辽宁省沈阳市第二十一中学高中数学3.1.1方程的根与函数的零点教案新人教必修1

合集下载

高中数学新人教版A版精品教案《3.1.1 方程的根与函数的零点》

高中数学新人教版A版精品教案《3.1.1 方程的根与函数的零点》

3.1.1 方程的根与函数的零点(教案)第一课时教学目标1、知识与技能(1)了解函数零点的概念;(2)理解函数的零点与方程的根的联系;(3)掌握函数零点存在的判断方法。

2、过程与方法(1)通过自主探究,合作交流,经历“特殊→一般”、 “类比→归纳→应用”的过程,领会函数与方程思想、数形结合思想、化归与转化思想;(2)感悟由具体到抽象的研究方法;(3)培养学生的归纳概括能力。

3、情感态度与价值观(1)体验探究的乐趣;(2)认识到万物的联系与转化,培养学生用联系的观点看问题;(3)养成严密思考的良好学习习惯。

教学重点与难点1、教学重点理解函数的零点与方程的根的联系,掌握函数零点存在性的判定依据。

2、教学难点准确理解概念,探究发现函数零点存在的条件。

教学过程(一)课前热身,新课导入求解下列方程的根:1022=+x 20322=--x x 3022=-x 4()01lg =-x思考:如何求解方程06-2ln =+x x 的解? 设计意图:让学生经历由熟悉到陌生的过程,利用复杂无法求解的方程,造成学生的认知冲突,引发学生的好奇心和求知欲。

此时开门见山地提出用函数的思想解决方程根的问题,点明本节课的课题。

(二)启发引导,形成概念探究:方程与函数的联系设计意图:以实例说明方程、函数、函数图象三者的关系,渗透数形结合的思想,为一般的方程与其对应函数的关系作准备。

思考:上述结论对于一般的方程与其对应的函数是否也成立?1022=+x 与22+=x y 2022=-x 与22-=x y 3()01lg =-x 与()1lg -=x y推广:方程()0=x f 有实数根⇔对应函数()x f y =的图象与x 轴方程()0=x f 不相等实数根的个数⇔对应函数()x f y =的图象与x 轴0x 是方程()0=x f 的实数根⇔对应函数()x f y =的图象与x 轴设计意图:结合课前热身已解决的方程的根的问题,通过观察相应函数的图象,将由一元二次方程与相应二次函数得出的结论推广到一般的方程与其对应函数,再一次体会方程与函数的联系,为引入“函数零点”的概念打下基础,体现了由特殊到一般的思想,培养学生的思维能力和归纳能力。

数学:3.1.1《方程的根与函数的零点》教案(新人教A版必修1)1

数学:3.1.1《方程的根与函数的零点》教案(新人教A版必修1)1

课题:§3.1.1方程的根与函数的零点(教案)【课 型】新授课 【教学目标】(一)知识与技能:1.了解函数零点的概念,领会方程的根与函数零点之间的关系,掌握函数零点存在性判定定理。

2.培养学生自主发现、探究实践的能力。

(二)过程与方法:通过研究具体二次函数,探究函数存在零点条件和存在零点的判定方法。

从具体到一般的认知过程中培养学生自主发现、探究实践的能力,并渗透相关的数学思想。

(三)情感态度与价值观:在函数与方程的联系中体验数学转化思想的意义和价值,树立从具体到抽象、从特殊到一般的辩证唯物主义观点,并初步形成实事求是的科学态度和锲而不舍的求学精神。

鼓励学生通过观察类比提高发现、分析、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

【教学重点】体会函数的零点与方程的根之间的关系,掌握函数零点存在定理, 能结合图象求解零点问题。

【教学难点】 1、引导学生探究发现函数零点的概念及零点定理。

2、函数零点个数的确定。

【教学过程】设置情景 提出问题【动手】求解下列一元二次方程①2230x x --= ②2210x x -+= ③2230x x -+= 【动手】画出下列函数的图象,①223y x x =-- ②221y x x =-+ ③223y x x =-+【设问】1.一元二次方程20(0)ax bx c a ++=≠形式和二次函数2(0)y ax bx c a =++≠的解析式有什么关系?2.一元二次方程20(0)ax bx c a ++=≠的根和二次函数2(0)y ax bx c a =++≠的图象有什么关系?3.方程()0f x = 与函数()y f x = 之间存在哪些关系?分析问题 寻找规律【观察】1。

当①223y x x =--、②221y x x =-+、③223y x x =-+中的y 值等于零时,分别得的什么?【结论】当二次函数①223y x x =--、②221y x x =-+、③223y x x =-+中的y 等于0 时,即可得到一元二次方程①2230x x --=、②2210x x -+=、 ③2230x x -+=。

高中数学《3.1.1方程的根与函数的零点(一)》教案 新人教A版必修1

高中数学《3.1.1方程的根与函数的零点(一)》教案 新人教A版必修1

模块必修一第三单元第3.1.1节方程的根与函数零点教学案 课时:第一课时 课型:新授 编者: 日期: 年 月 日 三维目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.自主性学习1、旧知识铺垫 复习1:一元二次方程2ax +bx +c =0 (a ≠0)的解法.判别式∆= .当∆ 0,方程有两根,为1,2x = ;当∆ 0,方程有一根,为0x = ;当∆ 0,方程无实根.复习2:方程2ax +bx +c =0 (a ≠0)的根与二次函数y =ax 2+bx +c (a ≠0)的图象之间有什么关2、新知识学习探究任务一:函数零点与方程的根的关系问题:① 方程2230x x --=的解为 ,函数223y x x =--的图象与x 轴有 个交点,坐标为 .② 方程2210x x -+=的解为 ,函数221y x x =-+的图象与x 轴有 个交点,坐标为 .③ 方程2230x x -+=的解为 ,函数223y x x =-+的图象与x 轴有 个交点,坐标为 .根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数20(0)y ax bx c a =++=≠的图象与x 轴交点的 .你能将结论进一步推广到()y f x =吗?总结:零点的定义反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?探究任务二:零点存在性定理问题:① 画出二次函数()223f x x x =--的图像,观察函数在区间[-2,1]上有无零点,计算f(-2)与f(1)的乘积,你能发现他们的乘积有什么特点?在区间[2,4]上是否也有这种特点呢?通过函数的图象和计算发现:()()21f f -⋅__0,()223f x x x =--在(-2,1)有零点_______,它是2230x x --=的根。

高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1

高中数学3.1.1方程的根与函数的零点教学设计1新人教A版必修1
问题设置:系数选择,相应解析式,函数的大致图象,函数的零点的个数。
师:提出探究,请一个小组到大屏前进行探究过程,巡视各小组完成情况,帮助学生解决相应问题,参与小组内的讨论,给予恰当及时的评价与鼓励,小组成果展示后教师对每个小组的成果进行点评总结
生:小组合作探究,明确分工,完成小组探究,完成进行展示,出现问题向教师求助
五、教学资源和工具设计
教师制作PPT,设计学案(纸质)
图形计算器或者图形计算器软件,计算机,交互式触摸白板
图形计算器为教师和学生提供了一个研究函数的平台,利用图形计算器可以给学生提供一个高效快捷研究函数的环境,有助于学生的理解和探究。
六、教学重点及难点
教学重点:方程的根与函数的零点的关系
教学难点:函数的零点的判断
生:独立按时完成,能力较弱的只要完成1、2两题即可
分层完成课堂反馈有助于不同的学生得到适于本身的收获
学生回归数学方法,教师检验学生对所学知识的掌握情况
PPT展示
(六)收获小结
要解决函数 的零点问题,我们可以通过什么方法?
师:提出问题
生:进行解决方法说明
对本节课所学知识和解决本节课相关问题的方法于函数 ,把使 的实数 叫做函数 的零点
师:提出问题,根据学生回答板书问题的答案
生:思考分析定义并回答问题
检验学生的自学成果,并且落实教学重点,完成部分教学目标。
PPT展示
函数零点的定义
(三)
合作探究
结合函数的零点的定义,利用图形计算器探究函数 的图象形状与函数的零点个数之间的关系。
15
10
5
0
会应用所学知识解决函数的零点的相关问题
20
15
10
5
过程与方法

高中数学 311方程的根与函数的零点教案1 新人教A版必修1 教案

高中数学 311方程的根与函数的零点教案1 新人教A版必修1 教案

课题:§3.1.1方程的根与函数的零点教学内容分析:本节课选自高中数学人教A版必修1第三章《函数与方程》第一节《方程的根和函数的零点》。

函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。

在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。

学生在学习了基本初等函数之后,对于函数的概念已经有了更进一步的认识,并掌握了研究函数性质的一些方法,初步了解数形结合、函数与方程、化归与转化的数学思想方法。

函数作为高中的重点知识,有着广泛的应用,与其他数学有着有机联系。

本节课选取探究具体的一元二次方程的根与其对应的二次函数的图像与x轴的焦点的横坐标之间的关系作为教学的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系,充分体现了函数图像与性质的应用。

因此把握课本要从三方面入手:新旧知识的练习,学生的认知规律,数学思想方法。

学生学习情况分析学生大多来自市区,学生接触面较广,个性较活跃,故采用一些形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。

学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。

再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。

这也为我们归纳函数的零点与方程的根联系提供了知识基础。

但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。

高中数学教材必修一《方程的根与函数的零点》教学设计

高中数学教材必修一《方程的根与函数的零点》教学设计

课题:§3.1.1方程的根与函数的零点【教学目标】知识目标:理解函数零点的定义以及方程的根与函数的零点之间的联系,了解“函数零点存在”的判断方法,对新知识加以应用.能力目标:渗透由特殊到一般的认识规律,提升学生的抽象和概括能力,领会数形结合、化归等数学思想.情感、态度与价值观:认识函数零点的价值所在,使学生认识到学习数学是有用的;培养学生认真、耐心、严谨的数学品质;让学生在自我解决问题的过程中,体验成功的喜悦.【教学重点】理解函数的零点与方程根的关系,初步形成用函数观点处理问题的意识.【教学难点】函数零点存在性定理的理解及初步应用【教学方法】发现、合作、讲解、演练相结合.【教学过程】(一)抛转引玉浙江杭州某天早晨六点的温度是-2℃,十二点的温度是12℃.在这段时间内,假设温度是均匀变化的,问:1)是否存在某时刻的温度为0℃?2)你能从数学的角度来解释这一现象吗?3)能计算出具体的时刻吗?(设计意图:当温度均匀变化时,温度随时间的变化图是一条直线,学生能够根据已知条件发现直线一定与x轴相交,求出相应函数的解析式,最终得出一次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.)(二)溯本逐源(设计意图:回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.)在《几何画板》下展示如下函数的图象: ()()()21226y x x x =-+-、28x y =-、()2y ln x =-,比较函数图象与x 轴的交点和相应方程的根的关系. 函数()y f x =的图象与x 轴交点,即当()0f x =,该方程有几个根,()y f x =的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.(设计意图:通过各种函数,将结论推广到一般函数.)1.函数零点概念对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点.说明:函数零点不是一个点,而是具体的自变量的取值.2.方程的根与函数零点的关系方程()0f x =有实数根函数()y f x =的图象与x 轴有交点函数()y f x =有零点以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为相应函数问题来求解,同样,函数问题有时也可转化为相应方程问题.这正是函数与方程思想的基础. (三)顺藤摸瓜浙江杭州某天早晨六点的温度是-2℃,十二点的温度是12℃ .在这段时间内,温度是不均匀变化的,问:是否仍存在某时刻的温度为0℃?(学生在事先准备好的图纸上画出温度随时间的变化图,教师选取几个具有代表性的图用实物投影仪加以展示,并让学生解释为什么这一时刻仍存在,使学生在自我解决问题的过程中,体验成功的喜悦.)(设计意图:通过类比得出零点存在性定理,此刻体现变式教学.)给出零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.(四)牛刀小试1. 10x x -=3试判断方程+3是否有根?2.求函数26f (x )x x =+-ln 的零点的个数.(设计意图:通过例题分析,领会方程函数的转化思想,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法.)(五)抽丝剥茧问题1. 如果函数图象不是连续不断的,结论还成立吗?问题2.若()()0f a f b >,函数()y f x =在区间在[]a,b 上一定没有零点吗?一定有零点吗?问题3.若()()0f a f b <,函数()y f x =在区间在[]a,b 上只有一个零点吗?可能有几个?问题4.在满足定理的条件下,能否增加条件,可使函数()y f x =在区间在[]a,b 上只有一个零点?(设计意图:函数零点存在的判定结论,是函数在某区间上存在零点的充分不必要条件,但零点的个数需结合函数的单调性等性质进行判断.结论的逆命题不成立,通过四个问题使学生准确理解零点存在性定理.)(六)再接再厉1.已知函数f (x )的图象是连续不断的,且有如下对应值表,则函数在哪几个2.函数()376f x x x =--在区间[-4,4]上是否存在零点?若存在零点,能确定零点的个数及大小吗?(设计意图:本题比较灵活,既可以用零点存在定理,又可以转化为方程、因式分解后求根。

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1-新人教A版高中必修1数学教案

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1-新人教A版高中必修1数学教案

3.1.1 方程的根与函数的零点[学习目标] 1.理解函数零点的定义,会求函数的零点.2.掌握函数零点的判定方法.3.了解函数的零点与方程的根的联系.[知识]考察以下一元二次方程与对应的二次函数:(1)方程x2-2x-3=0与函数y=x2-2x-3;(2)方程x2-2x+1=0与函数y=x2-2x+1;(3)方程x2-2x+3=0与函数y=x2-2x+3.你能列表表示出方程的根,函数的图象及图象与x轴交点的坐标吗?答案方程x2-2x-3=0x2-2x+1=0x2-2x+3=0函数y=x2-2x-3y=x2-2x+1y=x2-2x+3 函数的图象方程的实数根x1=-1,x2=3x1=x2=1无实数根函数的图象与(-1,0)、(3,0)(1,0)无交点x轴的交点[1.函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系;方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点存在的判定方法如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0.那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.温馨提示 判定函数零点的两个条件缺一不可,否那么不一定存在零点;反过来,假设函数y =f (x )在区间(a ,b )内有零点,那么f (a )·f (b )<0不一定成立.要点一 求函数的零点例1 判断以下函数是否存在零点,如果存在,请求出. (1)f (x )=x 2+7x +6; (2)f (x )=1-log 2(x +3); (3)f (x )=2x -1-3;(4)f (x )=x 2+4x -12x -2.解 (1)解方程f (x )=x 2+7x +6=0, 得x =-1或x =-6, 所以函数的零点是-1,-6.(2)解方程f (x )=1-log 2(x +3)=0,得x =-1, 所以函数的零点是-1. (3)解方程f (x )=2x -1-3=0,得x =log 26,所以函数的零点是log 26.(4)解方程f (x )=x 2+4x -12x -2=0,得x =-6,所以函数的零点为-6.规律方法 求函数零点的两种方法:(1)代数法:求方程f (x )=0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点.跟踪演练1 判断以下说法是否正确: (1)函数f (x )=x 2-2x 的零点为(0,0),(2,0); (2)函数f (x )=x -1(2≤x ≤5)的零点为x =1.解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错. 要点二 判断函数零点所在区间例2 在以下区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫14,12D.⎝ ⎛⎭⎪⎫12,34 答案 C解析 ∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f (12)=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,∴零点在⎝ ⎛⎭⎪⎫14,12上. 规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象. 2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,假设f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,那么f (x )在(a ,b )上必有零点,假设f (a )·f (b )>0,那么f (x )在(a ,b )上不一定没有零点.跟踪演练2 函数f (x )=e x+x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0,∴f (x )在(0,1)内有零点. 要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0,f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x|log 0.5x |-1=0,可得|log 0.5x |=⎝ ⎛⎭⎪⎫12x.设g (x )=|log 0.5x |,h (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点.1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),假设f (-1)·f (3)<0,那么( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x的零点所在的大致区间是( )A .(6,7)B .(7,8)C .(8,9)D .(9,10) 答案 D解析 因为f (9)=lg 9-1<0,f (10)=lg 10-910=1-910>0,所以f (9)·f (10)<0,所以y =lg x -9x在区间(9,10)上有零点,应选D.4.方程2x -x 2=0的解的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 在同一坐标系画出函数y =2x,及y =x 2的图象,可看出两图象有三个交点,故2x-x 2=0的解的个数为3.5.函数f (x )=x 2-2x +a 有两个不同零点,那么实数a 的X 围是________. 答案 (-∞,1)解析 由题意可知,方程x 2-2x +a =0有两个不同解, 故Δ=4-4a >0,即a <1.1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.一、基础达标1.以下图象表示的函数中没有零点的是( )答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是( )A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是( )x -1012 3e x0.371 2.727.3920.09x+21234 5A.(-1,0) B.C.(1,2) D.(2,3)答案 C解析由上表可知f(1)=2.72-3<0,f(2)=7.39-4>0,∴f(1)·f(2)<0,∴f(x)在区间(1,2)上存在零点.4.函数f(x)=ln x+2x-6的零点所在的区间为( )A.(1,2) B.(2,3)C.(3,4) D.(4,5)答案 B解析f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,f(3)=ln 3+6-6=ln 3>0,所以f(2)·f(3)<0,那么函数f(x)的零点所在的区间为(2,3).5.方程log3x+x=3的解所在的区间为( )A.(0,2) B.(1,2)C.(2,3) D.(3,4)答案 C解析 令f (x )=log 3x +x -3,那么f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.函数f (x )为奇函数,且该函数有三个零点,那么三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴假设f (x )有三个零点,那么其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如下图,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.假设a <b <c ,那么函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.假设函数f (x )=ax 2-x -1仅有一个零点,那么a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1,a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,那么k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0,f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如下图.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点.由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点, 故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),假设函数g (x )有4个零点,某某数m 的X 围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3,∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1,∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如下图,由于函数g (x )有4个零点,那么函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的X 围是⎝⎛⎭⎪⎫-3,-114. 13.二次函数f (x )=x 2-2ax +4 ,求以下条件下,实数a 的取值X 围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1, 结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧-2a 2-16≥0,f 1=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在定理,得f (1)=5-2a <0,解得a >52.(3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内, 结合二次函数的单调性与零点存在定理,得⎩⎪⎨⎪⎧f 0=4>0,f 1=5-2a <0,f 6=40-12a <0,f8=68-16a >0,解得103<a <174.。

3.1.1方程的根与函数的零点(教学设计)

3.1.1方程的根与函数的零点(教学设计)

3.1.1方程的根与函数的零点(教学设计)一、教材分析《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书 A 版必修1第三章《函数的应用》第一节的第一课时,主要内容是函数 零点的概念、函数零点与相应方程根的关系,函数零点存在性定理, 是一节概念课.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础.因此本节内容具有承前启后的作用,地位至关重要. 二、教学目标【知识与技能】理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件. 【过程与方法】零点存在性的判定.【情感、态度、价值观】在函数与方程的联系中体验数学中的转化思想的意义和价值. 教学重点难点:重点 零点的概念及存在性的判定. 难点 零点的确定. 三 教学环节设计 【教学过程】(一)创设情境,感知概念 实例引入解下列方程并作出相应的函数图像 2x-4=0;y=2x-4(二)探究1:观察几个具体的一元二次方程的根与二次函数,完成下表: 填空:方程 x 2-2x -3=0 x 2-2x +1=0 x 2-2x +3=0 根 x 1=-1,x 2=3 x 1=x 2=1 无实数根函数 y =x 2-2x -3 y =x 2-2x +1 y =x 2-2x +3图象图象与x 轴的交点两个交点: (-1,0),(3,0)一个交点:(1,0)没有交点问题1:从该表你可以得出什么结论?归纳:判别式Δ Δ>0Δ=0 Δ<042-2-4 3 -1 1 2 Oxy 4 2-2 -43 -1 1 2 Ox y 4 2-23 -1 1 2 Ox y方程ax 2+bx +c =0 (a >0)的根 两个不相等的实数根x 1、x 2有两个相等的实数根x 1 = x 2没有实数根函数y =ax 2+bx +c (a >0)的图象函数的图象与x 轴的交点 两个交点: (x 1,0),(x 2,0) 一个交点:(x 1,0) 无交点问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?学生讨论,得出结论:一元二次方程的根就是函数图象与x 轴交点的横坐标.问题3:其他的函数与方程之间也有类似的关系吗?师生互动:由一元二次方程抽象出一般方程,由二次函数抽象出一般函数,得出一般的结论:方程f (x )=0有几个根,y =f (x )的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.(三)辨析讨论,深化概念概念:对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. 即兴练习:函数f (x )=x (x 2-16)的零点为 ( D ) A .(0,0),(4,0) B .0,4 C .(–4,0),(0,0),(4,0) D .–4,0,4 说明:①函数零点不是一个点,而是具体的自变量的取值.②求函数零点就是求方程f (x )=0的根.问题4:函数的零点与方程的根有什么共同点和区别?(1)联系:①数值上相等:求函数的零点可以转化成求对应方程的根;②存在性一致:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(2)区别:零点对于函数而言,根对于方程而言.探究2:如何求函数的零点?练习1:求下列函数的零点 (1)y=3x- 3 (2)y=log2x小结:求函数零点的步骤:(1)令f(x)=0;(2)解方程f(x)=0;(3)写出零点. 练习2:函数f (x )=x 2-4的零点为( ) A .(2,0) B .2C .(–2,0),(2,0)D .–2,2练习3:求下列函数的零点O xyx 1 x 2Oyxx 1 Ox y(1)f(x)=-x2+3x+4 (2)f(x)=lg(x2+4x-4)小结:(1)求函数的零点可以转化成求对应方程的根;(2)零点对于函数而言,根对于方程而言. (四)实例探究,归纳定理 零点存在性定理的探索.问题5:结合图像,试用恰当的语言表述如何判断函数在某个区间上是否存在零点? 观察函数的图象:①在区间(a ,b )上___(有/无)零点;f (a )·f (b ) ___ 0(“<”或“>”). ②在区间(b ,c )上___(有/无)零点;f (b )·f (c ) ___ 0(“<”或“>”). ③在区间(c ,d )上___(有/无)零点;f (c )·f (d ) ___ 0(“<”或“>”).完成课本87P 的探究,归纳函数零点存在的条件.【零点存在性定理】如果函数y =f (x )在区间[a ,b ]上的图象是连续不断一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点.即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.即兴练习:下列函数在相应区间内是否存在零点?(1)f (x )=log 2x ,x ∈[12,2]; (2)f (x )=e x -1+4x -4,x ∈[0,1].(五)正反例证,熟悉定理 定理辨析与灵活运用例1 判断下列结论是否正确,若不正确,请使用函数图象举出反例:(1)已知函数y=f (x )在区间[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在区间(a ,b )内有且仅有一个零点. ( × )(2)已知函数y=f (x )在区间[a ,b ]上连续,且f (a )·f (b )≥0,则f (x )在区间(a ,b )内没有零点. ( × )(3)已知函数y=f (x )在区间[a ,b ]满足f (a )·f (b )<0,则f (x )在区间(a ,b )内存在零点.( × ) 例题讲解例2:求函数f (x )=ln x +2x -6的零点的个数,并确定零点所在的区间[n ,n +1](n ∈Z ). 解法1(借助计算工具):用计算器或计算机作出x 、f (x )的对应值表和图象.x1 2 3 4 5 6 7 8 9 f (x ) -4.0 -1.3 1.1 3.4 5.6 7.8 9.9 12.1 14.2c bd ax O y由表或图象可知,f (2)<0,f (3)>0,则f (2) f (3)<0,这说明函数f (x )在区间(2,3)内有零点.问题8:如何说明零点的唯一性?又由于函数f (x )在(0,+∞)内单调递增,所以它仅有一个零点.解法2(估算):估计f (x )在各整数处的函数值的正负,可得如下表格:x 1 2 3 4 f (x ) - - + +结合函数的单调性,f (x )在区间(2,3)内有唯一的零点. 解法3(函数交点法):将方程ln x +2x -6=0化为ln x =6-2x ,分别画出g(x )=ln x 与h(x )=6-2x 的草图,从而确定零点个数为1.继而比较g(2)、h(2)、g(3)、h(3)等的大小,确定交点所在的区间,即零点的区间.由图可知f (x )在区间(2,3)内有唯一的零点. 练习:(1)已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表:x 1 2 3 4 5 6 7 f (x ) 23 9 -7 11 -5 -12 -26那么函数在区间[1,6]上的零点至少有 ( ) A .5个 B .4个 C .3个 D .2个(六)课堂小结(学生谈谈本节课学习的收获)(七)布置作业:习题3.1A 组 26O xy 2 1 3 4g (x )h (x )。

3.1.1《方程的根与函数的零点》教案(新人教版必修1)

3.1.1《方程的根与函数的零点》教案(新人教版必修1)

3.1.1 方程的根与函数的零点一、教学目标:1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数2.让学生了解函数的零点与方程根的联系3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用4.培养学生动手操作的能力二、教学重点、难点重点 零点的概念及存在性的判定. 难点 零点的确定.三、学法与教学用具学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

教学用具:投影仪。

教学过程:(一)创设情景,揭示课题1、提出问题:一元二次方程 a x 2+bx+c=0 (a ≠0)的根与二次函数y=a x 2+bx+c(a ≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程0322=--x x 与函数322--=x x y②方程0122=+-x x 与函数122+-=x x y③方程0322=+-x x 与函数322+-=x x y1.师:引导学生解方程,画函数图象,分析方程的根与图象和x 轴交点坐标的关系. 要求学生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流. 师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知通过上述问题引出函数零点的概念:定义:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).指出函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.想一想,怎样求函数的零点呢?师:引导学生认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法;求方程0)(=x f 的实数根;②几何法.将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点。

3.1.1方程的根与函数的零点 教案

3.1.1方程的根与函数的零点 教案

3.1.1 方程的根与函数的零点教案1. 教学目标本课程旨在使学生了解方程的根与函数的零点的概念,并能够灵活运用相关知识解决实际问题。

具体目标如下:•了解方程的根与函数的零点的定义;•能够找到方程的根与函数的零点;•能够应用方程的根与函数的零点解决实际问题;•培养学生的逻辑思维和问题解决能力。

2. 教学内容2.1 方程的根与函数的零点的定义•方程的根:对于方程f(f) = 0,f是方程的根是指当f = f时,方程成立。

•函数的零点:对于函数f(f),f是函数的零点是指当f(f) = 0,即函数在f = f处取得零值。

2.2 方程的根的求解•方程的根的存在性:介绍方程根的存在性判断方法,例如奇偶效应等。

•方程的根的求解方法:介绍常见的求根方法,如因式分解、配方法、公式法等。

•方程根的重数:定义方程根的重数,了解重根的概念。

2.3 函数的零点的求解•函数的零点的求解方法:介绍几种常见的求零点的方法,如图像法、几何意义法、代数法等。

•函数零点的性质:介绍零点的性质,如唯一性、存在性和多个零点等。

3. 教学过程3.1 导入与提问通过展示一道实际问题,引出方程的根与函数的零点的概念,并提问学生是否了解这些概念。

3.2 概念讲解分别介绍方程的根与函数的零点的定义,并与实际问题进行对比,使学生更好地理解。

3.3 方程的根的求解通过实例演示和练习题的讲解,引导学生掌握方程根的存在性判断方法和求解方法,并加深对重根概念的理解。

3.4 函数的零点的求解介绍函数零点的求解方法,并通过实例演示和练习题的讲解,让学生熟练运用求零点的方法。

3.5 实际问题的应用通过一个或多个实际问题的案例分析,引导学生应用所学的方程的根与函数的零点的知识解决实际问题,培养学生的问题解决能力。

4. 教学评价4.1 课堂练习在课堂上进行几道练习题,既可以检验学生的掌握程度,又可以帮助学生巩固所学知识。

4.2 作业布置布置一些作业题,要求学生独立完成,并在下节课前交回,以检验学生对方程的根与函数的零点的理解情况。

高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A版必修1

高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A版必修1

高中数学 3.1.1《方程的根与函数的零点1》教案 新人教A 版必修1四、教学过程【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。

用屏幕显示判断下列方程是否有实根,有几个实根?(1)2230x x --=;(2)062ln =-+x x .学生活动:回答,思考解法。

教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。

对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。

教师活动:用屏幕显示函数223y x x =--的图象。

学生活动:观察图像,思考作答。

教师活动:我们来认真地对比一下。

用屏幕显示表格,让学生填写2230x x --=的实数根和函数图象与x 轴的交点。

学生活动:得到方程的实数根应该是函数图象与x 轴交点的横坐标的结论。

教师活动:我们就把使方程成立的实数x 称做函数的零点.【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。

板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x 叫做函数y=f(x)的零点)。

教师活动:我可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答。

教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。

教师活动:这是我们本节课的第二个知识点。

板书(方程的根与函数零点的等价关系)。

教师活动:检验一下看大家是否真正理解了这种关系。

如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答。

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1

高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1

“方程的根与函数的零点”【教学过程设计】 (一)设问激疑,引出新知方程解法史话:在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.对于方程的求解问题,古今中外的数学家已经作了大量的工作,取得辉煌的成果,比如花拉子米公元825年左右编辑著成了《代数学》,比较完整地讨论了一次、二次方程的一般原理;我国南宋数学家秦九绍在《数书九章》中提出了“正负开方术”,此法可以求出任意次代数方程的正根;1824年,挪威数学家阿贝尔成功地证明了五次以上一般方程没有根式解。

随着计算机技术的发展,方程的数值解法得到了广泛的运用,如二分法,牛顿法、弦截法等,今天我们将沿着前人走过的足迹一起探索对于一般方程的求解方法. 【设计意图:了解数学史,激发学生学习兴趣。

】 问题1 求下列方程的根.(1)023=+x ; (2)0652=+-x x ; (3)062ln =-+x x .问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标。

方 程 0322=--x x 0122=+-x x 0322=+-x x函 数 322--=x x y 122+-=x x y 322+-=x x y函 数 图 象 (简图)方程的实数根函数的图象与轴的交点提出疑问:方程的根与函数图象与x 轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与x 轴交点的横坐标。

问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x轴交点的关系,上述结论是否仍然成立?)0(02>=++a c bx ax方 程 的 根函数的图象(简图)图象与x 轴 的交点0>∆0=∆0<∆【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。

高中数学3.1.1方程的根与函数的零点教案2新人教A版必修1

高中数学3.1.1方程的根与函数的零点教案2新人教A版必修1

§4.1.1方程的根与函数的零点教学目标: (一)知识与技能:1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的根的联系.2.理解并会用函数在某个区间上存在零点的判定方法. (二)过程与方法:自主发现、探求理论,领会函数的零点与方程的根之间的联系. (三)情感、态度、价值观:在函数与方程的联系中体验数学转化思想的意义和价值. 教学重难点:重点:领会函数的零点与方程的根之间的联系,掌握零点存在的判定条件. 难点:探求发现函数零点的存在性. 教学过程设计(一)回顾旧知,发现成绩 成绩1 求以下方程的根.(1)023=+x ;(2)0652=+-x x ;成绩2观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数成绩3 若将上面特殊的一元二次方程推行到普通的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x 轴交点的关系,上述结论能否仍然成立?0>∆0=∆0<∆(二)总结归纳,构成概念 1、函数的零点:辨析练习:函数223y x x =--的零点是:( )A .(-1,0),(3,0);B .x =-1;C .x =3;D .-1和3. 2、等价关系:变式练习: 求以下函数的零点(1)65)(2+-=x x x f ; (2)12)(-=x x f (3):xy 1=; (四)分组讨论,探求结论(零点存在性)成绩4:函数y =f(x)在某个区间上能否必然有零点?怎样的条件下,函数y =f(x)必然有零点? (1)观察二次函数32)(2--=x x x f 的图象:○1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>). ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察上面函数)(x f y =的图象○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>).(3)观察屏幕上的函数图象:若函数在某区间内存在零点,则函数在该区间上的图象是 (间断/连续);含零点的某一较小区间中以零点摆布两边的实数为自变量,它们各自所对应的函数值的符号是 (相反/互异)由以上探求,你可以得出甚么样的结论?讨论:(1)从这一结论中可看出,函数具备了哪些条件,就可断言它有零点存在呢? (2)如果函数具备上述两个条件时,函数有多少零点呢?(3)如果把结论中的条件“图象连续不断”除去不要,又会怎样呢? (4)如果把结论中的条件“f(a)f(b)<0’’去掉呢?(5)若函数y =f (x ) 在区间(a , b )内有零点,必然能得出f (a )·f (b )<0的结论吗? (6)在甚么样的条件下,就可确定零点的个数是唯一的呢? 变式训练1.若函数()y f x =在区间[],a b 上的影象为连续不断的一条曲线,则以下说法正确的是 ( )A .若()()0f a f b >,则不存在实数(),c a b ∈,使得()0f c =B .若()()0f a f b <,则存在且只存在实数(),c a b ∈,使得()0f c =C .若()()0f a f b >,则有可能不存在实数(),c a b ∈,使得()0f c =D .若()()0f a f b <,则有可能不存在实数(),c a b ∈,使得()0f c = 2. 已知定义在R 上的函数()f x 的图象是连续不断的,且有如下对应值表:那么函数()f x 必然存在零点的区间是 ( ) A .(),1-∞ B .()1,2 C .()2,3 D .()3,+∞ 3. 若函数2()f x x ax b =++的零点是2和-4,则a=,b=.(五)观察感知,例题学习试一试:你能判断出方程 3ln +-=x x 实数根的个数吗? 六)反思小结,提升能力 1.函数零点的定义2.等价关系 函数Y=f(x)函数Y=f(x)的图象与X 轴交点的横坐标方程f(x)=0实数根3.函数的零点或相应方程的根的存在性和个数的判断课后考虑.求函数22)(x x f x -=的零点个数。

辽宁省沈阳市第二十一中学高中数学3.1.1方程的根与函数的零点教案新人教必修1

辽宁省沈阳市第二十一中学高中数学3.1.1方程的根与函数的零点教案新人教必修1
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
由以上两步探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.
(2) ;
(3)




研究 , ,
, 的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达.
考虑列表,建议画出图象帮助分析.





说说方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤.
师:上述结论推广到一般的一元二次方程和二次函数又怎样?




函数零点的概念:
对于函数 ,把使 成立的实数 叫做函数 的零点.
函数零点的ห้องสมุดไป่ตู้义:
函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标.
即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
函数零点的求法:
求函数 的零点:
课题:§3.1.1方程的根与函数的零点
教学目标:
知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.
过程与方法零点存在性的判定.
情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.
教学重点:
重点零点的概念及存在性的判定.
难点零点的确定.




高中数学方程的根与函数的零点全册精品教案新人教A版必修

高中数学方程的根与函数的零点全册精品教案新人教A版必修

3.1.1 方程的根与函数的零点(一)教学目标1.知识与技能(1)理解函数零点的意义,了解函数零点与方程根的关系.(2)由方程的根与函数的零点的探究,培养转化化归思想和数形结合思想.2.过程与方法由一元二次方程的根与一元二次函数的图象与x轴的交点情况分析,导入零点的概念,引入方程的根与函数零点的关系,从而培养学生的转化化归思想和探究问题的能力.3.情感、态度与价值观在体验零点概念形成过程中,体会事物间相互转化的辨证思想,享受数学问题研究的乐趣.(二)教学重点与难点重点:理解函数零点的概念,掌握函数零点与方程根的求法.难点:数形结合思想,转化化归思想的培养与应用.(三)教学方法在相对熟悉的问题情境中,通过学生自主探究,合作交流中完成的学习任务.尝试指导与自主学习相结合.(四)教学过程教学环节教学内容师生互动设计意图复习引入观察下列三组方程与函数方程函数x2–2x–3 =y=x2–2x–3x2–2x+1 = 0 y=x2–2x+1x2–2x+3 = 0 y=x2–2x+3利用函数图象探究方程的根与函数图象与x轴的交点之间的关系师生合作师:方程x2– 2x–3 = 0的根为–1,3函数y = x2– 2x– 3与x轴交于点(–1,0) (3,0)生:x2– 2x + 1 = 0有相等根为1.函数y= x2– 2x + 1与x轴有唯一交点 (1,0).x2– 2x + 3 = 0没有实根函数y = x2– 2x + 3与x轴无交点以旧引新,导入课题概念形成1.零点的概念对于函数y=f (x),称使y=f(x)= 0的实数x为函数y=f (x)的零点2.函数的零点与方程根的关系方程f (x) = 0有实数根⇔函数y = f (x)的图象与x轴有交点⇔函数y = f (x)的零点3.二次函数零点的判定对于二次函数y = ax2 + bx + c与二次方程ax2 + bx + c,其判别式△= b2– 4ac师:我们通俗地称函数与x轴交点的横坐标为函数的零点,请同学归纳零点的定义师:考察函数①y = lg x②y = lg2(x + 1) ③y = 2x④y = 2x– 2的零点生:①y = lg x的零点是x = 1②y = lg2(x + 1)的零点是x=0③y = 2x没有零点④y = 2x– 2的零点是x = 1归纳总结感知概念分析特征形成概念判别式方程ax2 +bx + c = 0的根函数y = ax2+ bx + c的零点△>0 两不相等实根两个零点△=0 两相等实根一个零点△<没有实根0个零点概念深化引导学生回答下列问题①如何求函数的零点?②零点与图象的关系怎样?师生合作,学生口答,老师点评,阐述生①零点即函数为零对应的自变量的值,零点即对应方程的根②零点即函数图象与x轴交点的横坐标③求零点可转化为求方程的根以问题讨论代替老师的讲援应用举例练习1.求函数y= –x2–2x+3的零点,并指出y>0,y = 0的x的取值范围练习2.求函数y =x3– 2x2–x+ 2的零点,并画出它的图象练习 3.利用函数图象判断下列方程有没有根,有几个根:(1)–x2+3x+5 = 0;(2)2x (x–2)= –3;(3)x2 = 4x– 4;(4)5x2+2x=3x2+5.学生自主尝试练习完成练习1、2、3生:练习1解析:零点–3,1x∈(–3,1)时y>0(,3)(1,)x∈-∞+∞U时y<0练习2解析:因为x3–2x2–x+2 = x2(x –2) –(x– 2) = (x–2) (x2–1) = (x– 2) (x–1) (x + 1),所以已知函数的零点为–1,1,2.3个零点把x轴分成4个区间:(,1]-∞-,[–1,1],[1,2],[2,)+∞在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值表:x…–1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 …y…–4.38 0 1.88 2 1.13 0 –0.63 0 2.63 …在直角坐标系内描点连线,这个函数的图象如图所示练习3解析:(1)令f (x) = –x2 + 3x + 5,作出函数f (x)的图象,它与x轴有两个交点,所以方程–x2 + 3x + 5 = 0有两个不相等的实数根.(2)2x (x– 2) = –3可化为2x2–4x+3=0令f (x) = 2x2–4x+3作出函数f (x)的图象,它与x轴没有交点,所以方程2x(x–2) = –3让学生动手练习或借助多媒体演示,加深对概念的说明,培养思维能力无实数根(3)x2 = 4x– 4可化为x2– 4x + 4 = 0,令f (x) = x2– 4x + 4,作出函数f (x)的图象,它与x轴只有一个交点(相切),所以方程x2 = 4x– 4有两个相等的实数根(4)5x2+2x=3x2+5可化为2x2 + 2x– 5 = 0,令f (x) = 2x2 + 2x–5,作出函数f (x)的图象,它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根师:点评板述练习的解答过程归纳总结(1)知识方面零点的概念、求法、判定(2)数学思想方面函数与方程的相互转化,即转化思想借助图象探寻规律,即数形结合思想学生归纳,老师补充、点评、完善回顾、反思、归纳知识,提高自我整合知识的能力课后作业3.1 第一课时习案学生独立完成固化知识,提升能力备选例题例:已知a∈R讨论关于x的方程|x2– 6x + 8| = a的实数解的个数.【解析】令f (x) = |x2– 6x + 8|,g (x) = a,在同一坐标系中画出f (x)与g (x)的图象,如图所示,f (x) = | (x– 3)2– 1|,下面对a进行分类讨论,由图象得,当a<0时,原方程无实数解;当a = 0时,原方程实数解的个数为3;当0<a<1时,原方程实数解的个数为4;当a>1或a = 0时,原方程实数解的个数为2.。

高中数学 311 方程的根与函数的零点教案 新人教A版必修1 教案

高中数学 311  方程的根与函数的零点教案 新人教A版必修1 教案

3.1.1 方程的根与函数的零点教案【教学目标】1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定条件.【教学重难点】教学重点:方程的根与函数的零点的关系。

教学难点:求函数零点的个数问题。

【教学过程】(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。

探究任务一:函数零点与方程的根的关系问题:① 方程2230x x --=的解为,函数223y x x =--的图象与x 轴有个交点,坐标为. ② 方程2210x x -+=的解为,函数221y x x =-+的图象与x 轴有个交点,坐标为. ③ 方程2230x x -+=的解为,函数223y x x =-+的图象与x 轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数20(0)y ax bx c a =++=≠的图象与x 轴交点的.你能将结论进一步推广到()y f x =吗?已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。

新知:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?试试:(1)函数244y x x =-+的零点为; (2)函数243y x x =-+的零点为.小结:方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.探究任务二:零点存在性定理问题:① 作出243y x x =-+的图象,求(2),(1),(0)f f f 的值,观察(2)f 和(0)f 的符号 ②观察下面函数()y f x =的图象,在区间[,]a b 上零点;()()f a f b 0;在区间[,]b c 上零点;()()f b f c 0;在区间[,]c d 上零点;()()f c f d 0.新知:如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()f a f b <0,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.(三)典型例题例1求函数()ln 26f x x x =+-的零点的个数.解析:引导学生借助计算机画函数图像,缩小解的X 围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.




1.利用函数图象判断下列方程有没有根,有几个根:
(1) ;
(2) ;
(3) ;
(4) .
2.利用函数的图象,指出下列函数零点所在的大致区间:
(1) ;
(2) ;
(3) ;
(4) .
师:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点 的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用.
(2) ;
(3)




研究 , ,
, 的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达.
考虑列表,建议画出图象帮助分析.





说说方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤.
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
由以上两步探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.
生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.
零点存在性的探索:
(Ⅰ)观察二次函数 的图象:
在区间 上有零点______;
_______, _______,
· _____0(<或>).
在区间 上有零点______;
· ____0(<或>).(Ⅱ)观察下面函 Nhomakorabea 的图象
师:引导学生运用函数零点的意义探索二次函数零点的情况.
环节
教学内容设置
师生双边互动




实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
课题:§3.1.1方程的根与函数的零点
教学目标:
知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.
过程与方法零点存在性的判定.
情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.
教学重点:
重点零点的概念及存在性的判定.
难点零点的确定.
(1) ;
(2) ;
(3) ;
(4) .
3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:
(1) ;
(2) .
4.已知 :
(1) 为何值时,函数的图象与 轴有两个零点;
(2)如果函数至少有一个零点在原点右侧,求 的值.
5.求下列函数的定义域:
(1) ;





1.已知 ,请探究方程 的根.如果方程有根,指出每个根所在的区间(区间长度不超过1).
2.设函数 .
(1)利用计算机探求 和 时函数 的零点个数;
(2)当 时,函数 的零点是怎样分布的?
环节
教学内容设置
师生互动设计




1.教材P108习题3.1(A组)第1、2题;
2.求下列函数的零点:
师:上述结论推广到一般的一元二次方程和二次函数又怎样?




函数零点的概念:
对于函数 ,把使 成立的实数 叫做函数 的零点.
函数零点的意义:
函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标.
即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
函数零点的求法:
求函数 的零点:
教学程序与环节设计:
教学过程与操作设计:
环节
教学内容设置
师生双边互动




先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:
方程 与函数
方程 与函数
方程 与函数
师:引导学生解方程,画函数图象,分析方程的根与图象和 轴交点坐标的关系,引出零点的概念.
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
(代数法)求方程 的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.
生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:
代数法;
几何法.
二次函数的零点:
二次函数

1)△>0,方程 有两不等




例1.求函数 的零点个数.
问题:
1)你可以想到什么方法来判断函数零点个数?
2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?
例2.求函数 ,并画出它的大致图象.
师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.
生:分析函数,按提示探索,完成解答,并认真思考.
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.
生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.
师:引导学生理解函数零点存在定理,分析其中各条件的作用.
环节
教学内容设置
师生互动设计
相关文档
最新文档