析式为y=﹣x+2,令y=0,则x=3,令x=0,则y=2,故点B、C的坐标分别为(3,0)、(0,2);则y=ax2+bx+2=a(x+)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,∵AD∥BC,则设直线AD的表达式为:y=﹣(x+)②,联立①②并解得:x=4,故点D(4,﹣),由点C、D的坐标得,直线CD的表达式为:y=﹣x+2,当x=3时,y BC=﹣x+2=﹣2,即点H(3,﹣2),故BH =2,设点E(x,﹣x2+x+2),则点F(x,﹣x+2),则四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH=×(﹣x2+x+2+x﹣2)×3+×4×2=﹣x2+3x+4,∵<0,故S有最大值,当x=时,S的最大值为,此时点E(,);(3)存在,理由:y=﹣x2+x+2=﹣(x)2+,抛物线y=ax2+bx+2(a≠0)向左平移个单位,则新抛物线的表达式为:y=﹣x2+,点A、E的坐标分别为(﹣,0)、(,);设点M(,m),点N(n,s),s=﹣n2+;①当AE是平行四边形的边时,点A向右平移个单位向上平移个单位得到E,同样点M(N)向右平移个单位向上平移个单位得到N(M),即±=n,则s=﹣n2+=﹣或,故点N的坐标为(,﹣)或(﹣,);②当AE是平行四边形的对角线时,由中点公式得:﹣+=n+,解得:n=﹣,s=﹣n2+=,故点N的坐标(﹣,);综上点N的坐标为:(,﹣)或(﹣,)或(﹣,).知识点:本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.解析:(1)如图1中,连接BE,CF.解直角三角形求出BE,再利用全等三角形的性质证明CF=BE,利用三角形的中位线定理即可解决问题.(2)结论:∠DNM=120°是定值.利用全等三角形的性质证明∠EBC+∠BCF=120°,再利用三角形的中位线定理,三角形的外角的性质证明∠DNM=∠EBC+∠BCF即可.(3)如图3﹣1中,取AC的中点,连接BJ,BN.首先证明当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.解直角三角形求出NH即可解决问题.参考答案:解:(1)如图1中,连接BE,CF.∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC=8,BD=CD=4,∴AD=BD=4,∵AE=2,∴DE=AE=2,∴BE===2,∵△ABC,△AEF答等边三角形,∴AB=AC,AE=AF,∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EN=CN,EG=FG,∴GN=CF=.(2)结论:∠DNM=120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECM,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠ACB,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACN+∠ECM=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=,∵BJ=AD=4,∴BN≤BJ+JN,∴BN≤5,∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ•tan30°=,JN=,∴KN=,在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,∴HN=NK•sin60°=×=,∴S△ADN=•AD•NH=×4×=7.知识点:本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

重庆市中考数学模拟试卷(B卷)含答案解析

重庆市中考数学模拟试卷(B卷)含答案解析

重庆市中考数学模拟试卷(B卷)一、选择题:本大题共12小题,每小题4分,共48分.1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1B.0C.﹣2D.12.计算8a3÷(﹣2a)的结果是()A.4aB.﹣4aC.4a2D.﹣4a23.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解全国中学生的心理健康状况C.了解外地游客对我市旅游景点“磁器口”的满意程度D.了解端午节期间重庆市场上的粽子质量情况5.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是()A.15°B.25°C.30°D.35°6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.计算sin245°+tan60°•cos30°值为()A.2B. C.1D.8.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.29.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°10.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分11.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56B.58C.63D.7212.如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()A.2B.4C.4D.5二、填空题:本大题共6小题,每小题4分,共24分.13.化简:1﹣|1﹣|=.14.方程的解是.15.如果△ABC∽△DEF,且对应高之比为2:3,那么△ABC和△DEF的面积之比是.16.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为(结果保留π).17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.18.如图,四边形OABC是边长为2的正方形,函数y=的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=的图象交于点E、F,则直线EF与x轴的交点坐标为.三、解答题:本大题共2小题,每小题7分,共14分.19.解不等式组:.20.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?四、解答题:本大题共4个小题,每小题10分,共40分.21.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?24.阅读材料,解答问题:我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:解:由②得:y=2x﹣5 ③将③代入①得:x2+(2x﹣5)2=10整理得:x2﹣4x+3=0,解得x1=1,x2=3将x1=1,x2=3代入③得y1=1×2﹣5=﹣3,y2=2×3﹣5=1∴原方程组的解为,.(1)请你用代入消元法解二元二次方程组:;(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a 的取信范围.五、解答题:本大题共2个小题,每小题12分,共24分.25.如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的角平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.26.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.重庆市中考数学模拟试卷(B卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1B.0C.﹣2D.1【考点】有理数大小比较.【分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.2.计算8a3÷(﹣2a)的结果是()A.4aB.﹣4aC.4a2D.﹣4a2【考点】整式的除法.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:原式=﹣4a2,故选D3.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.4.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解全国中学生的心理健康状况C.了解外地游客对我市旅游景点“磁器口”的满意程度D.了解端午节期间重庆市场上的粽子质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某班同学“立定跳远”的成绩,适合普查,故A正确;B、了解全国中学生的心理健康状况,调查范围广,适合抽样调查,故B错误;C、了解外地游客对我市旅游景点“磁器口”的满意程度,无法普查,故C错误;D、了解端午节期间重庆市场上的粽子质量情况,调查具有破坏性,适合抽样调查,故D 错误;故选:A.5.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是()A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠BED=65°,进而利用平角的定义得出答案.【解答】解:∵AB∥CD,∠B=65°,∴∠BED=65°,∵BE⊥AF,∴∠DEF=180°﹣65°﹣90°=25°.故选:B.6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.7.计算sin245°+tan60°•cos30°值为()A.2B. C.1D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2+×=+=2,故选:A.8.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.2【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一次方程即可.【解答】解:把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.9.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°【考点】切线的性质.【分析】首先在优弧AB上取点D,连接BD,AD,OB,OA,由圆的内接四边形的性质与圆周角定理,可求得∠AOB的度数,然后由PA、PB是⊙O的切线,求得∠OAP与∠OBP的度数,继而求得答案.【解答】解:在优弧AB上取点D,连接BD,AD,OB,OA,∵∠ACB=110°,∴∠D=180°﹣∠ACB=70°,∴∠AOB=2∠D=140°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠A=360°﹣∠OAP﹣∠AOB﹣∠OBP=40°.故选D.10.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分【考点】函数的图象.【分析】根据情境的叙述,结合图象,逐一分析得出答案即可.【解答】解:A、在公园停留的时间为15﹣10=5分钟,也就是在公园休息了5分钟,此选项正确,不合题意;B、小明乘出租车的时间是17﹣15=2分钟,此选项错误,符合题意;C、小明1800米用了10分钟,跑步的速度为180米/分,此选项正确,不合题意;D、出租车1800米用了2分钟,速度为900米/分,此选项正确,不合题意.故选:B.11.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56B.58C.63D.72【考点】规律型:图形的变化类.【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第7个图形的小圆个数为2+7×8=58,由此得出答案即可.【解答】解:∵第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆,…∴第七个图形的小圆个数为2+7×8=58,故选B.12.如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()A.2B.4C.4D.5【考点】平行四边形的性质.【分析】根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,∠BC于M,证明△ABE 是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=∠ABC+∠DCB=90°∴EB⊥FC;过A作AM∥FC,交BC于M,如图所示:∵AM∥FC,∴∠AOB=∠FGB,∵EB⊥FC,∴∠FGB=90°,∴∠AOB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=3,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=2,∴AO=1,∴EO==2,∴BE=4;故选:C.二、填空题:本大题共6小题,每小题4分,共24分.13.化简:1﹣|1﹣|=2﹣\sqrt{2}.【考点】实数的运算.【分析】先根据绝对值性质去绝对值符号,再去括号,最后合并可得答案.【解答】解:原式=1﹣(﹣1)=1﹣+1=2﹣,故答案为:2﹣.14.方程的解是x=1.【考点】解分式方程.【分析】观察方程可得最简公分母是:2(x+1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以2(x+1),得2x=x+1,解得x=1.经检验:x=1是原方程的解.故答案为:x=1.15.如果△ABC∽△DEF,且对应高之比为2:3,那么△ABC和△DEF的面积之比是4:9.【考点】相似三角形的性质.【分析】根据相似三角形的性质求出两个三角形的相似比,根据相似三角形面积的比等于相似比的平方得到答案.【解答】解:∵△ABC∽△DEF,对应高之比为2:3,∴△ABC和△DEF的相似比为2:3,∴△ABC和△DEF的面积之比是4:9,故答案为:4:9.16.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为 2.5\sqrt{3}﹣π(结果保留π).【考点】扇形面积的计算.【分析】根据等边三角形的性质以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面积,进而得出答案.【解答】解:过点O作OE⊥AC于点E,连接FO,MO,∵△ABC是边长为4的等边三角形,D为AB边的中点,以CD为直径画圆,∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,∴∠FOD=∠DOM=60°,AD=BD=2,∴CD=2,则CO=DO=,∴EO=,EC=EF=,则FC=3,∴S△COF=S△COM=××3=,==π,S扇形OFMS△ABC=×CD×4=4,∴图中影阴部分的面积为:4﹣2×﹣π=2.5﹣π.故答案为:2.5﹣π.17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是\frac{1}{5}.【考点】列表法与树状图法.【分析】把三张风景图片剪成相同的两片后用A1,A2,B1,B2,C1,C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.【解答】解:设三张风景图片分别剪成相同的两片为:A1,A2,B1,B2,C1,C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.18.如图,四边形OABC是边长为2的正方形,函数y=的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=的图象交于点E、F,则直线EF与x轴的交点坐标为(5,0).【考点】反比例函数图象上点的坐标特征;正方形的性质.【分析】根据正方形的性质可得出点B的坐标,由点B的坐标结合反比例函数图象上点的坐标特征可求出反比例函数的解析式,由翻折的性质可得出线段MC′所在的直线的解析式为x=4,线段NA′所在的直线的解析式为y=4,令反比例函数解析式中x=4或y=4,即可求出点E、F的坐标,再由点E、F的坐标利用待定系数法即可求出直线EF的解析式,令其中的y=0求出x值,即可得出结论.【解答】解:补充完整图形,如下图所示.∵四边形OABC是边长为2的正方形,∴点B的坐标为(2,2),∵函数y=的图象经过点B,∴k=2×2=4,∴反比例函数解析式为y=.∵将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC,∴线段MC′所在的直线的解析式为x=4,线段NA′所在的直线的解析式为y=4,令y=中x=4,则y=1,∴点E的坐标为(4,1);令y=中y=4,则=4,解得:x=1,∴点F的坐标为(1,4).设直线EF的解析式为y=ax+b,∴,解得:,∴直线EF的解析式为y=﹣x+5,令y=﹣x+5中y=0,则﹣x+5=0,解得:x=5,∴直线EF与x轴的交点坐标为(5,0).故答案为:(5,0).三、解答题:本大题共2小题,每小题7分,共14分.19.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1;由②得,x>3,故此不等式组的解集为:x>3.20.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?【考点】众数;算术平均数;中位数.【分析】(1)用众数、中位数、平均数的定义去解.(2)求出这8名学生每天完成家庭作业的平均时间.把这个样本的平均数与60分钟进行比较就可以.【解答】解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是=(60+55×3+75+43+65+40)=56(分).∴这8名学生完成家庭作业的平均时间为56分钟,因为56<60,因此估计该班学生每天完成家庭作业的平均时间符合学校的要求.四、解答题:本大题共4个小题,每小题10分,共40分.21.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).【考点】分式的混合运算;多项式乘多项式;完全平方公式.【分析】(1)先利用乘法公式展开,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:(1)原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2=ab;(2)原式=•=﹣•=﹣.22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)【考点】解直角三角形的应用-方向角问题.【分析】(1))过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与AM、AN的大小即可得出结论.【解答】解(1)过点A作AC⊥OB于点C.由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).∴BC=OC﹣OB=30﹣20=10(千米).∴在Rt△ABC中, ==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)题中有两个等量关系:购买A种商品进价+购买B种商品进价=36000,出售甲种商品利润+出售乙种商品利润=6000,由此可以列出二元一次方程组解决问题.(2)根据不等关系:出售甲种商品利润+出售乙种商品利润≥8160,可以列出一元一次不等式解决问题.【解答】解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.24.阅读材料,解答问题:我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:解:由②得:y=2x﹣5 ③将③代入①得:x2+(2x﹣5)2=10整理得:x2﹣4x+3=0,解得x1=1,x2=3将x1=1,x2=3代入③得y1=1×2﹣5=﹣3,y2=2×3﹣5=1∴原方程组的解为,.(1)请你用代入消元法解二元二次方程组:;(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a的取信范围.【考点】高次方程.【分析】(1)先消去一个未知数再解关于另一个未知数的次方程,把求得结果代入一个较简单的方程中即可;(2)先消去一个未知数,得到关于另一个未知数的一元二次方程,根据一元二次方程根的判别式解答即可.【解答】解:(1)由①得,y=2x﹣3③,把③代入②得,(2x﹣3)2﹣4x2+6x﹣3=0,整理的,6x=6,解得x=1,把x=1代入③得,y=﹣1,故原方程组的解为;(2)由①得,y=1﹣2x③,把③代入②得,ax2+(1﹣2x)2+2x+1=0,整理得,(a+4)x2﹣2x+2=0,由题意得,4﹣4×2×(a+4)>0,解得a<﹣,∵a+4≠0,∴a≠﹣4,∴a<﹣且a≠﹣4.五、解答题:本大题共2个小题,每小题12分,共24分.25.如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的角平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】(1)由直角三角形斜边上的中线性质得出DE=AC=AE,AC=2DE=2,AE=1,由勾股定理求出AB,得出BC,即可得出结果;(2)连接AF,由等腰三角形的性质得出∠3=∠4,证出△ABD是等腰直角三角形,得出∠DAB=∠DBA=45°,∠3=22.5°,由ASA证明△ADF≌△BDF,得出AF=BF,∠2=∠3=22.5°,证出△AEF是等腰直角三角形,得出AF=AE,即可得出结论;(3)作DH⊥DE交BE于H,先证明△ADE≌△BDH,得出DH=DE,AE=BH,证出△DHE是等腰直角三角形,得出∠DEH=45°,∠3=45°,由翻折的性质得出DE=GE,∠3=∠4=45°,证出DH=GE,DH∥GE,证出四边形DHEG是平行四边形,得出DG=EH,即可得出结论.【解答】(1)解:如图1所示:∵AB=BC,BE⊥AC,∴AE=CE,∠AEB=90°,∵AD⊥BC,∴∠ADC=90°,∴DE=AC=AE,∴AC=2DE=2,AE=1,∴AB==,∴BC=,∴△ABC的周长=AB+BC+AC=2+2;(2)证明:连接AF,如图2所示:∵AB=BC,BE⊥AC,∴∠3=∠4,∵∠ADC=90°,AD=BD,∴△ABD是等腰直角三角形,∴∠DAB=∠DBA=45°,∴∠3=22.5°,∵∠1+∠C=∠3+∠C=90°,∴∠1=∠3=22.5°,∵DF平分∠ABD,∴∠ADF=∠BDF,在△ADF和△BDF中,,∴△ADF≌△BDF(SAS),∴AF=BF,∠2=∠3=22.5°,∴∠EAF=∠1+∠2=45°,∴△AEF是等腰直角三角形,∴AF=AE,∵DE=AE,∴BF=DE;(3)解:BE=DG+AE;理由如下:作DH⊥DE交BE于H,如图3所示:∵BE⊥AC,AD⊥BC,∴∠1+∠ACD=∠2+∠ACD=90°,∴∠1=∠2,∴∠ADE=90°﹣∠ADH=∠BDH,在△ADE和△BDH中,,∴△ADE≌△BDH(ASA),∴DH=DE,AE=BH,∴△DHE是等腰直角三角形,∴∠DEH=45°,∴∠3=90°﹣∠DEH=45°,∵△ACD翻折至△ACG,∴DE=GE,∠3=∠4=45°,∴∠DEG=∠EDH=90°,DH=GE,∴DH∥GE,∴四边形DHEG是平行四边形,∴DG=EH,∴BE=EH+BH=DG+AE.26.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)代入A,C两点,列出方程,解得a,b即可;(2)设M(a,﹣a2+4a﹣3),求出直线直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,则N(a,1﹣a),即有三角形ACM的面积为△AMN和△CMN的面积之和,化简运用二次函数的最值,即可得到;(3)讨论当∠ACP=90°,当∠CAP=90°,运用直线方程和抛物线方程求交点即可.【解答】解:(1)由于A点的坐标是(1,0),C点坐标是(4,﹣3),则a+b﹣3=0,且16a+4b﹣3=﹣3,解得,a=﹣1,b=4,即抛物线的解析式为:y=﹣x2+4x﹣3;(2)设M(a,﹣a2+4a﹣3),设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,如图所示:则N(a,1﹣a),即有三角形ACM的面积为△AMN与△CMN的面积之和,即为(a﹣1+4﹣a)(﹣a2+4a﹣3﹣1+a)=(﹣a2+5a﹣4),当a=时,面积取得最大,且为,此时M(,);(3)存在,理由如下:当∠ACP=90°,即有此时CP:y=x﹣7,由CP解析式和抛物线解析式得:,解得:,或(不合题意舍去),∴P(﹣1,﹣8);当∠CAP=90°,由AC的斜率为﹣1,即有AP的斜率为1,此时AP:y=x﹣1,由AP解析式和抛物线解析式得:,解得:,或,(不合题意舍去),∴P(2,1).故存在点P,且为(﹣1,﹣8)或(2,1),使得△PAC是以AC为直角边的直角三角形.7月13日。

2020年重庆市中考数学试卷word 版(含答案)

2020年重庆市中考数学试卷word 版(含答案)

初中毕业暨高中招生考试题号 一 二 三 四 五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b 2a ,4ac b 4a),对称轴公式为x =—b 2a.一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.1.3的倒数是()A .13B .— 13 C .3 D .—32.计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 5 3.不等式组⎩⎨⎧>≤-62,31x x 的解集为()A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C =50°,∠BDE =60°,则∠CDB 的度数等于()A .70°B .100°C .110°D .120° 5.下列调查中,适宜采用全面调查(普查)方式的是()A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于() A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A.图①B.图②C.图③D.图④9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

2023年重庆市中考数学真题(B卷)(解析版)

2023年重庆市中考数学真题(B卷)(解析版)

重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1. 4的相反数是( ) A.14B. 14−C. 4D. 4−【答案】D 【解析】【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案. 【详解】解:4的相反数是4−, 故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2. 四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A. B. C. D.【答案】A 【解析】【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可. 【详解】解:从正面看到视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键. 3. 如图,直线a ,b 被直线c 所截,若a b ,163∠=°,则2∠度数为( ).的的A. 27°B. 53°C. 63°D. 117°【答案】C 【解析】【分析】求2∠的度数,根据平行线的性质求解即可. 【详解】�a b , �1263∠=∠=°, 故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质. 4. 如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.5【答案】B 【解析】【分析】根据相似三角形的性质即可求出. 【详解】解:∵ABC EDC ∽, ∴::AC EC AB DE =, ∵:2:3AC EC =,6AB =, ∴2:36:DE =, ∴9DE =, 故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键. 5. 反比例函数6y x=的图象一定经过的点是( ) A. ()3,2− B. ()2,3−C. ()2,4−−D. ()2,3【答案】D【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解. 【详解】解:∵()()326,236,248,236−×=−×−=−−×−=×=, ∴点()2,3在反比例函数6y x=的图象上, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键. 6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 26【答案】B 【解析】【分析】根据前四个图案圆圈的个数找到规律,即可求解. 【详解】解:因为第①个图案中有2个圆圈,2311=×−; 第②个图案中有5个圆圈,5321=×−; 第③个图案中有8个圆圈,8331=×−; 第④个图案中有11个圆圈,11341=×−; …,所以第⑦个图案中圆圈的个数为37120×−=; 故选:B .【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n −是解题的关键.7. −的值应在( ) A. 4和5之间 B. 5和6之间C. 6和7之间D. 7和8之间【答案】A【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=−,253036<<,<<56<<,415∴<−<,故选:A.【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8. 如图,AB为O的直径,直线CD与O相切于点C,连接AC,若50ACD∠=°,则BAC∠的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】连接OC,先根据圆的切线的性质可得90OCD∠=°,从而可得40OCA∠=°,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC,直线CD与O相切,OC CD ∴⊥,90OCD ∴∠=°,50ACD ∠=° ,40OCA ∴∠=°,OA OC = ,40BAC OCA ∴∠=∠=°,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键. 9. 如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为( )A. 2B.C. 1D.【答案】D 【解析】【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=°,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=°,再证明ABF EBF ≌,求得90AFC ∠=°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度. 【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=°,AC=,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=°−∠,290ABE ABC EBC BEC ∴∠=∠−∠=∠−°, BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠−°,45BFE BEC EBF ∴∠=∠−∠=°,在BAF △与BEF △,AB EB ABF EBF BF BF =∠=∠ =, ()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=°,90AFC BAF BFE ∴∠=∠+∠=°,O 为对角线AC 的中点,12OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得45BFE ∠=°是解题的关键.10. 在多项式x y z m n −−−−(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n −−−−=−−+−,x y z m n x y z m n −−−−=−−−+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等; ②不存在“绝对操作”,使其运算结果与原多项式之和为0; ③所有的“绝对操作”共有7种不同运算结果. 其中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答. 【详解】解:∵x y z m n >>>>, ∴x y z m n x y z m n −−−−=−−−−,∴存在“绝对操作”,使其运算结果与原多项式相等, 故①正确;根据绝对操作的定义可知:在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0, 故②正确;∵在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下: ∴x y z m n x y z m n −−−−=−−−−,x y z m n x y z m n −−−−=−+−−,x y z m n x y z m n x y z m n −−−−=−−−−=−−+−, x y z m n x y z m n x y z m n −−−−=−−−−=−−−+, x y z m n x y z m n −−−−=−+−+,共有5种不同运算结果, 故③错误; 故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11. 计算:05(2−+=________. 【答案】6 【解析】【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+−=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________. 【答案】14【解析】【分析】根据列表法求概率即可求解. 【详解】解:列表如下, 清 风 朗 月 清 清清 清风 清朗 清月 风 风清 风风 风朗 风月 朗 朗清 朗风 朗朗 朗月 月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种, ∴抽取的两张卡片上的汉字相同的概率是14, 故答案为:14. 【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键. 13. 若七边形的内角中有一个角为100°,则其余六个内角之和为________. 【答案】800°##800度 【解析】【分析】根据多边形的内角和公式()1802n °−即可得. 【详解】解:�七边形的内角中有一个角为100°,�其余六个内角之和为()18072100800°×−−°=°, 故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14. 如图,在ABC 中,AB AC =,AD 是BC 边中线,若5AB =,6BC =,则AD 的长度为________.【答案】4 【解析】【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线, ∴AD BC ⊥,12BD BC =, 在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ==,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键. 15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x += 【解析】【分析】根据变化前数量2(1)x ×+=变化后数量,即可列出方程. 【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩, ∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,的故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16. 如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π− 【解析】【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=°,然后根据()2ABE BEM S S S =− 阴影扇形解答即可. 【详解】解:�四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22ABCD BE CE BC =====,90ABC DCB ∠=∠=°, ∴45BAE AEB DEC CDE ∠=∠=∠=∠=°, ∴()2145212=22222423602ABEBEM S S S πππ ×=−×××−=×−=−阴影扇形; 故答案为:4π−.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.17. 若关于x 的不等式组213241x x x a x + >++<− 的解集为<2x −,且关于y 的分式方程22211a y y y +++=−−的解为正数,则所有满足条件的整数a 的值之和为________. 【答案】13 【解析】【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >−且1a ≠,从而可得25a −<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x x x a x + >+ +<− ①②, 解不等式①得:<2x −, 解不等式②得:13a x +<−, ∵关于x 的不等式组213241x x x a x + >+ +<− 的解集为<2x −, 123a +∴−≥−, 解得5a ≤, 方程22211a y y y+++=−−可化为()2221a y y +−−=−, 解得23a y +=, 关于y 的分式方程22211a y y y+++=−−的解为正数, 203a +∴>且2103a +−≠, 解得2a >−且1a ≠,52a ∴−<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513−+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键. 18. 对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,�716−=,312−=,�7311是“天真数”;四位数8421,�816−≠,�8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =−,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】 �. 6200 �. 9313【解析】【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+−,进而()()()485P M M a Q b a +−−=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d −=,2b c −=,69a ≤≤,29b ≤≤,则()8c d a b +=+−,∴()()()348P M a b c d a b =+++=+−, ∴()()()485P M M a Q b a +−−=, 若M 最大,只需千位数字a 取最大,即9a =, ∴()()()498795b P Q b M M =+−=+−, ∵()()P M Q M 能被10整除, ∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()()263x x x ++−; (2)2293n m n m m − +÷. 【答案】(1)229x +(2)13m n− 【解析】【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++− 22669x x x x =++−+229x +;【小问2详解】 解:2293n m n m m − +÷()()333m n m m m n m n +⋅+− 13m n=−. 【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20. 学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O . 求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠= ① . ∵EF 垂直平分AC ,∴ ② .又EOC ∠=___________③ .∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ④ .【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠. ∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21. 某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表 设备 平均数 中位数 众数 “非常满意”所占百分比A88 m 96 45% B 88 87 n40% 根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90 (3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20×=, 的∴“比较满意”所占百分比为:130%45%10%15%−−−=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数,“不满意”和“满意”的评分有()2010%15%5×+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89, ∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90×=(人), 答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一). 【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22. 如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−; (2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=°,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;【小问2详解】函数图象如图:当04t <≤时,y 随x 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23. 某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y −亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y−亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y=− ,即5031.2y y − , 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24. 人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60°方向,B 在灯塔C 的南偏东45°方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 1.414≈ 1.732≈)【答案】(1)2545米(2)能,说明过程见解析【解析】【分析】(1)过点C 作CD AB ⊥于点D ,先根据含30度角的直角三角形的性质、等腰三角形的判定可得118002BD CD AC ===米,再解直角三角形即可得; (2)先解直角三角形求出AD 的长,从而可得AB 的长,再根据时间等于路程除以速度即可得.【小问1详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=°∠=°, 30,45A B BCD ∴∠=°∠=∠=°,118002BD CD AC ∴===米, 2545sin 45CD BC ∴=≈°米, 答:B 养殖场与灯塔C 的距离为2545米.【小问2详解】解:sin 60AD AC =⋅°=()1800AB AD BD ∴=+=+米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟, 所以甲组能在9分钟内到达B 处.【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键. 25. 如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+− (2)PD 取得最大值为45,52,2P −−(3)Q 点的坐标为9,12 −或9,52 或97,24. 【解析】 【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− ,则45PD PQ =,进而根据二次函数的性质即可求解; (3)根据平移的性质得出219494216y x =−− ,对称轴为直线92x =,点52,2P −− 向右平移5个单位得到53,2E−,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解. 【小问1详解】解:将点()3,0B ,()0,3C −.代入214y x bx c =++得, 2133043b c c ×++= =− 解得:143b c = =− ,�抛物线解析式为:211344y x x =+−, 【小问2详解】 �211344y x x =+−与x 轴交于点A ,B , 当0y =时,2113044x x +−= 解得:124,3x x =−=, �()4,0A −,�()0,3C −.设直线AC 的解析式为3y kx =−, ∴430k −−= 解得:34k =− ∴直线AC 的解析式为334y x =−−, 如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− , ∴223111334444PQ t t t t t =−−−+−=−−, �AQE PQD ∠=∠,90AEQ QDP ∠=∠=°, ∴OAC QPD ∠=∠, ∵4,3OA OC ==, ∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ==−−=−−=−++, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=×−+×−−=−, ∴52,2P−−; 【小问3详解】�抛物线211344y x x =+−211494216x =+−将该抛物线向右平移5个单位,得到219494216y x =−− ,对称轴为直线92x =, 点52,2P−− 向右平移5个单位得到53,2E −∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y =×−= , ∴()0,2F , ∴22251173224EF =++= ∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92, 设9,2Q m, ∴22295322QE m =−++ ,()222922QF m =+−, 当QF EF =时,()22922m +− =1174, 解得:1m =−或5m =, 当QE QF =时,2295322m −++=()22922m +− , 解得:74m = 综上所述,Q 点的坐标为9,12 − 或9,52 或97,24.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.26. 如图,在等边ABC 中,AD BC ⊥于点D ,E 线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60°得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直接写出PQ QF +的最小值.【答案】(1)见解析 (2)见解析(32【解析】【分析】(1)根据旋转的性质得出CE CF =,60ECF ∠=°,进而证明()SAS BCE ACF ≌△△,即可得为证;(2)过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,证明四边形四边形EDFK 是平行四边形,即可得证;(3)如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,根据折叠的性质可得30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=°,进而得出ADR 是等边三角形,由(2)可得Rt Rt CED CFG ≌,得出四边形GDQF 是平行四边形,则122QF DC AC ===,进而得出3602120PGQ AGD ∠=°−∠=°,则PQ=,当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,即可求解. 【小问1详解】证明:�ABC 为等边三角形,�60ACB ∠=°,AC BC =,�将CE 绕点C 顺时针旋转60°得到线段CF ,∴CE CF =,60ECF ∠=°∴ACB ECF ∠=∠∴ACB ACE ECF ACE −=−∠∠∠∠即BCE ACF ∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC = ∠=∠ =, ∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;【小问2详解】证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,�ABC 是等边三角形,�AB AC BC ==,�AD BC ⊥∴BD CD =∴AD 垂直平分BC ,∴EB EC =又∵BCE ACF ≌,∴,AF BECF CE ==, ∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC =∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AGCG AC == ∴90AGF ∠=° 又∵12DG AC CG ==,60ACD ∠=° ∴DCG △是等边三角形,∴60CGD CDG ∠=∠=°∴60AGH DGC ∠=∠=°∴906030KGF AGF AGH ∠=∠−∠=°−°=°,又∵906030ADK ADC GDC ∠=∠−∠=°−°=°,KF AD ∥∴30HKF ADK ∠=∠=°∴30FKG KGF ∠=∠=°,∴FG FK =在Rt CED 与Rt CGF △中,CF CE CD CG = =∴Rt Rt CED CFG ≌∴GF ED =∴ED FK =∴四边形EDFK 是平行四边形,∴EH HF =;【小问3详解】解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=°�将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=° ∴60PAE QDE ∠=∠=°, ∴ADR 是等边三角形,∴906030QDCADC ADQ ∠=∠−∠=°−°=° 由(2)可得Rt Rt CED CFG ≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=°, ∴GF DQ ∥∴四边形GDQF 是平行四边形, ∴122QF DG AC === 由(2)可知G 是AC 的中点,则GA GD =∴30GAD GDA ∠=∠=°∴120AGD ∠=°∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=°,∴3602120PGQ AGD ∠=°−∠=°, 又PGGE GQ ==,∴PQ =,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴PQ =,∴2PQ QF +.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。

精品解析:2022年重庆市中考数学真题(B卷)(解析版)

精品解析:2022年重庆市中考数学真题(B卷)(解析版)
一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.
1. 的相反数是( )
A. B.2C. D.
【答案】B
【解析】
【分析】根据相反数的定义可得结果.
【详解】因为-2+2=0,所以-2的相反数是2,
【详解】解:连接 ,如图所示,
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,
∵ 是 的切线,
∴ ,
∵ ,
∴ ,
在 中, , ,
∴ , ,
∵ , ,
∴ ,
故选D.
【点睛】本题考查了等腰三角形的性质、切线的性质、解直角三角形等知识点,正确作出辅助线是解答此题的关键.
11.关于x的分式方程 的解为正数,且关于y的不等式组 的解集为 ,则所有满足条件的整数a的值之和是( )
重庆市2022年初中学业水平暨高中招生考试
数学试卷(B卷)
(全卷共四个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答;
2.作答前认真阅读答题卡的注意事项;
3.作图(包括作辅助线)请一律用黑色2B铅笔完成;
参考公式:抛物线 ( )的顶点坐标为 ,对称轴为 .
【详解】解:在正方形 中,AO=BO,∠AOD=∠AOB=90°,∠CBO=45°,
∵ ,
∴△AOF≌△BOE(SAS),
∴∠OBE=∠OAF,
∵OE=OF,∠EOF=90°,
∴∠OEF=∠OFE=45°,
∵ ,
∴∠OAF=∠OEF-∠AFE=20°,
∴∠CBE=∠CBO+∠OBE=45°+20°=65°,

2021年重庆市中考数学试题(B卷)及参考答案

2021年重庆市中考数学试题(B卷)及参考答案

重庆市2021年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试题卷上直接作答;2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..2B ..铅笔完成; 4.考试结束,由监考人员将试题卷和答题卡...一并收回. 参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.3的相反数是( ) A.3B.13C.3-D.13-2.不等式5x >的解集在数轴上表示正确的是( )A. B.C. D.3.计算4x x ÷结果正确的是( ) A.4xB.3xC.2xD.x4.如图,在平面直角坐标系中,将OAB △以原点O 为位似中心放大后得到OCD △,若()0,1B ,()0,3D ,则OAB △与OCD △的相似比是( )A.2:1B.1:2C.3:1D.1:35.如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B ∠的度数为( )A.70°B.90°C.40°D.60°6.下列计算中,正确的是( )A.21=B.2==3=7.小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A.小明家距图书馆3kmB.小明在图书馆阅读时间为2hC.小明在图书馆阅读书报和往返总时间不足4hD.小明去图书馆的速度比回家时的速度快8.如图,在ABC △和DCB △中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC △和DCB △全等的是( )A.ABC DCB ∠=∠B. AB DC =C.AC DB =D.A D ∠=∠9.如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A. 60°B.65°C.75°D.80°10.如图,在建筑物AB 左侧距楼底B 点水平距离130米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:24i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A.692米B.731米C.800米D.857米11.关于x 的分式方程331122ax x x x --+=--的解为正数,且使关于y 的元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( ) A.5-B.4-C.3-D.2-12.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF △的面积为1,则k 的值为( )A.125B.32C.2D.3二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.(1)π-=__________.14.不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________. 15.方程2(3)6x -=的解是__________.16.如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)17.如图,ABC △中,点D 为边BC 的中点,连接AD ,将ADC △沿直线AD 翻折至ABC △所在平面内,得ADC '△,连接CC ',分别与边AB 交于点E ,与AD 交于点O .若AE BE =,2BC '=,则AD 的长为__________.18.盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.20.2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下: 抽取七年级教师的竞赛成绩(单位:分)6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10. 八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a =__________,b =_________;(2)估计该校七年级20名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.21.如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)22.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.b(1)写出函数关系式中m 及表格中a ,b 的值:m =________,a =_________,b =__________; (2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________; (3)已知函数16y x =的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.23.重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元. (1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3%4a .统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值.24.对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”?并说明理由; (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n .25.如图,在平面直角坐标系中,抛物线24(0)y ax bx a =+-≠与x 轴交于点()1,0A -,()4,0B ,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线l 为该抛物线的对称轴,点D 与点C 关于直线l 对称,点P 为直线AD 下方抛物线上一动点,连接P A ,PD ,求PAD △面积的最大值;(3)在(2)的条件下,将抛物线24(0)y ax bx a =+-≠沿射线AD 平移个单位,得到新的抛物线1y ,点E 为点P 的对应点,点F 为1y 的对称轴上任意一点,在1y 上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.在等边ABC △中,6AB =,BD AC ⊥ ,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .①如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;②如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:BE BH +=;(2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且2DN NC =,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60得到线段EP ,连接FP ,当12NP MP +最小时,直接写出DPN △的面积.重庆市2021年初中学业水平暨高中招生考试 数学试题(B 卷)参考答案与评分标准一、选择题:1.C2.A3.B4.D5.A6.C7.D8.B9.C 10.D 11.B 12.D 二、填空题: 13.2提示:根据算术平方根及零指数幂的意义. 14.49提示:所有可能共有9种:(黑,黑),(黑,白1),(黑,白2),(白1,黑),(白1,白1),⋯(白2,白2),两次都是白球的有4种. 15.x=6提示:根据一元一次方程的解法步骤. 16.96-25π提示:菱形面积减去一个圆的面积.答:96-25π 17.3提示:易得OD=1,O 为△ABC 三边中线的交点.答:3 18.155 提示:设B 盒中蓝牙耳机为3m 个,则迷你音箱为2m 个,多接口优盘为5m 个.由题意得2+3+1+3m+5m+2m+1+3+2=22,解得m=1,所以B 盒中蓝牙耳机为3个,多接口优盘为5个,迷你音箱为2个.设蓝牙耳机每个成本为x 元,多接口优盘每个成本y 元,迷你音箱每个成本z 元,由题意得{2x +3y +z =145 ①3x +5y +2z =245 ②,而C 盒的成本为(x+3y+2z)元.由方程组解得{x =45−yz =55−y ,代入x+3y+2z 化简即可.三、解答题:19.解:(1)原式=2a 2+3ab+a 2-2ab+b 2⋯⋯⋯(4分)=3a 2+ab+b 2; ⋯⋯⋯(5分) (2)原式= x 2−9x 2+2x+1÷x+3x+1⋯⋯⋯(8分)=(x+3)(x−3)(x+1)2×x+1x+3. ⋯⋯⋯(9分)=x−3x+1 . ⋯⋯⋯(10分)20.解:(1)七年级排在中间第10,第11的数都是8,所以中位数a=8八年级9分人数占40%最多,所以众数b=9 ⋯⋯⋯(4分)(2)该校七年级120名教师中竞赛成绩达到8分及以上的人数为 120×8+4+520=102(人) ⋯⋯⋯(7分)答:估计该校七年级120名教师中竞赛成绩达到8分及以上的人数为102人(3)七、八年级的平均数一样,但八年级的中位数,众数,优秀率均高于七年级,因此八年级教师学习党史的竞赛成绩更优异.(在中位数,众数,优秀率中选一个方面评价即可) ⋯⋯⋯(10分) 21.解:完成的基本作图,如图所示 ⋯⋯⋯(4分)猜想:DF=3BF ⋯⋯⋯(5分) 证明:∵四边形ABCD 是平行四边形, ∴OB=OD , OA=OC =12AC ,⋯⋯⋯(6分)∵AC=2AB ,∴OA=AB ⋯⋯⋯(7分)∵AF 平分∠BAO ,∴BF=OF (等腰三角形“三线合一”),⋯⋯⋯(9分)∴∴DF=3BF. ⋯⋯⋯(10分)22.解:(1)m=-2,a=3,b=4 ⋯⋯⋯(3分)(2)所画图象,如答图所示. ⋯⋯⋯(6分) 函数性质如下:(写出其中一条即可)①当x=3时,函数取最小值为1; ②当x>3时,y 随x 的增大而增大;当x<3时,y 随x 的增大而减小. ⋯⋯⋯(8分) (3)x<0或x>4. ⋯⋯⋯(10分)23.解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 元,y 元,由题意得: {3x +2y =314x +y =33,解得{x =7y =5答:每份“堂食”小面和“生食”小面的价格分别是7元,5元. ⋯⋯⋯(4分)(2)根据题意得:4500×7+2500(1+52a%)×5(1−34a%)=(4500×7+2500×5)(1+511a%).⋯⋯⋯(7分)令a%=m ,方程可化为25m 2-2m=0, ⋯⋯⋯(8分) 解得m 1=0(不合题意,舍去),m 2= 225 所以a%= 225,∴a=8.答:a 的值是8. ⋯⋯⋯(10分) 24.解:(1)5313是“共生数”;6437不是“共生数” ⋯⋯⋯(2分) 理由如下:∵5+3=2×(3+1),∴5313是“共生数”; ⋯⋯⋯(3分) ∵6+7≠2×(4+3),∴6437不是“共生数” ⋯⋯⋯(4分)(2)设“共生数”n 的千位,百位,十位,个位上的数字分别是a ,b ,c ,d (其中1≤a ≤9,0≤b ≤9,0≤c ≤9,0≤d ≤9,a ,b ,c ,d 均为整数),则a+d=2(b+c)∵当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时 ∴当c=2a 时,b+d=9k (k 为0或1或2)当k=0时,由b+d=9k ,c=2a ,a+d=2(b+c)得a=b=c=d=0,不合理,应舍去;⋯⋯⋯(5分)当k=2时,由b+d=9k ,c=2a ,a+d=2(b+c)得b=d=9,a=-3,c=-6,不合理,应舍去;⋯⋯⋯(6分) 当k=1时,由b+d=9k ,c=2a ,a+d=2(b+c)得a+b=3,∴a 的值可取1,2,3. ⋯⋯⋯(7分) ①当a=1时,b=2,c=2,d=7,∴n=1227,F(1227)=12273=409,4+0+9=13不符合.②当a=2时,b=1,c=4,d=8,∴n=2148,F(2148)=21483=716,7+1+6=14符合,③当a=3时,b=0,c=6,d=9,∴n=3069,F(3069)=30693=1023,1+0+2+3=6符合⋯⋯⋯(9分)综上,满足条件的n为2148,3069. ⋯⋯⋯(10分)25.解:(1)∵抛物线y=ax2+bx-4(a≠0)经过A(-1,0),B(4,0),∴{a−b−4=016a+4b−4=0,解得{a=1b=−3.∴抛物线的解析式为y=x2-3x-4. ⋯⋯⋯(3分)(2)由(1)得抛物线的对称轴l为x=32,C(0,-4),∴D点坐标为(3,-4),⋯⋯⋯(4分)易求直线AD的解析式为y=-x-1.过P作y轴的平行线交AD于点H设P(x,x2-3x-4),则H(x,-x-1),∴PH=(-x-1)-(x2-3x-4)=-x2+2x+3,∴S△APD=12×[3-(-1)]×(-x2+2x+3)=-2x2+4x+6,∵-2<0∴当x=1,△PAD面积最大,其最大值为8. ⋯⋯⋯(7分)(3)满足条件的点G的坐标为(152,−254)或(152,−254)或(52,−54)注意AD与x轴夹角为45°,因此将抛物线y=ax2+bx-4(a≠0) 沿射线AD平移4√2个单位,即为向右平移4个单位,再向下平移4个单位.∴易求得平移后的新抛物线y1=x2-11x+20,其新的对称轴为x=112.又由(2)可得P(1,-6),∴E(5,-10),设F(112,f),G(x G,y G),又D(3,-4).当EF为平行四边形对角线时,如答图1所示,利用中点坐标公式,先求出G点的横坐标再代入新抛物线解析式求出G点的纵坐标答:(152,−254)当DF为平行四边形对角线时,如答图2所示,利用中点坐标公式,先求出G点的横坐标再代入新抛物线解析式求出G点的纵坐标答:(72,−254)26题答图1FGDC(E)BAK26题答图2H G F E DC BA当DE 为平行四边形对角线时,如答图3所示,由DE 中点横坐标为4,FG 的横坐标为12(112+x G ),根据平行四边形对角线互相平分,得12(112+x G )=4,解得x G =52,代入y 1=x 2-11x+20,可求得y G =−54,所以G 点坐标为(52,−54). ⋯⋯⋯(10分) 四、解答题:26.(1)①解:连接AG ,如答图1∵△ABC 和△BGF 都是等边三角形,BD ⊥AC , ∴∠BFG=60°,∠CBD=30°∴∠BCG=30°,∠ACG=30°,∠GBC=90° ∵AC=BC ,GC=GC ,∴△GAC ≌△GBC (SAS ) ∴∠GAC=∠GBC=90°,AG=BG , ∵AB=6,∴AC=AB=6,AD=3,AG=BG=2√3∴在Rt △ADG 中,DG=√AG 2+AD 2=√(2√3)2+32=√21. ⋯⋯⋯(3分)②证明:以点F 为圆心,FB 的长为半径画弧,与BH 的延长线交于点K ,连接FK ,如答图2所示.∵△ABC 和△EFG 都是等边三角形,∴∠ABC=60°,∠EFH=120°∴∠BEF+∠BHF==180°,又∠KHF+∠BHF==180°,∴∠BEF=∠KHF. 由辅助线得FB=FK ,且BD 是等边△ABC 的高,∴∠EBF=∠FBK=∠K∴△EBF ≌△HKF (AAS ),∴BE=KH ,∴BE+BH=BK. ∵FB=FK ,∠BFK=120°,∴BE+BH=BK=√3BF ,即BE+BH=√3BF ⋯⋯⋯(6分) (2)△DPN 的面积43√3. ⋯⋯⋯(8分)提示:①如图所示,易证△PEM ≌△FEQ (PE=FE ,∠PEM=∠FEQ ,EM=EQ )∴∠PME=∠FQE=90°(E 、Q 分别是AB 、BD 中点,EQ ∥AD )∴P 点在过M 与AB 垂直的直线上②过N 作AC 的垂线与过M 作BD 的垂线相交于点J ,如下图所示,过P PMI=30°,∴PI=12MP ,∴NP+12MP=NP+PI ≥NJ③ 如答图3,NJ 的长即为NP+12MP 的最小值.设MJ 与BD 交于点K 易得KJ=DN=2,NJ=BD-BK=3√3−34√3=94√3,MJ=MK+KJ=114,PJ=1112√3,∴NP=NJ-PJ=43√3,∴S△DPN=12×2×43√3=43√3∴△DPN的面积43√3.26题答图3。

2021年重庆市数学中考(B卷)试题(含答案)

2021年重庆市数学中考(B卷)试题(含答案)

4题图F ED C B A 3题图FE D CB A 8题图O D CB A 重庆市2021年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分 时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标为,对称轴公式为.一、选择题:(本大题共12个小题,每小题4分,共48分)1、某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是( )A 、-1℃B 、0℃C 、1℃D 、2℃2、计算的结果是( )A 、3B 、C 、D 、3、如图,△ABC ∽△DEF,相似比为1:2,若BC =1,则EF 的长是( )A 、1B 、2C 、3D 、44、如图,直线AB ∥CD,直线EF 分别交AB 、CD 于点E 、F,若∠AEF =50°,则∠EFC 的大小是( )A 、40°B 、50°C 、120°D 、130°5、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。

为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( )A 、甲的成绩比乙的成绩稳定B 、乙的成绩比甲的成绩稳定C 、甲、乙两人的成绩一样稳定D 、无法确定甲、乙的成绩谁更稳定6、若点(3,1)在一次函数的图象上,则k 的值是( )A 、5B 、4C 、3D 、17、分式方程的解是( )A 、 B 、C 、D 、44,2(2a b ac a b --ab x 2-=2252x x -3x 23x 43x 2(0)y kx k =-≠431x x=+1x =1x =-3x =3x =-第三个图形第二个图形第一个图形11题图O GF EDCB A 8、如图,在矩形AB CD 中,对角线AC 、BD 相交于点O,∠ACB =30°,则∠AOB 的大小为( )A 、30°B 、60°C 、90°D 、120°9、夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年重庆市中考数学试卷(B卷)
一.选择题(共12小题)
1.5的倒数是()
A.5B.C.﹣5D.﹣
2.围成下列立体图形的各个面中,每个面都是平的是()
A.长方体B.圆柱体
C.球体D.圆锥体
3.计算a•a2结果正确的是()
A.a B.a2C.a3D.a4
4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()
A.65°B.55°C.45°D.35°
5.已知a+b=4,则代数式1++的值为()
A.3B.1C.0D.﹣1
6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()
A.1:2B.1:3C.1:4D.1:5
7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()
A.5B.4C.3D.2
8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()
A.18B.19C.20D.21
9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()
(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)
A.23米B.24米C.24.5米D.25米
10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0
11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()
A.B.3C.2D.4
12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()
A.B.8C.10D.
二.填空题(共6小题)
13.计算:()﹣1﹣=.
14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.
15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.
16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)
17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.
18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.
三.解答题
19.计算:
(1)(x+y)2+y(3x﹣y);
(2)(+a)÷.
20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,
F.
(1)若∠BCF=60°,求∠ABC的度数;
(2)求证:BE=DF.
21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中
开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:
八年级抽取的学生的竞赛成绩:
4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.
七、八年级抽取的学生的竞赛成绩统计表
年级七年级八年级
平均数7.47.4
中位数a b
众数7c
合格率85%90%
根据以上信息,解答下列问题:
(1)填空:a=,b=,c=;
(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;
(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.
22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,
我们发现一种特殊的自然数﹣﹣“好数”.
定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.
例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;
643不是“好数”,因为6+4=10,10不能被3整除.
(1)判断312,675是否是“好数”?并说明理由;
(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.
23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概
括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.
x…﹣4﹣3﹣2﹣101234…
y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…
(1)列表,写出表中a,b的值:a=,b=;
描点、连线,在所给的平面直角坐标系中画出该函数的图象.
(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):
①函数y=﹣的图象关于y轴对称;
②当x=0时,函数y=﹣有最小值,最小值为﹣6;
③在自变量的取值范围内函数y的值随自变量x的增大而减小.
(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.
24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高
产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.
(1)求A、B两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计
A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场
欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.
25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于
A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形
BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以
AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.
(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;
(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;
(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.。

相关文档
最新文档