复数、平面向量与算法(教师版)
高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
平面向量的应用(教师版)
平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。
专题11 平面向量(教师版)
专题11 平面向量1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷理数】已知AB u u u r=(2,3),AC u u u r =(3,t ),BC uuu r =1,则AB BC ⋅u u u r u u u r =A .−3B .−2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-u u u r u u u r u u u r ,221(3)1BC t =+-=u u u r ,得3t =,则(1,0)BC =u u u r ,(2,3)(1,0)21302AB BC ==⨯+⨯=u u u r u u u rg g .故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB u u u r 与AC u u ur 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB u u u r 与AC u u ur 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,即 22||||AB AC AC AB +>-u u u r u u u r u u u r u u u r ,因为AC AB BC -=u u u r u u u r u u u r ,所以|AB u u u r +AC u u ur |>|BC uuu r |;当|AB u u u r +AC u u u r |>|BC uuu r |成立时,|AB u u u r +AC u u u r |2>|AB u u u r -AC u u u r |2AB ⇒u u u r •AC u u u r>0,又因为点A ,B ,C 不共线,所以AB u u u r 与AC u u u r 的夹角为锐角.故“AB u u u r 与AC u u u r 的夹角为锐角”是“|AB u u u r +AC u u ur |>|BC uuu r |”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.4.【2018年高考全国I 卷理数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++u u u r u u u r u u u r u u u r u uu r u u u r u u u r u u u v 1113124444BA BA AC BA AC =++=+u uu r u u u r u u u r u u u r u u u r ,所以3144EB AB AC =-u u u r u u u r u u u r . 故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 5.【2018年高考全国II 卷理数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a ,所以选B.【名师点睛】已知非零向量11(,)x y =a ,22(,)x y =b :几何表示坐标表示模|a |=⋅a a 2211x y =+a夹角cos θ⋅=⋅a ba b121222221122cos x x y y x y x y θ+++=⋅6.(2018年高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 3 1 B 3C .2 D .23【答案】A【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x ,由b 2−4e ·b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1,因此|a −b |的最小值为圆心(2,0)到直线y =±√3x 的距离23=321,为√3−1.选A. 【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算. 7.【2018年高考天津卷理数】如图,在平面四边形ABCD 中,,,120,AB BC AD CD BAD ⊥⊥∠=o1,AB AD ==若点E 为边CD 上的动点,则AE BE ⋅u u u r u u u r的最小值为A .2116 B .32C .2516D .3【答案】A【解析】连接AD ,取AD 中点为O ,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD △为等边三角形,3BD =.设()01DE tDC t =≤≤u u ur u u u r AE BE ⋅u u u r u u u r ()()()2232AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u v u u u v r u u u r u u u r u u u v=233322t t -+ ()01t ≤≤所以当14t =时,上式取最大值2116,故选A.【名师点睛】本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示,同时利用向量共线转化为函数求最值.8.【2018年高考北京卷理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】222222699+63333-=+-=⇔⇔-++⋅=⋅+a a b a b a b a b a b b a a b b ,因为a ,b 均为单位向量,所以2222699+6=0-⋅+=⋅+⇔⋅⇔a a b b a a b b a b a ⊥b ,即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 9.【2017年高考全国III 卷理数】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为A .3B .2C 5D .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r,若满足AP AB AD λμ=+u u u r u u u r u u u r ,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12x y λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A .【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.10.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是A .2-B .32-C .43-D .1-【答案】B【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则3)A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以(3)PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22(3)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r2333)22-≥-,当3P 时,所求的最小值为32-,故选B . 【名师点睛】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.11.【2017年高考北京卷理数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.【名师点睛】【名师点睛】判断充分必要条件的的方法:(1)根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件;若p q ⇔,那么p ,q 互为充要条件;若,p q q p ≠>≠>,那么就是既不充分也不必要条件.(2)当命题是以集合形式给出时,那就看包含关系,已知:,p x A ∈:q x B ∈,若A B ≠⊂,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件;若A B =,那么p ,q 互为充要条件;若没有包含关系,那么就是既不充分也不必要条件.(3)命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断.12.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若25=-c a b ,则cos ,=a c ___________. 【答案】23【解析】因为25=c a b ,0⋅=a b , 所以225⋅=⋅a c a a b 2=,222||4||55||9=-⋅+=c a a b b ,所以||3=c ,所以cos ,=a c22133⋅==⨯⋅a c a c . 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.13.【2019年高考天津卷理数】在四边形ABCD 中,,3,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=u u u r u u u r___________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,23,5,AB AD ==则3,0)B ,535)2D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-, 直线AE 的斜率为33y x =. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =1y =-, 所以3,1)E -.所以35)3,1)12BD AE =-=-u u u r u u u rg g .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.14.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则ABAC的值是___________.3【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r g g g ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g ,得2213,22AB AC =u u u r u u u r 即3,AB =u u u r u u r 故3ABAC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.15.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是___________;最大值是___________.【答案】0;25【解析】以, AB AD 分别为x 轴、y 轴建立平面直角坐标系,如图.则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-u u u r u u u r u u u r u u u r u u u r u u u r,令()()2212345613562456y AB BC CD DA AC BD λλλλλλλλλλλλλλ=+++++=-+-+-++≥u u u r u u u r u u u r u u u r u u u r u u u r 00.又因为(1,2,3,4,5,6)i i λ=可取遍1±,所以当1345621,1λλλλλλ======-时,有最小值min 0y =. 因为()135λλλ-+和()245λλλ-+的取值不相关,61λ=或61λ=-, 所以当()135λλλ-+和()245λλλ-+分别取得最大值时,y 有最大值, 所以当1256341,1λλλλλλ======-时,有最大值22max242025y =+==故答案为0;25【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.16.【2018年高考全国III 卷理数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=___________.【答案】12【解析】由题可得()24,2+=a b ,()2Q ∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.17.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【答案】-3【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,; ∴2AE BF ab ⋅=-+u u u r u u u r;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.18.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a =【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.19.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________.【答案】23【解析】方法一:222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+=oa b a a b b , 所以|2|123+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为3【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC u u u r 的模分别为1,12,OA u u u r与OCu u u r 的夹角为α,且tan α=7,OB uuu r 与OC u u u r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得2sin 10α=,2cos 10α=,根据向量的分解,易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2222102720n m +=⎪⎪⎨⎪=⎪,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考天津卷理】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,AE AC λ=-u u u r u u u r()AB λ∈R u u u r ,且4AD AE ⋅=-u u u r u u u r,则λ的值为___________.【答案】311【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+u u u r u u u r u u u r u u u r u u u r,则12()33AD AE AB AC ⋅=+u u u r u u u r u u u r u u u r 2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=u u u r u u u r . 【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC u u u r u u u r已知模和夹角,作为基底易于计算数量积.22.【2017年高考山东卷理数】已知12,e e与的夹角为60︒,则123-e e 12λ+e e实数的值是___________. 【答案】33【解析】∵221212112122(3)()333λλλλ-⋅+=⋅-⋅-e e e e e e e e e e ,222121211223|(3)3232-=-=-⋅+=e e e e e e e e ,2222212121122||()21λλλλλ+=+=+⋅+=+e e e e e e e e22321cos601λλλ=+︒=+3λ=【名师点睛】(1)平面向量a 与b 的数量积为||||cos θ⋅=a b a b ,其中是a 与b 的夹角,要注意夹角的定义和它的取值范围:. (2)由向量的数量积的性质有||=⋅a a a cos ||||θ⋅=a ba b ,0⋅=⇔⊥a b a b ,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(3)本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立关于的方程求解.23.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________. 【答案】4,25【解析】设向量,a b 的夹角为θ,则2212212cos 54cos θθ-=+-⨯⨯⨯=-a b2212212cos 54cos θθ+=++⨯⨯⨯=+a b则54cos 54cos θθ++-=+-a b a b 令54cos 54cos y θθ=+-[]221022516cos 16,20y θ=+-,据此可得:()()maxmin 2025,164++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是25【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式,可得54cos θ++-=+a b a bλ∴θ0180θ︒≤≤︒λ54cosθ-能力有一定的要求.。
高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案
第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。
第06讲-平面向量与复数(解析版)
第06讲-平面向量与复数(解析版)第06讲-平面向量与复数(解析版)平面向量与复数是数学中的两个重要概念,它们在解析几何和复数运算中起着重要的作用。
平面向量用来描述平面上的位移和方向,而复数则是由实部和虚部构成的数,可以表示平面上的点与向量。
平面向量的定义与性质平面向量可以理解为带有方向的位移量,它由两个点确定,可以用向量箭头表示。
一个平面向量可以表示为AB(向量上面带有箭头),其中A和B为向量的起点和终点,也可以使用向量的分量形式表示为向量的横坐标和纵坐标。
平面向量有一些重要的性质,首先,向量的大小用向量的模表示,表示为|AB|,即向量的长度。
其次,向量可以进行加法和乘法运算,向量的加法是指向量与向量相加的运算,向量的乘法是指向量与标量相乘的运算。
向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
向量的乘法也满足一些性质,标量与向量相乘,可以改变向量的大小和方向,但是不改变其方向。
平面向量可以表示为有向线段,即从起点指向终点的线段。
向量的方向可以用角度来表示,称为向量的方向角。
向量的方向角可以通过三角函数来计算,其中正弦和余弦分别表示向量的纵坐标和横坐标与向量模的比值。
复数的定义与性质复数是由实部和虚部构成的数,可以表示为a + bi的形式,其中a 为实部,b为虚部,i为虚数单位,满足i^2 = -1。
复数在解析几何和电路等领域有广泛应用。
复数有一些重要的性质,首先,复数可以进行加法和乘法运算。
复数的加法满足交换律和结合律,即a + bi + c + di = (a + c) + (b + d)i。
复数的乘法满足交换律、结合律和分配律,即(a + bi)(c + di) = ac + adi + bci + bdi^2。
复数可以表示为平面上的点,其中实部对应点的横坐标,虚部对应点的纵坐标。
复数的大小用模表示,表示为|a + bi|,即复数的距离原点的距离。
高中数学二轮讲义:专题2 第1讲 平面向量(教师版)
专题二 第1讲 平面向量【要点提炼】考点一 平面向量的线性运算1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.【热点突破】【典例】1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14【答案】 A【解析】 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn =________.【答案】 -2【解析】 ∵a ∥b ,∴m ×(-1)=2×n ,∴mn=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________. 【答案】 (1,+∞)【解析】 由题意可得,OD →=kOC →=k λOA →+k μOB →(0<k<1),又A ,D ,B 三点共线,所以k λ+k μ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.【拓展训练】1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G.若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.【答案】 12【解析】 由题意可设CG →=xCE →(0<x<1), 则CG →=x(CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线, 所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.【答案】 [1,3]【解析】 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B(1,0),A ⎝ ⎛⎭⎪⎫12,32,C(cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3. 则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y(1,0),即⎩⎪⎨⎪⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g(θ)=3cos θ-33sin θ, 易知g(θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g(θ)取得最大值为3,当θ=π3时,g(θ)取得最小值为1,故x +3y 的取值范围为[1,3].【要点提炼】考点二 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.【热点突破】【典例】2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.1935【答案】 D【解析】 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 【答案】 C【解析】 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.【答案】 ⎣⎢⎡⎦⎥⎤255,22 【解析】 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(1,2),D(0,2), 设AM →=λAC →(0≤λ≤1),则M(λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.【拓展训练】2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 【答案】 B【解析】 方法一 设a 与b 的夹角为θ, 因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B.方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3, 即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)【答案】 A【解析】 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A(0,0),B(2,0),C(3,3),F(-1,3). 设P(x ,y),则AP →=(x ,y),AB →=(2,0),且-1<x<3. 所以AP →·AB →=(x ,y)·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2B .1- 2C.2-1 D .1【答案】 A【解析】 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题训练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( ) A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →【答案】 A【解析】 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 【答案】 B【解析】 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69 kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2 B .-1 C .-12 D.12【答案】 A【解析】 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P(3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 【答案】 D【解析】 由P(3,1),得P ⎝ ⎛⎭⎪⎫2cos π6,2sin π6, ∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2,又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q(-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 【答案】 C【解析】 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23 B.34 C.56 D .1 【答案】 A【解析】 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC→+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形【答案】 C【解析】 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .2 3B .3 3C .4 3D .5 3 【答案】 D【解析】 设△ABC 的外接圆的圆心为O ,则圆的半径为332×12=3, OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →. 又||4PO →+OC→2=51+8PO→·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A. 2B. 3 C .2 D .2 2 【答案】 C【解析】 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r=1.易得B(-3,0),C(3,0),A(0,3),D(0,0), 设M(cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y,3x),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y)2-2xy]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y)2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 【答案】 BC【解析】 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a-b 的夹角为π4,故C 正确.11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( ) A .若k<-2,则a 与b 的夹角为钝角 B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝⎛⎭⎪⎫22,-22D .若|a |=2|b |,则k =22或-2 2 【答案】 CD【解析】 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k<2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b|b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( ) A.AB →·CE →=-1 B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76【答案】 BCD【解析】 因为AE →=EB →,△ABC 是等边三角形, 所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E(0,0),A(1,0),B(-1,0),C(0,3),D ⎝ ⎛⎭⎪⎫13,233,设O(0,y),y ∈(0,3),则BO →=(1,y),DO →=⎝ ⎛⎭⎪⎫-13,y -233,又BO →∥DO →,所以y -233=-13y ,解得y =32,即O 是CE 的中点,OE →+OC →=0,所以选项B 正确; |OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.【答案】22【解析】 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.【答案】 5【解析】 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°, ∴A ⎝ ⎛⎭⎪⎫12,32.设C(a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32=-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D , ∴BO →=23BD →=23×12()BA →+BC→ =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36.∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5.15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.【答案】 19【解析】 ∵△ABC 是锐角三角形, ∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2 =λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ, ∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________.【答案】2829【解析】 设e 1=(1,0),e 2=(x ,y), 则a =(x +1,y),b =(x +3,y). 由2e 1-e 2=(2-x ,-y), 故|2e 1-e 2|=2-x2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤ 1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b |a |·|b |2 =⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y2x +32+y 22 =⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5 =4x +13x +5=433x +5-833x +5=43-833x +5,当x =34时,cos 2θ有最小值,为4⎝ ⎛⎭⎪⎫34+13×34+5=2829.。
高中数学基础知识回顾:向量—教师版
一、向量的概念:★(1)向量的概念:既有大小又有方向的量.向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以任意平移) ★(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; ★(3)单位向量:长度为一个单位长度的向量叫做单位向量; ★(4)相等向量:长度相等且方向相同的两个向量叫相等向量;★(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a //b ,规定零向量和任何向量平行;★(6)位置向量:起点为原点的向量.二、向量的几何运算:1、向量的基本运算: ★(1)向量的加法运算:三角形法则和平行四边形法则; ★(2)向量的减法运算:三角形法则;(减数指向被减数)★(3)实数与向量的乘积:实数λ与非零向量a 的积是一个向量,记作a ⋅λ. ①0λ>,a λ与a 方向相同,长度为a λ; ②0λ<,a λ与a 方向相反,长度为a λ;③0λ=,0a λ=.2、向量的数量积:★(1)向量的夹角:对于两个非零向量a 和b ,如果以O 为原点,作,OA a OB b ==,那么射线OA 与OB 的夹角θ叫做a 和b 的夹角,θ的取值范围是[]0,π;高考数学基础知识回顾:向量基础知识★(2)向量的投影:b 在a 上的投影为||cos b θ,θ为向量a 和b 的夹角; ★(3)向量的数量积公式:a b =cos a b θ;(22a a =)★★(4)a b ⋅的几何意义:a b ⋅等于其中一个向量a 的模a 与另一个向量b 在向量a 的方向上的投影cos b θ的乘积.★3、向量的夹角公式:cos a b a bθ⋅=.4、向量的平行与垂直: ★(1)向量的平行://a b a b λ⇔=;★(2)向量的垂直:0a b a b ⊥⇔=.★★5、平面向量分解定理:如果1e 和2e 是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+. 6、三点共线: ★(1)平面上有A B C 、、三点,若()AB BC R λλ=∈,则A B C 、、三点共线;★★(2)设 OA OB 、不平行,点P 在AB 上⇔存在实数λμ,使得OP OA OB λμ=+1()R λμλμ+=∈且,. 三、向量的坐标表示与运算:1、向量的坐标表示: ★(1)i :x 轴正方向单位向量,j :y 轴正方向单位向量;★(2)向量的坐标表示:平面直角坐标系中,以i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标;★(3)()()11222121,,,(,)A x y B x y AB x x y y ⇒=--.2、向量的模:★(1)()221111,a x y a x y =⇒=+;POBA★(2)已知()11,a x y =,则a 的单位向量0a a a=.3、向量的坐标运算: ★(1)()()()11221212,,,,a x y b x y a b x x y y ==⇒±=±±; ★(2)()()1111,,,a x y R a x y λλλλ=∈⇒=;★(3)()()11221212,,,a x y b x y a b x x y y ==⇒=+.4、向量的平行与垂直: ★(1)向量的平行:()()11221221,,,,//a x y b x y a b x y x y ==⇔=;★(2)向量的垂直:()()11221212,,,,0a x y b x y a b x x y y ==⊥⇔+=.5、定比分点:★★(1)定比分点公式:已知11(,)A x y 、22(,)B x y 是直线上任一点,且(,1)AP PB R λλλ=∈≠-,令),(y x P ,则:⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x ;★(2)中点公式:若点),(y x P 为11(,)A x y 、22(,)B x y 两点中点,则1212212x x x y y y λ+⎧=⎪⎪=⇒⎨+⎪=⎪⎩;★★(3)重心公式:若点(),G x y 为ABC ∆重心,且11(,)A x y 、22(,)B x y 、33(,)C x y ,则12312333x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩.一、向量的概念与运算(加法、减法、数乘)【例1】在下列命题中:(1)若a b =,则a b =;(2)两个向量相等的充要条件是它们的起点相同,终点相同;(3)若AB DC =,则ABCD 是平行四边形;(4)若ABCD 是平行四边形,则AB DC =;(5)若,a b b c ==,则a c =;(6)若//,//a b b c ,则//a c .其中正确的是_______. 【难度】★ 【答案】(4)(5)【例2】已知,,则=_____. 【难度】★ 【答案】【例3】已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A .⎝⎛⎭⎫35,-45B .⎝⎛⎭⎫45,-35C .⎝⎛⎭⎫-35,45D .⎝⎛⎭⎫-45,35 【难度】★【答案】A【例4】已知),1(x a =,)2,4(=b ,若b a ⊥,则实数=x _______. 【难度】★ 【答案】-2【例5】如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与BD 相交于O ,设AB a =,DC b =,用,a b 表示BO ,则BO = . 【难度】★★ 【答案】b a 3234+-()5,4-=a ()4,2-=b b a -226题型与方法【例6】在直角坐标系内12(4,3),(2,6)P P --,点P 在直线12P P 上,且122PP PP =,求出P 的坐标.【难度】★★ 【答案】(8,15)P -【巩固训练】1.判断下列命题是否正确,并说明理由. ①若向量a 与b 同向,且|a |>|b |,则a>b ;②若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反; ③对于任意|a |=|b |,且a 与b 的方向相同,则a =b ;④向量a 与向量b 平行,则向量a 与b 方向相同或相反.【难度】★【答案】①不正确;②不正确;③正确;④不正确.2.设x ∈R ,向量)2,1(),1,(-==b x a ,且b a ⊥ ,则=+||b a ________. 【难度】★ 103.已知向量()(),4,,1,2k b k k a =+= 若b a //,则实数k 的值是 .【难度】★★ 【答案】310==k k 或4.已知(3,1),(4,2)A B ---,P 是直线AB 上一点,若23AP AB =,求点P 的坐标. 【难度】★★ 【答案】155(,)22P --5.有以下命题成立:设点,P Q 是线段AB 的三等分点,则有OP OQ OA OB +=+.将此命题推广,设点12345,,,,A A A A A 是线段AB 的六等分点,则()12345OA OA OA OA OA OA OB ++++=+.【难度】★★★ 【答案】526.已知点P Q 、是ABC ∆所在平面上的两个定点,且满足0,PA PC +=2QA QB QC BC ++=,若||=||PQ BC λ,则正实数λ= . 【难度】★★★ 【答案】21二、向量的数量积向量数量积运算的基本方法:1、向量的分解;2、坐标法;3、向量数量积的几何意义. 【例7】已知向量()()3,4,0,1a b =-=-,则向量在向量的方向上的投影是 . 【难度】★★ 【答案】【例8】平面向量a 与b 的夹角为60︒,1a =,(3,0)b =,则2a b += . 【难度】★ 【答案】19 【方法】22a a =【例9】在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM EC ⋅ 的最大值为___________. 【难度】★★ 【答案】23 【方法】向量的分解;坐标法a b 4【例10】已知ABC ∆的外接圆的圆心为O ,6,7,8,AC BC AB ===则=⋅BC AO . 【难度】★★★ 【答案】14-【方法】向量数量积的几何意义【巩固训练】1.在平行四边形ABCD 中,若2,1,60AB AD BAD ==∠=,则AB BD ⋅=___________. 【难度】★★ 【答案】3-2.已知向量与向量,,,、的夹角为,当时,的最大值为 .【难度】★★ 【答案】3.在Rt ABC ∆中,3==AC AB ,,M N 是斜边BC 上的两个三等分点,则AM AN ⋅的值为 . 【难度】★★ 【答案】4【方法】向量的分解;坐标法4.如图,在圆O 中,若弦AB =3,弦AC =5,则·的值是__________.【难度】★★ 【答案】8【方法】向量数量积的几何意义a b 2a =3b =a b 60︒12,02m n ≤≤≤≤ma nb +219三、向量的应用(一)三点共线的应用; (二)三角形“四心”: 1.⇔=++0GC GB GA G 是ABC ∆的重心.2.()(0)||||AC AB AP AB AC λλ=+≠⇔P 经过ABC ∆的内心.3OC OB OA ==⇔O 为ABC ∆的外心.4.⇔⋅=⋅=⋅HA HC HC HB HB HA H 为ABC ∆的垂心.【例11】已知点G 是△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,则的值为 . 【难度】★★ 【答案】31 【方法】三点共线【例12】设12,e e 是平面内两个不共线的向量,12(1)AB a e e =-+,122AC be e =-,0,0a b >>.若,,A B C 三点共线,则12a b+的最小值是 . 【难度】★★ 【答案】4【方法】平面向量分解定理,三点共线【例13】已知同一平面上的向量PA ,PB ,AQ ,BQ 满足如下条件:①||||2PA PB AB +==;②0||||AB AQ BQ AB AQ ⎛⎫+⋅= ⎪ ⎪⎝⎭;③||||AB AQ AB AQ +=-,则||PQ 的最大值与最小值之差是 . 【难度】★★【答案】2【方法】三角形“四心” ,AM x AB AN y AC ==xyx y+【巩固训练】1.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【难度】★★ 【答案】2【解析】取特殊位置,设M 与B 重合,N 与C 重合,则1m n ==,所以2m n +=.【方法】三点共线2.已知点O 是ABC ∆的重心,内角A B C 、、所对的边长分别为a b c 、、,且23203a OAb OBc OC ⋅+⋅+⋅=,则角C 的大小是 . 【难度】★★ 【答案】3π 【方法】三角形重心零向量、向量的夹角【例1】已知点A ()31,,()14-,B ,则与AB 共线的单位向量为 【难度】★【答案】⎪⎭⎫ ⎝⎛-5453,和⎪⎭⎫ ⎝⎛-5453, 【解析】与向量a 同向的单位向量为aaABC △O BC O AB AC 易错题型【易错点】①长度为1个单位的向量叫单位向量;②与向量a aa 多会记得第二点,容易忽略反向的单位向量。
第06讲-平面向量与复数(解析版)
第06讲-平面向量与复数一、高考热点牢记概念公式,避免卡壳1.复数z =a +b i(a ,b ∈R )概念(1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数.(2)z 的共轭复数z -=a -b i.(3)z 的模|z |=a 2+b 2.2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ;(a +b i)÷(c +d i)=ac +bdc 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).3.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb .两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |.(2)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(3)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.活用结论规律,快速抢分1.复数的几个常用结论(1)(1±i)2=±2i ;(2)1+i 1-i =i ,1-i1+i =-i ;(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.2.复数加减法可按向量的三角形、平行四边形法则进行运算.3.z ·z -=|z |2=|z -|2.4.三点共线的判定三个点A ,B ,C 共线⇔AB→,AC →共线; 向量P A →,PB →,PC →中三终点A ,B ,C 共线⇔存在实数α,β使得P A →=αPB→+βPC →,且α+β=1. 5.向量的几个常用结论(1)在△ABC 中,P A →+PB →+PC →=0⇔P 为△ABC 的重心.(2)在△ABC 中,P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心.(3)在△ABC 中,向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心.(4)在△ABC 中,|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.二、真题再现1.设3i12i z -=+,则z =A .2BCD .1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得z ,再求z .【详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .【点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.2.设z=i(2+i),则z =A .1+2iB .–1+2iC .1–2iD .–1–2i【答案】D【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z .【详解】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目.4.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i【答案】D【解析】【分析】根据复数运算法则求解即可.【详解】()(2i2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.5.已知非零向量a b r r ,满足2a b r r =,且ba b ⊥r r r (–),则a r 与b r 的夹角为 A .π6 B .π3 C .2π3 D .5π6【答案】B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π. 6.已知向量()()2332a b ==r r ,,,,则|–|a b =r rAB .2C .D .50【答案】A【解析】【分析】 本题先计算a b -r r ,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r ,所以||a b -==r r故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.7.已知AB u u u v =(2,3),AC u u u v =(3,t),BC u u u v =1,则AB BC ⋅u u u v u u u v =A .-3B .-2C .2D .3【答案】C【解析】【分析】根据向量三角形法则求出t ,再求出向量的数量积.【详解】由(1,3)BC AC AB t =-=-u u u r u u u r u u u r,1BC ==u u u r ,得3t =,则(1,0)BC =u u u r ,(2,3)(1,0)21302AB BC ==⨯+⨯=u u u r u u u r g g .故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.8.已知向量(2,2),(8,6)a b ==-v v ,则cos ,a b =v v ___________.【答案】10-【解析】【分析】根据向量夹角公式可求出结果.【详解】2826cos ,10a b a b a b ⨯-+⨯<>===-r rr r g r r g .【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.9.已知向量a v =(-4,3),b v =(6,m ),且a b ⊥v v ,则m=__________.【答案】8.【分析】利用a b ⊥r r 转化得到0a b •=r r 加以计算,得到m .【详解】向量4,36,a b m a b =-=⊥r r r r (),(),,则•046308a b m m =-⨯+==r r,,.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题. 10.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________. 【答案】23. 【解析】【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果.【详解】因为2c a =v v ,0a b ⋅=v v ,所以22a c a b vv v v ⋅=⋅2=,222||4||5||9c a b b =-⋅+=v v v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.三、名校精选1.复数421i z i -=+的虚部为( ) A .1- B .3- C .1 D .2【解析】【分析】利用复数的商的运算进行化简,然后由虚部的概念可得答案.【详解】()()()()42142426131112i i i iz i i i i -----====-++-,则复数z 的虚部为-3,故选B【点睛】本题考查复数的商的运算及有关概念,需要注意a+bi 的虚部为b ,不要误写为bi.2.设i 是虚数单位,若复数1z i =+,则2z z +=( )A .1+iB .1i -C .1i --D .1i -+【答案】A【解析】【分析】由1z i =+可求出1z i =-,22(1)2z i i =+=代入原式计算即可.【详解】Q 复数1z i =+,∴1z i =-,22(1)2z i i =+=,则2121z z i i i +=-+=+.故选A .【点睛】本题主要考查复数的基本运算,难度容易.3.在复平面内,复数z 满足(1)4z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】对条件中的式子进行计算化简,得到复数z ,从而得到其在复平面对应的点的坐标,得到答案.【详解】由(1)4z i -=,得4221z i i ==+-所以z 在复平面对应的点为()2,2,所以对应的点在第一象限.故选A 项.【点睛】本题考查复数的计算,复平面的相关概念,属于简单题.4.已知i 是虚数单位,若32i az i +=+是纯虚数,则实数a =( )A .1B .12 C .12- D .2-【答案】B【解析】【分析】利用复数的乘法和除法运算,化简z ,再令实部为0,即得解.【详解】 由于3()(2)(21)(2)22(2)(2)5i a a i a i i a aiz i i i i +-----+====+++- 若为纯虚数,则12102a a -=∴=故选:B【点睛】本题考查了复数的基本概念和四则运算,考查了学生概念理解,数学运算的能力,属于基础题.5.设i 为虚数单位,复数z 满足(1)2z i i -=,则||(z = )A .1BC .2D .【答案】B【解析】【分析】利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由(1)2z i i -=,得22(1)2211(1)(1)2i i i i z i i i i +-====-+--+, ||2z ∴=,故选B .【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算.6.如图,在ABC ∆中,12AN AC P =u u u v u u u v ,是BN 的中点,若14AP mAB AC =+u u u v u u u v u u u v ,则实数m 的值是( )A .14 B .1 C .12 D .32 【答案】C【解析】【分析】以,AB AC u u u v u u u v 作为基底表示出AP u u u v ,利用平面向量基本定理,即可求出.【详解】∵P N ,分别是BN AC ,的中点,∴()111222AP AB BP AB BN AB AN AB AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u v 111224AN AB AC +=+u u u r u u u r u u u r.又14AP mAB AC =+u u u r u u u r u uu r,∴12m =.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力.7.已知向量a r ,b r 满足||1a =r ,||2b =r ,()23a b +=r r ,则||a b -=r r ( )A 3B 7C .3D .7【答案】B【解析】【分析】由()222()2()a b a a b b +=+⋅+r r r r r r ,求解a b ⋅r r ,再根据22||()2()a b a a b b -=-⋅+r r r r r r .【详解】由于()222()2()3a b a a b b +=+⋅+=r r r r r r1a b ⋅∴-=r r||a b ∴-===r r 故选:B【点睛】本题考查了向量数量积在模长求解中的应用,考查了学生转化划归,数学运算的能力,属于中档题. 8.已知平面向量()()2,1,2,4a b ==v v ,则向量a v 与b v 的夹角的余弦值为( )A .35B .45C .35- D .45- 【答案】B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r ,得a b ==r r 设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.9.已知向量()()1,,,2,a k b k ==r r 若a r 与b r 方向相同,则k 等于( )A .1B .C . D【答案】D【解析】【分析】依题a r //b r ,且a r 与b r 符号相同,运用坐标运算即可得到答案.【详解】因为a r 与b r 方向相同,则存在实数λ使(0)a b λλ=>r r, 因为()()1,,,2a k b k ==r r ,所以(,2)b k λλλ=r ,所以12k kλλ=⎧⎨=⎩,解之得22k =,因为0λ>,所以0k >, 所以2k =. 故答案选:D 【点睛】本题考查共线向量的基本坐标运算,属基础题.10.如图,在ABC ∆中,3BAC π∠=,2AD DB =u u u v u u u v ,P 为CD 上一点,且满足12AP mAC AB =+u u u v u u u v u u u v ,若ABC ∆的面积为23,则AP u u u v 的最小值为( )A 2B .43 C .3 D 3【答案】D【解析】【分析】 运用平面向量基本定理,得到m 的值,结合向量模长计算方法,建立等式,计算最值,即可.【详解】()AP AC CP AC kCD AC k AD AC =+=+=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 23AC k AB AC ⎛⎫=+- ⎪⎝⎭u u u v u u u v u u u v ()21132k AB k AC mAC AB =+-=+u u u v u u u v u u u v u u u v ,得到211,32k k m -==,所以14m =,结合 ABC ∆的面积为231332AC AB u u u v u u u v ⋅=得到8AC AB ⋅=u u u v u u u v ,所以AP ==≥u u u v D . 【点睛】考查了平面向量基本定理,考查了基本不等式的运用,难度偏难.11.已知向量(1,2)m =-v ,(1,)n λ=v .若m n ⊥u v v ,则2m n +v v 与m u v 的夹角为_________. 【答案】4π 【解析】【分析】根据平面向量数量积的坐标表示公式,结合m n ⊥u r r ,可以求出λ的值,再根据平面向量夹角公式求出2m n +u r r 与m u r的夹角.【详解】 因为m n ⊥u r r ,所以1011202m n λλ⋅=⇒-⨯+=⇒=u r r ,即(12)1,n =r , 因此2(1,3)m n +=u r r ,设2m n +u r r 与m u r 的夹角为θ,因此有(2)cos 22m m n m m n θ+⋅===+⋅u r r u u r r r u r ,因为[0,]θπ∈,所以4πθ=. 【点睛】本题考查了平面向量夹角公式,考查了平面向量数量积的坐标表示公式,考查了平面向量垂直的性质,考查了数学运算能力.12.已知1e r ,2e r 是夹角为120°的两个单位向量,则122a e e =+r r r 和212b e e =-r r r 的夹角的余弦值为_________.【答案】7【解析】【分析】 首先利用数量积公式求得3a b ⋅=r r,a =r b =r 利用夹角公式代入即可.【详解】设a r 与b r的夹角为θ,因为()()221221122243a b e e e e e e ⋅=+⋅-=-+=u u r u u r r r u r u u r u u r u r ,a ===rb ==r ,所以cos a b a b θ⋅===r r .故答案为:. 【点睛】 本题考查单位向量的概念,向量数量积的计算公式及运算,向量的数乘运算.较易.13.已知a v 、b v 为单位向量,,3a b π=v v ,则2a b +=v v____________. 【解析】【分析】利用平面向量数量积的运算律和定义计算2a b +=r r .【详解】 由于a r 、b r 为单位向量,,3a b π<>=r r ,则1a b ==r r ,且1cos ,2a b a b a b ⋅=⋅<>=r r r r r r , 因此,2a b +====r r ,【点睛】本题考查利用平面向量的数量积计算向量的模,在计算向量的模时,一般将向量的模进行平方,结合平面向量数量积的运算律和定义来进行计算,考查计算能力,属于中等题.s 14.已知向量()4,2a =v ,(),1b λ=v ,若2a b +v v 与a b -v v 的夹角是锐角,则实数λ的取值范围为______.【答案】()(12,1+U【解析】【分析】先求出2a b +r r 与a b -r r 的坐标,再根据2a b +r r 与a b -rr 夹角是锐角,则它们的数量积为正值,且它们不共线,求出实数λ的取值范围,.【详解】Q 向量(4,2)a =r ,(,1)b λ=r ,∴2(42,4)a b λ+=+r r ,(4,1)a b λ-=-r r ,若2a b +r r 与a b -r r 的夹角是锐角,则2a b +r r 与a b -r r 不共线,且它们乘积为正值, 即42441λλ+≠-,且()()2(42,4)(4,1)a b a b λλ+⋅-=+⋅-r r r r 220420λλ=+->,求得11λ<<2λ≠.【点睛】本题主要考查利用向量的数量积解决向量夹角有关的问题,以及数量积的坐标表示,向量平行的条件等.条件的等价转化是解题的关键.15.在等腰ABC ∆中,已知底边2BC =,点D 为边AC 的中点,点E 为边AB 上一点且满足2EB AE =,若12BD AC ⋅=-u u u r u u u r ,则EC AB ⋅=u u u r u u u r _____. 【答案】43【解析】【分析】根据已知条件求出BA BC ⋅u u u r u u u r 和BA u u u r 的值,然后以BC uuu r 、BA u u u r 为基底表示向量EC uuu r ,利用平面向量数量积的运算律可计算出EC AB ⋅u u u r u u u r 的值.【详解】D Q 为AC 的中点,()()111222BD BA AD BA AC BA BC BA BA BC ∴=+=+=+-=+u u u r u u u r u u u r u u u u u u u r u u u r u u u u r u u r u u u r r u ur , AC BC BA =-u u u r u u u r u u u r ,()()()22111222BD AC BC BA BC BA BC BA ∴⋅=+⋅-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 即2221BA -=-u u u r,可得BA =u u u r , ()22222AC BC BA BC BA BC BA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r Q ,2122BA BC BC ∴⋅==u u u r u u u r u u u r , ()22224523333EC AB BC BE AB BA BC BA BA BC BA ⎛⎫∴⋅=-⋅=-⋅=-⋅=⨯-= ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故答案为:43.【点睛】本题考查了向量的线性运算、数量积运算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中档题.。
数学教案:向量基础教师版
三、平面向量 1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:(1)n n n A A A A A A A A 113221=+++- .(2)若a =(11,y x ),b =(22,y x )则a ±b =(2121,y y x x ±±). 向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量AB =a 、AD =b 为邻边作平行四边形ABCD ,则两条对角线的向量AC =a +b ,BD =b -a ,DB =a -b且有︱a ︱-︱b ︱≤︱a ±b ︱≤︱a ︱+︱b ︱.向量加法有如下规律:a +b =b +a (交换律); a +(b +c )=(a + b )+c (结合律); a +0=a a +(-a )=0.3.实数与向量的积:实数λ与向量a 的积是一个向量。
(1)︱λa ︱=︱λ︱·︱a ︱;(2) 当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0. (3)若a =(11,y x ),则λ·a =(11,y x λλ). 两个向量共线的充要条件:(1) 向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa . (2) 若a =(11,y x ),b =(22,y x )则a ∥b 01221=-⇔y x y x . 平面向量基本定理:若e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ,2λ,使得a =1λe 1+2λe 2.4.P 分有向线段21P P 所成的比:设P 1、P 2是直线l 上两个点,点P 是l 上不同于P 1、P 2的任意一点,则存在一个实数λ使P P 1=λ2P P ,λ叫做点P 分有向线段21P P 所成的比。
2023年高考数学一轮复习 核按钮版 课件 第5章 平面向量与复数
(3)在△ABC 中,点 M,N 满足A→M=2M→C,B→N=N→C. 若M→N=xA→B+yA→C,则 x=__________; y=__________.
解:因为A→M=2M→C,所以A→M=23A→C. 因为B→N=N→C,所以A→N=12(A→B+A→C),所以M→N=A→N-A→M =12(A→B+A→C)-23A→C=12A→B-16A→C,所以 x=12,y=-16. 故填12;-16.
3. 向量共线定理
向量 a(a≠0)与 b 共线的充要条件是:存在唯一一个实数 λ,使 b=λa.
【常用结论】
4. 加法运算的推广 (1)加法运算的推广:A→1A2+A→2A3+…+An-1An=A→1An. (2)向量三角不等式:||a|-|b||≤|a±b|≤|a|+|b|. 两向量不共线时,可由“三角形中任意两边之和大于第三边,任意两边之差小于第 三边”知“<”成立;两向量共线时,可得出“=”成立(分同向、反向两种不同情形). 5. 线性运算重要结论 (1)若 P 为线段 AB 的中点,O 为平面内任一点,则O→P=12(O→A+O→B). (2)若 G 为△ABC 的重心,则G→A+G→B+G→C=0. (3)若O→A=λO→B+μO→C(λ,μ为实数),则点 A,B,C 共线的充要条件是 λ+μ=1.
【点拨】 进行向量的线性运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点 出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来解决.
(1)(2020 届河南高三开学摸底)如图所示的△ABC 中,点 D,E,F 分别在边 BC,AC,
AD 上,且 BD=DC,AE=2EC,DF=2AF,则向量E→F=
(2021 宁夏大学附属中学高一月考)若 a=2e1+e2,b=-2e1+3e2,则以下向量中与 2a+b 共
复数和平面向量知识点总结
复数和平面向量知识点总结一、复数的定义和性质1.1 复数的定义复数是形如 a+bi 的数,其中 a 和 b 是实数,i 是虚数单位,满足 i²=-1。
1.2 复数的加减法复数的加减法与实数类似,直接对应实部和虚部进行运算。
1.3 复数的乘法复数的乘法满足交换律,结合律和分配律。
(a+bi)(c+di) = ac + adi + bci - bd = (ac-bd) + (ad+bc)i1.4 共轭复数若 z=a+bi,则其共轭复数为 z* =a-bi。
共轭复数的性质是 z*z = |z|² = a² + b²,其中 |z| 表示z 的模。
1.5 复数的除法复数的除法可以借助共轭复数进行运算。
1.6 复数的几何意义复平面上,复数 a+bi 对应于坐标为 (a, b) 的点,即复数与点的对应关系。
复数的模 |z| 对应于复平面上点到原点的距离,幅角 arg(z) 对应于复平面上与正实轴的夹角。
二、平面向量的定义和性质2.1 平面向量的定义平面向量是具有大小和方向的量,可以表示为有向线段,通常用 (x, y) 表示。
其中 x 和 y是有向线段在 x 轴和 y 轴上的投影长度。
2.2 平面向量的加法平面向量的加法采用平行四边形法则,也可以通过坐标表示进行运算。
2.3 平面向量的数量积平面向量的数量积定义为a•b = |a||b|cosθ,其中 |a| 和 |b| 是向量的模,θ 是 a 和 b 的夹角。
2.4 平面向量的叉乘平面向量的叉乘定义为a×b = |a||b|sinθn,其中 n 是向量 a 和 b 所在平面上的法向量。
2.5 平面向量的应用平面向量广泛应用于几何、物理等领域,包括力、速度、位移等概念。
三、复数与平面向量的关系3.1 复数与平面向量的对应关系复数 z=a+bi 可以看作是平面向量 (a, b),二者之间存在一一对应的关系。
3.2 复数与平面向量的加法和乘法复数的加法和乘法与平面向量的加法和数量积类似,可以通过坐标表示进行运算。
第3讲 平面向量的基本定理与坐标运算(教师版)
第3讲 平面向量的基本定理与坐标运算一、考点梳理考点1 平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.例1.(1)下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;①一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;①零向量不可作为基底中的向量;①对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .①①B .①①①C .①①D .①①①答案 B 解析 因为不共线的任意两个向量均可作为平面的一组基底,故①①正确,①不正确;由平面向量基本定理知①正确.综上可得①①①正确.(2)如图所示,在①OAB 中,OA →=a ,OB →=b ,M 、N 分别是边OA 、OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →交于点P ,用向量a 、b 表示OP →.分析 利用“表示方法的唯一性”确定参数,进而确定λ1,λ2.解 ①OP →=OM →+MP →,OP →=ON →+NP →,设MP →=mMB →,NP →=nNA →,则OP →=OM →+mMB →=13a +m (b -13a )=13(1-m )a +m b ,OP →=ON →+nNA →=12(1-n )b +n a . ①a 与b 不共线,①⎩⎨⎧ 13(1-m )=n ,12(1-n )=m ,①⎩⎨⎧ m =25,n =15.①OP →=15a +25b . (3)如图所示,在①ABC 中,AB =2,BC =3,①ABC =60°,AD 为BC 边上的高,M 为AD 的中点,若AM →=λAB →+μBC →,则λ+μ的值为( )A.53 B.-12 C.12 D.23答案 D解析 ①在①ABC 中,AB =2,BC =3,①ABC =60°,AD 为BC 边上的高,①在①ABD 中,BD =12AB =1.又BC =3,①BD =13BC ,①AD →=AB →+BD →=AB →+13BC →.①M 为AD 的中点,①AM →=12AD →=12AB →+16BC →.①AM →=λAB →+μBC →,①λ=12,μ=16,①λ+μ=23.【变式训练1】.设{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能作为基底的是() A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2答案 B 解析:在B 中,因为6e 1-8e 2=2(3e 1-4e 2),所以(3e 1-4e 2)①(6e 1-8e 2).所以3e 1-4e 2和6e 1-8e 2不能作为基底,其他三个选项中的两组向量都不平行,故都可以作为一组基底.【变式训练2】.如图所示,已知在平行四边形ABCD 中,E 、F 分别是BC 、DC 边上的中点,若AB →=a ,AD →=b ,试以{a ,b }为基底表示DE →、BF →.解:①四边形ABCD 是平行四边形,E 、F 分别是BC 、DC 边上的中点,①AD →=BC →=2BE →,CD →=BA →=2CF →,①BE →=12AD →=12b , CF →=12CD →=12BA →=-12AB →=-12a . ①DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b . BF →=BC →+CF →=AD →+CF →=b -12a . 【变式训练3】.如图所示,在①ABC 中,点M 为AB 的中点,且AN =12NC ,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,试以a ,b 为基底表示AE →.解 ①AN →=13AC →=13b ,AM →=12AB →=12a , 由N ,E ,B 三点共线知存在实数λ满足AE →=λAN →+(1-λ)AB →=13λb +(1-λ)a . 由C ,E ,M 三点共线知存在实数μ满足AE →=μAM →+(1-μ)AC →=μ2a +(1-μ)b . ①⎩⎨⎧ 1-λ=μ2,1-μ=λ3,解得⎩⎨⎧ λ=35,μ=45.①AE →=25a +15b .考点2 平面向量的坐标表示及加减运算设OA →=x i +y j ,则向量OA →的坐标(x ,y )就是终点A 的坐标;反过来,终点A 的坐标(x ,y )就是向量OA →的坐标. 因此,在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示,即以原点为起点的向量与实数对是一一对应的.若点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),O 为坐标原点,则OA →=(x 1,y 1),OB →=(x 2,y 2),AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.例2.(1)给出下面几种说法:①相等向量的坐标相同;①平面上一个向量对应于平面上唯一的坐标;①一个坐标对应于唯一的一个向量;①平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是( )A .1B .2C .3D .4答案 C 解析 由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故①错误.(2)如果用i ,j 分别表示x 轴和y 轴方向上的单位向量,且A (2,3),B (4,2),则AB →可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j答案:C 解析:记O 为坐标原点,则OA →=2i +3j ,OB →=4i +2j ,所以AB →=OB →-OA →=2i -j .(3)已知边长为单位长度的正方形ABCD ,若A 点与坐标原点重合,边AB 、AD 分别落在x 轴、y 轴的正方向上,则向量AB →-BC →+AC →的坐标为________.答案 (2,0) 解析 根据题意建立平面直角坐标系(如图),则各顶点的坐标分别为A (0,0),B (1,0),C (1,1),D (0,1),所以AB →=(1,0),BC →=(0,1),AC →=(1,1),所以AB →-BC →+AC →=(1,0)-(0,1)+(1,1)=(2,0).【变式训练1】.在平面直角坐标系中,向量a ,b ,c 的方向如图所示,|a |=2,|b |=3,|c |=4,向量a ,b ,c 的坐标分别为_____,________,________.答案 (2,2) ⎝⎛⎭⎫-32,332 (23,-2) 解析 设a =(a 1,a 2),b =(b 1,b 2),c =(c 1,c 2).a 1=|a |cos45°=2×22=2, a 2=|a |sin45°=2×22=2, b 1=|b |cos120°=3×⎝⎛⎭⎫-12=-32, b 2=|b |sin120°=3×32=332, c 1=|c |cos(-30°)=4×32=23, c 2=|c |sin(-30°)=4×⎝⎛⎭⎫-12=-2. ①a =(2,2),b =⎝⎛⎭⎫-32,332,c =(23,-2). 【变式训练2】.在平面直角坐标系中,|a |=4,且a 如图所示,则a 的坐标为( )A .(23,2)B .(2,-23)C .(-2,23)D .(23,-2)答案D 解析:x =|a |·cos(-30°)=4×32=23,y =|a |·sin(-30°)=4×(-12)=-2. 【变式训练3】.已知①ABCD 的三个顶点A ,B ,C 的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标. 答案 (2,2)解:设顶点D 的坐标为(x ,y ),在①ABCD 中,AD →=BC →,又AD →=(x +2,y -1),BC →=(4,1),①(x +2,y -1)=(4,1),即⎩⎪⎨⎪⎧ x +2=4,y -1=1,解得⎩⎪⎨⎪⎧x =2,y =2,①顶点D 的坐标为(2,2). 考点3 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示及中点坐标公式设向量a =(x 1,y 1),则λa =(λx 1,λy 1).中点坐标公式:若P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则⎩⎨⎧ x =x 1+x 22,y =y 1+y 22.两个向量共线的坐标表示向量a ,b 共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),则a ①b ①x 1y 2-x 2y 1=0.例3.(1)已知a =(2,1),b =(-3,4),求a +b ,a -b,3a +4b 的坐标.解 a +b =(2,1)+(-3,4)=(-1,5),a -b =(2,1)-(-3,4)=(5, -3),3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).(2)已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向? 分析 先计算出k a +b 与a -3b 的坐标,然后利用向量共线的坐标表示即可求k ,再根据符号确定方向.解 因为a -3b =(1,2)-3(-3,2)=(10,-4).k a +b =k (1,2)+(-3,2)=(k -3,2k +2),又(k a +b )①(a -3b ),故-4(k -3)=10(2k +2),即k =-13. 这时k a +b =⎝⎛⎭⎫-103,43,且a -3b 与-13a +b 的对应坐标异号,故当k =-13时,k a +b 与a -3b 平行,并且是反向的.(3)已知OA →=(3,4),OB →=(7,12),OC →=(9,16),求证:A ,B ,C 三点共线;证明:①AB →=OB →-OA →=(4,8),AC →=OC →-OA →=(6,12).①4×12-8×6=0,即AB →与AC →共线.又①AB →与AC →有公共点A ,①A ,B ,C 三点共线.(4)已知a =(-2,3),b =(3,1),c =(10,-4),试用a ,b 表示c .解 设c =x a +y b ,则(10,-4)=x (-2,3)+y (3,1)=(-2x +3y,3x +y ),①⎩⎪⎨⎪⎧10=-2x +3y ,-4=3x +y ,解得x =-2,y =2,①c =-2a +2b . 【变式训练1】.已知a =(-1,2),b =(2,1),求:(1)2a +3b ;(2)a -3b ;(3)12a -13b .解 (1)2a +3b =2(-1,2)+3(2,1)=(-2,4)+(6,3)=(4,7).(2)a -3b =(-1,2)-3(2,1)=(-1,2)-(6,3)=(-7,-1).(3)12a -13b =12(-1,2)-13(2,1)=⎝⎛⎭⎫-12,1-⎝⎛⎭⎫23,13=⎝⎛⎭⎫-76,23.【变式训练2】.已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ①(2a +b ),则λ= .答案12. 解析:2a +b =(4,2),因为c ①(2a +b ),所以4λ=2,得λ=12.【变式训练3】.设向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),当k 为何值时,A ,B ,C 三点共线?解 ①AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12),①(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.【变式训练4】.已知a =(10,-5),b =(3,2),c =(-2,2),试用b ,c 表示a .解 设a =λb +μc (λ,μ①R ).则(10,-5)=λ(3,2)+μ(-2,2)=(3λ,2λ)+(-2μ,2μ)=(3λ-2μ,2λ+2μ).①⎩⎪⎨⎪⎧ 10=3λ-2μ,-5=2λ+2μ,解得⎩⎪⎨⎪⎧ λ=1,μ=-72,①a =b -72c . 考点4 平面向量数量积的坐标表示面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.即两个向量的数量积等于相应坐标乘积的和.平面向量长度(模)的坐标表示向量模公式:设a =(x 1,y 1),则|a |=x 21+y 21.两向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ①x 1x 2+y 1y 2=0.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.例4.(1)若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12)解析 ①a·b =2×(-1)+3×(-2)=-8,①(a·b )·c =-8×(2,1)=(-16,-8).①b·c =(-1)×2+(-2)×1=-4,①a·(b·c )=(2,3)×(-4)=(-8,-12).(2)向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( )A .(-7,8)B .(9,-4)C .(-5,10)D .(7,-6)解析 (1)①向量AB →与向量a =(-3,4)的夹角为π,①设AB →=k a =k (-3,4)=(-3k,4k )(k <0).由此可得|AB →|=(-3k )2+(4k )2=10,解之得k =-2(k =2舍去).①AB →=(6,-8),设B (m ,n ),得AB →=(m -1,n -2)=(6,-8),则有⎩⎪⎨⎪⎧m -1=6n -2=-8,解得m =7,n =-6,①B (7,-6),故选D.(3)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.答案 7 解析 因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.(4)已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2答案 B 解析 ①|a |=10,|b |=5,a ·b =5.①cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又①a ,b 的夹角范围为[0,π].①a 与b 的夹角为π4. 【变式训练1】.已知a 与b 同向,b =(1,2),a·b =10.(1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,①λ=2,①a =(2,4).(2)①b·c =1×2-2×1=0,a·b =1×2+2×4=10,①a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).【变式训练2】已知在①ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2),①D 在直线BC 上,即BD →与BC →共线,①存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).①⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ. ①x -3=2(y -2),即x -2y +1=0.①又①AD ①BC ,①AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,①-6(x -2)-3(y +1)=0.即2x +y -3=0.①由①①可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ①|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).【变式训练3】.已知向量()5,a m =,()2,2b =-,若()a b b -⊥,则实数m = ( )A. -1B. 1C. 2D. -2 答案:B 解析 因为向量()5,a m =,()2,2b =-,所以()3,2a b m +=+,因为()a b b -⊥,所以()0a b b -⋅=,所以()6220m -+=,解得1m =.【变式训练4】.设向量a 与b 的夹角为θ,且a =(3,3),2b -a =(-1,-1),cos θ=________.答案 1 解析 b =12a +12(-1,-1)=(1,1),a·b =6.又|a |=32,所以cos θ=a·b |a |·|b |=66=1.二、课堂检测1.下面三种说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;①一个平面内有无数多对不共线向量可作为该平面所有向量的基底;①零向量不可作为基底中的向量.A .①①B .①①C .①①D .①①①答案 B2.若a 、b 不共线,且λa +μb =0(λ,μ①R ),则( )A .a =0,b =0B .λ=μ=0C .λ=0,b =0D .a =0,μ=0答案 B3. 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1+e 2,e 1+12e 2 C .2e 2-3e 1,6e 1-4e 2 D .e 1+e 2,e 1-e 2 答案 D4. 已知向量a =(1,2),b =(3,1),则b -a 等于( )A .(-2,1)B .(2,-1)C .(2,0)D .(4,3)答案 B 解析 b -a =(3,1)-(1,2)=(2,-1),故选B.5. 若AB →=(1,1),AD →=(0,1),BC →+CD →=(a ,b ),则a +b =( )A .-1B .0C .1D .2答案:A 解析:BC →+CD →=BD →=AD →-AB →=(0,1)-(1,1)=(-1,0),故a =-1,b =0,a +b =-1.6. 已知向量()2,3a =-,()3,b m =且//a b ,则m =( )A. -2B. 2C. 92-D. 92①①①C ①①①//a b ,(2,3)a =-,(3,)b m = ∴290m --=,解得92m =- 7. 如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.答案 14a +34b 解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b . 8. 若向量a =(2x -1,x 2+3x -3)与AB →相等,已知A (1,3),B (2,4),则x = .答案:1 解析:①AB →=(2,4)-(1,3)=(1,1),AB →=a ,①⎩⎪⎨⎪⎧2x -1=1,x 2+3x -3=1,解得x =1. 9. 已知点(0,1)A ,B (2,5),(,3)C x -,则向量AB 的坐标是________;若A ,B ,C 三点共线,则实数x =________. 答案:(2,4) -2①①:因为(0,1)A ,B (2,5),所以()()20,512,4AB =--=;向量()()0,31,4AC x x =---=-, 因为A ,B ,C 三点共线,所以//AB AC ,所以()2440x ⨯--=,解得2x =-10. 已知点A (0,1),B (3,2),向量(4,3)AC =--,则向量AB =____,向量BC =____.答案:(3,1) (-7,-4);解析:由点(0,1)A ,(3,2)B ,向量(4,3)AC =--,先求出点C 坐标为(4,2)--,由此利用平面向量坐标运算法则能求出向量AB 和向量BC .点(0,1)A ,(3,2)B ,向量(4,3)AC =--,∴点C 坐标为(4,2)--,∴向量(3,1)AB =,向量(7,4)BC =--.11 已知()1,3OA =-,()2,1OB =-,()1,2OC k k =+-,若A 、B 、C 三点在同一直线上,则k =______. 答案:1解析:(1,2)AB OB OA =-=,(,1)AC OC OA k k =-=+. A 、B 、C 三点共线,2(1)0k k ∴-+=,解得1k =.12. 设向量(12)(23)a b ==,,,,若向量a b λ+与向量(47)c =--,共线,则λ= 答案:2解析:a b λ+=(,2(2,3)(2,23λλλλ+=++)),由向量共线的充分必要条件有:()()(2)7(23)42λλλ+⋅-=+⋅-⇒=.13. 若向量()1,2a =,()2,1b =,则a b +与a b -的夹角等于______. 答案:2π 解析:()3,3a b +=,()1,1a b -=-,()()=0+⋅-a b a b ,∴()()a b a b +⊥-,a b +与a b -的夹角等于2π. 14. 已知向量()1,2a =,向量()3,2b =-.(1)求向量2a b -的坐标;(2)当k 为何值时,向量ka b +与向量2a b -共线.答案:(1)()7,2-(2)12k =-解析:(1)()()()21,223,27,2a b -=--=-(2)()()()1,23,23,22ka b k k k +=+-=-+,()()()21,223,27,2a b -=--=-①ka b +与2a b -共线,①()()72223k k +=--①12k =-15 已知在①ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解 设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2),①D 在直线BC 上,即BD →与BC →共线,①存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3).①⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.①x -3=2(y -2),即x -2y +1=0.① 又①AD ①BC ,①AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,①-6(x -2)-3(y +1)=0.即2x +y -3=0.①由①①可得⎩⎪⎨⎪⎧ x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2).①|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).。
人教版数学必修四:2.3.1平面向量基本定理(教师版)
课题:§2.3.1平面向量基本定理 总第____课时班级_______________ 姓名_______________【学习目标】了解平面向量基本定理,能够在具体问题中适当选取基底,使其他向量都能够用基底来表 示。
【重点难点】学习重点:平面向量基本定理,学习难点:对平面向量基本定理的理解和应用。
【学习过程】一、自主学习与交流反馈火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;在力的分解的平行四边形法则中,我们看到一个力可以分解为两个不共线方向的力的和。
问题1:平面内任一向量是否可以用两个不共线的向量来表示呢?问题2:如图,若e 1,e 2是平面内的两个不共线的向量,a 是平面内任一向量,能否用e 1,e 2分解a ,有几种分解形式?e 1e 2二、知识建构与应用:平面向量基本定理如果e 1,e 2 是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数21λλ,,使 a=1λe 1+2λe 2基底 我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底正交分解一个平面向量用一组基底e 1,e 2表示成a=1λe 1+2λe 2的形式,我们称它为向量a 的分解,当e 1,e 2所在直线互相垂直时,这种分解也称为向量a 的正交分解三、例题讲解例1 如图,平行四边形ABCD 的对角线AC 和BD 交于点M ,=a ,=b . 试用基底a ,b 表示,,,.MDC B A例2 设e 1,e 2是平面内的一组基底,如果=3e 1-2 e 2 , =4 e 1+ e 2 , =8 e 1-9e 2 , 求证:A 、B 、D 三点共线。
变式:设e 1, e 2为两个不共线的向量,=AB 2e 1+k e 2,=OB e 1+2e 2,=OD 2 e 1-e 2, 且A 、B 、D 三点共线,求k 的值.例3 如图所示,在平行四边形ABCD 中,点M 在AB 延长线上,且12BM AB =,点N 在BC 上,且BN=31BC ,用向量方法证明:M 、N 、D 三点共线四、巩固练习1.如图,已知向量e 1,e 2 ,求作下列向量(1) 3 e 1+2 e 2 (2) 2e 1- e 2e 2 e 2e 1 e 12.若e 1,e 2是表示平面内所有向量的一组基底,则下面的四组向量中不能作为一组基底的是( )A 、 e 1+ e 2 和 e 1-e 2B 、3 e 1-2 e 2 和4 e 2-6e 1C 、 e 1+3 e 2和 e 2 +3 e 1D 、e 2 和e 1+e 23.已知∆ABC 中,D 是BC 的中点,用向量表示向量4.设P 、Q 分别是四边形的对角线AC 和BD 的中点,=BC a ,=DA b ,并且a ,b 不是NM DC B A共线向量,试用基底a,b表示向量PQ。
2024届新高考一轮复习北师大版 第5章 第2节 平面向量的基本定理及坐标表示 课件(44张)
返回导航
3.若 P1(1,3),P2(4,0)且 P 是线段 P1P2 的一个三等分点,则点 P 的 坐标为( )
A.(2,2)
B.(3,-1)
C.(2,2)或(3,-1)
D.(2,2)或(3,1)
D 由题意得P→1P=13 P→1P2或P→1P=23 P→1P2,P→1P2=(3,-3).设 P(x,y),
返回导航
2.设向量 a=(x1,y1),b=(x2,y2),则xx12 =yy12 是 a∥b 的___________ 条件.( )
A.充要
B.必要不充分
C.充分不必要
D.既不充分也不必要
C 若xx12 =yy12 ,则 x1y2-x2y1=0,∴a∥b,若 a∥b,有可能 x2 或 y2 为 0,故选 C.
记作____{_e_1_,__e_2}______. (3)正交基:若基中的两个向量互__相__垂__直__,则称这组基为正交基.在正
交基下向量的线性表示称为正交分解.若基中的两个向量是互相垂直的 单__位__向__量__,则称这组基为标准正交基.
返回导航
2.平面向量的坐标运算 (1)向量加法、减法、数乘运算及向量的模 设 a=(x1,y1),b=(x2,y2),则 a+b=______(_x_1+__x_2_,__y_1+__y_2_)_________,
返回导航
[思考辨析] 判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任意两个向量都可以作为一组基底.( )
(2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( )
返回导航
(3)若
a=(x1,y1),b=(x2,y2),则
a∥b
平面向量,算法,复数..
高三二轮 ·新课标 ·数学(文)
进入导航
第一部分 专题一
第二讲
系列丛书
2.复数 (1)复数 z=a+bi(a,b∈R)的分类 ①z 是实数⇔b=0; ②z 是虚数⇔b≠0; ③z 是纯虚数⇔a=0,且 b≠0. (2)共轭复数 复数 a+bi(a,b∈R)的共轭复数是 a-bi(a,b∈R).
高三二轮 ·新课标 ·数学(文)
高三二轮 ·新课标 ·数学(文)
进入导航
第一部分 专题一
第二讲
系列丛书
3.算法的三种基本逻辑结构 (1)顺序结构:如图(1)所示.
高三二轮 ·新课标 ·数学(文)
进入导航
第一部分 专题一
第二讲
系列丛书
(2)条件结构:如图(2)和图(3)所示. (3)循环结构:如图(4)和图(5)所示.
高三二轮 ·新课标 ·数学(文)
高三二轮 ·新课标 ·数学(文)
进入导航
第一部分 专题一
第二讲
系列丛书
高频热点全透视 02
考点突破 解码命题
高三二轮 ·新课标 ·数学(文)
进入导航
第一部分 专题一
第二讲
系列丛书
热点考向一 平面向量的运算及应用 【例 1】 (1)(2015· 新课标全国卷Ⅰ)设 D 为△ABC 所在 → → 平面内一点,BC=3CD,则( )
高三二轮 ·新课标 ·数学(文)
进入导航
第一部分 专题一
第二讲
系列丛书
(3)注意直到型循环和当型循环的本质区别. 直到型循环 是先执行再判断,直到条件满足才结束循环;当型循环是先 判断再执行,若满足条件则进入循环体,否则结束循环.
高三二轮 ·新课标 ·数学(文)
进入导航
2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)
B.-1
C.-6
D.-18
D
由题意知 cos
〈a,b〉=sin
17π 3
=sin
6π-π3
=-sin
π 3
=
-
3 2
,所以 a·b=|a||b|cos 〈a,b〉=1×2
3
×-
3
2
=-3,b·(2a-b)
=2a·b-b2=-18.故选 D.
返回导航
3.在 Rt△ABC 中,∠ABC=60°,∠BAC=90°,则向量B→A 在向量
返回导航
[常用结论] 1.平面向量数量积运算的常用公式 ①(a+b)·(a-b)=a2-b2;②(a±b)2=a2±2a·b+b2; ③a2+b2=0⇒a=b=0. 2.有关向量夹角的两个结论 ①两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因为夹角 为 0 时不成立).
返回导航
规定 零向量与任一向量的数量积为 0
返回导航
(2)当 0°≤〈a,b〉<90°时,a·b>0;当〈a,b〉=90°时,a·b=0; 当 90°<〈a,b〉≤180°时,a·b<0;当〈a,b〉=0°时,a·b=|a||b|;当 〈a,b〉=180°时,a·b=-|a||b|.
返回导航
(3)投影向量
大一轮复习讲义 数学(BSD)
第五章 平面向量、复数 第三节 平面向量的数量积及平面向量应用举例
内 夯实·主干知识 容 探究·核心考点 索 引 课时精练
返回导航
【考试要求】 1.理解平面向量数量积的含义及其物理意义.2.了解平 面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平 面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判 断两个平面向量的垂直关系.5.会用向量方法解决某其他一些实际问题.
28第五章 平面向量与复数 平面向量基本定理及坐标表示
【概念方法微思考】 1.若两个向量存在夹角,则向量的夹角与直线的夹角一样吗?为什么?
提示 不一样.因为向量有方向,而直线不考虑方向.当向量的夹角为直角或 锐角时,与直线的夹角相同.当向量的夹角为钝角或平角时,与直线的夹角 不一样. 2.平面内的任一向量可以用任意两个非零向量表示吗? 提示 不一定.当两个向量共线时,这两个向量就不能表示,即两向量只有 不共线时,才能作为一组基底表示平面内的任一向量.
2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则 A→B= (x2-x1,y2-y1),|A→B|= x2-x12+y2-y12 . 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔ x1y2-x2y1=0 .
跟踪训练 1 在△ABC 中,点 P 是 AB 上一点,且C→P=23C→A+13C→B,Q 是 BC
的中点,AQ
与
CP
的交点为
M,又C→M=tC→P,则
t
3 的值为__4___.
师生共研
题型二 平面向量的坐标运算
例2 (1)已知点M(5,-6)和向量a=(1,-2),若 M→N=-3a,则点N的坐标为
123456
题组三 易错自纠 4.设e1,e2是平面内一组基底,若λ1e1+λ2e2=0,则λ1+λ2=1),B(3,2),向量A→C=(-4,-3),则向量B→C=__(-__7_,__-__4_)_. 解析 根据题意得A→B=(3,1), ∴B→C=A→C-A→B=(-4,-3)-(3,1)=(-7,-4).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考微点二 复数、平面向量与算法牢记概念公式,避免卡壳1.复数z =a +b i(a ,b ∈R )概念(1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数.(2)z 的共轭复数z -=a -b i. (3)z 的模|z |=a 2+b 2. 2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0). 3.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b a =λb . 两个非零向量垂直的充要条件:a ⊥b a ·b =0|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. (4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 4.算法的三种基本逻辑结构(1)顺序结构;(2)条件结构;(3)循环结构.活用结论规律,快速抢分1.复数的几个常用结论 (1)(1±i)2=±2i ; (2)1+i 1-i =i ,1-i1+i=-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.2.复数加减法可按向量的三角形、平行四边形法则进行运算.3.z ·z -=|z |2=|z -|2. 4.三点共线的判定三个点A ,B ,C 共线AB→,AC →共线;向量P A →,PB →,PC →中三终点A ,B ,C 共线存在实数α,β使得P A →=αPB →+βPC →,且α+β=1. 5.向量的几个常用结论(1)在△ABC 中,P A →+PB →+PC →=0P 为△ABC 的重心. (2)在△ABC 中,P A →·PB →=PB →·PC →=PC →·P A →P 为△ABC 的垂心. (3)在△ABC 中,向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心. (4)在△ABC 中,|P A →|=|PB→|=|PC →|P 为△ABC 的外心.高效微点训练,完美升级1.1+2i1-2i等于( ) A.-45-35i B.-45+35i C.-35-45iD.-35+45i解析 1+2i1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i1-(2i )2=-3+4i 5=-35+45i. 答案 D2.在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 为( ) A.矩形 B.菱形 C.直角梯形D.等腰梯形解析 因为AB →=DC →,即一组对边平行且相等,AC →·BD →=0,即对角线互相垂直;所以该四边形ABCD 为菱形. 答案 B3.(2019·“顶尖计划”天一联考)已知复数z 满足1z =i z +1,则|z |=( )A.12B.1C.22D.12解析 由题设得z +1=z i ,∴z =1i -1=-1-i (-1+i )(-1-i )=-1-i 2,则|z |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122=22.答案 C4.已知向量a =(2,1),b =(3,4),c =(1,m ),若实数λ满足a +b =λc ,则λ+m 等于( ) A.5 B.6 C.7D.8解析 由平面向量的坐标运算法则可得a +b =(5,5), λc =(λ,λm ),据此有⎩⎪⎨⎪⎧λ=5,λm =5,解得⎩⎪⎨⎪⎧λ=5,m =1,∴λ+m =6.答案 B5.(2019·郑州调研)已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6,则“m =-6”是“a ∥(a +b )”的充要条件. 答案 A6.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A.1B.2C.3D.4解析 运行程序,N i =10是整数,T =1,i =3;N i =203不是整数,i =4;Ni =5是整数,T =2,i =5,退出循环.输出T 的值为2. 答案 B7.图中网格纸的小正方形的边长是1,复平面内点Z 所表示的复数z 满足(z 1-i)·z =1,则复数z 1=( )A.-25+45iB.25+45iC.25-45iD.-25-45i解析 由图得z =2+i ,则(z 1-i)(2+i)=1,所以z 1=i +12+i =25+45i.答案 B8.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →解析 如图所示,EB→=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →.答案 A9.(2019·河南百校大联考)已知复数z =4+b i1-i (b ∈R )的实部为-1,则b =( ) A.-5 B.5 C.6D.-6解析 由z =4+b i 1-i =(4+b i )(1+i )(1-i )(1+i )=4-b +(4+b )i 2的实部为-1,得4-b2=-1,得b =6.答案 C10.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( ) A.z 的共轭复数为75-4i 5 B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,∴z 的共轭复数为45-7i 5,z 的虚部为75,|z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限. 答案 D11.为计算S =1-12+13-14+…+199-1100,设计了如下的程序框图,则在空白框中应填入( )A.i =i +1B.i =i +2C.i =i +3D.i =i +4解析 由题意知S =N -T ,所以N =1+13+15+…+199,T =12+14+…+1100, S =⎝ ⎛⎭⎪⎫1-12+13-14+…+199-1100=⎝ ⎛⎭⎪⎫1+13+15+…+199-⎝ ⎛⎭⎪⎫12+14+…+1100, 所以空白框中应填入i =i +2. 答案 B12.在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A.-15B.-9C.-6D.0解析 连接OA .在△ABC 中,BC→=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON →-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6. 答案 C13.(2019·永州二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=________. 解析 由题意得a ·b =|a |×1×12=|a |2, 又|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1, 即4|a |2-2|a |=0,又|a |≠0, 解得|a |=12. 答案 1214.已知z =1+i ,则2z -z 2的共轭复数是________. 解析 ∵z =1+i ,∴2z -z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i=1-i -2i =1-3i , ∴2z -z 2的共轭复数是1+3i. 答案 1+3i15.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC→=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2. 答案216.公元263年左右,我国数学家刘徽发现:当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为________(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5,3≈1.732).解析 n =6,S =12×6sin 60°=332≈2.598<3.1,执行循环体. n =12,S =12×12sin 30°=3<3.1,执行循环体. n =24,S =12×24sin 15°≈3.105 6>3.1,满足条件. ∴输出n 的值为24. 答案 24。