中考专题二次函数的解析式
中考题型例解求二次函数的解析式及相关问题

中考题型例解求二次函数的解析式及相关问题中考题型例解:求二次函数的解析式及相关问题教学目标:1、巩固求解析式的方法,能灵活的根据条件恰当地选取选择解析式。
2、体会数形结合思想,利用函数的性质解决实际问题。
3、完善解题步骤,把握得分点。
教学重、难点:巩固求解析式的方法、灵活的根据条件恰当地选取解析式以及培养解决实际问题的能力。
一.引入二次函数解析式的三种形式:,,。
二、例题解析例1:已知抛物线经过点(-1,0),23并与y 轴交于点(0,3),请求出此抛物线解析式。
方法一:方法二:例2:如图,小明的父亲在相距 2 米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高1 米的小明距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米? A B C 2.5 米0.5 米1米2米三、巩固练习1、某公司推出了一种高效环保型洗涤用品年初上市后公司经历了从亏损到盈利的过程.下面的二次函数图象部分刻画了该公司年初以来累积利润s万元与销售时间t月之间的关系即前t 个月的利润总和s 与t 之间的关系.根据图象图提供的信息解答下列问题:1由已知图象上的三点坐标求累积利润s万元与时间t 月之间的函数关系式2求截止到几月末公司累积利润可达到30 万元2、如图,某公路隧道横截面为抛物线,其最大高度为6 米,底部宽度OM 为12 米. 现以O 点为原点,OM所在直线为x 轴建立直角坐标系.1直接写出点M 及抛物线顶点P 的坐标;2求这条抛物线的解析式;3若要搭建一个矩形“支撑架”AD- DC- CB,使C、D 点在抛物线上,A、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?3、在平面直角坐标系中,ΔAOB 的位置如图所示,。
已知∠AOB=90°,AO=BO,点 A 的坐标为(-31)(1)求点B 的坐标。
(2)求过A,O,B 三点的抛物线的解析式;(3)抛物线的对称轴上有一点M,且点M 的纵坐标与点B的纵坐标相等,连结AM,BM,求ΔAMB 的面积。
中考复习必备-二次函数总复习

字母符号
a>0 a
a<0 b=0 b b与a同号 b与a异号 c=0
c>0
c c<0 b2 b2-4ac=0 - b2-4ac>0 4a c b2-4ac<0
图象的特征 开口向上 开口向下 对称轴为y轴 对称轴在y轴左侧 对称轴在y轴右侧 经过原点
与y轴正半轴相交 与y轴负半轴相交 与x轴有唯一交点(顶点) 与x轴有两个交点 与x轴没有交点
⑤解析式的求法: 确定二次函数的解析式,一般用待定系数法,由于二次函数解析式有三 个待定系数a,b,c(或a,h,k或a,x1,x2),因而确定二次函数解析式需要 已知三个独立的条件: a.已知抛物线上任意三个点的坐标时,选用一般式比较方便. b.已知抛物线的顶点坐标时,选用顶点式比较方便. c.已知抛物线与x轴两个交点的坐标(或横坐标x1,x2)时,选用交点式比 较方便.
命题点4 二次函数的实际应用
3.(2016·丹东24题10分)某片果园有果树80棵,现准备多种一些果树提高果 园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单 棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们 之间的函数关系如图所示.
(1)求y与x之间的函数关系式; (2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750 千克? (3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
命题点1 二次函数的图象与性质 1.(2015·锦州5题3分)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a 的图象可能是( C )
2.(2016·阜新10题3分)二次函数y=ax2+bx+c的图象如图所示,下列选项中正 确的是( B ) A.a>0 B.b>0 C.c<0 D.关于x的一元二次方程ax2+bx+c=0没有实数根
中考数学复习《二次函数》求解析式专题(含答案)

2019年中考复习《二次函数》求解析式专题训练1. 如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;第1题图3. 在平面直角坐标系中,抛物线y = -21x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的解析式;图①4. 在平面直角坐标系中,已知抛物线y =-21x 2+bx +c (b 、c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,-1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过A 、B 两点,求抛物线的解析式;5. 如图,抛物线y = -21x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3.(1)求抛物线的解析式;第5题图6. 如图,已知在平面直角坐标系xOy 中,四边形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,AB ∥OC ,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D ,将∠DBC 绕点B 顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 、F .(1)求经过A 、B 、C 三点的抛物线的解析式;7. 如图①,二次函数y =ax 2+bx +3的图象与x 轴相交于点A (-3,0)、B (1,0),与y 轴相交于点C ,点G 是二次函数图象的顶点,直线GC 交x 轴于点H (3,0),AD 平行GC 交y 轴于点D .(1)求该二次函数的表达式;图①8.如图①,关于x 的二次函数y = -x 2+bx +c 经过点A (-3,0),点C (0,3),点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上.(1)求抛物线的解析式;图①9. 如图,在平面直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),其对称轴与x 轴相交于点M .(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点P ,使△P AB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;第4题图10.如图,抛物线y=ax 2+bx +c 经过A (1,0)、B (4,0)、C (0,3)三点.(1)求抛物线的解析式;图①11. 如图,直线y =-21x +2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (-1,0).(1)求B 、C 两点坐标;(2)求该二次函数的关系式;12.已知正方形OABC 中,O 为坐标原点,点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,点B (4,4).二次函数y = -61x 2+bx +c 的图象经过点A 、B .点P (t ,0)是x 轴上一动点,连接AP .(1)求此二次函数的解析式;13. 如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点在原点左侧,B 点的坐标为(4,0),与y 轴交于C (0,-4)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式;15.如图,已知抛物线y =-m1(x +2)(x -m )(m >0)与x 轴相交于点A 、B ,与y 轴相交于点C ,且点A 在点B 的左侧.(1)若抛物线过点G (2,2),求实数m 的值.(2)在(1)的条件下,解答下列问题:①求△ABC 的面积.②在抛物线的对称轴上找一点H ,使AH +CH 最小,并求出点H 的坐标.第1题图【答案】1.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),解得⎩⎨⎧==3-4c b , ∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-23)2+49, ∵a =-1<0,∴当x =23时,线段PD 的长度有最大值,最大值为49. 3.解:(1)对于直线y =x +4,令x =0,得y =4,令y =0,得x =-4,则A (-4,0),C (0,4),代入抛物线解析式得⎩⎨⎧==+404-8-c c b , 解得⎩⎨⎧==4-1c b , ∴抛物线的解析式为y = -21x 2-x +4. 4.(1)解:设AC 与x 轴的交点为M ,∵等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3), ∴直线AC 的解析式为y=x-1,∴直线AC 与x 轴的交点M (1,0).∴OM =OA ,∠CAO =45°.∵△CAB 是等腰直角三角形,∴∠ACB =45°,∴BC ∥y 轴,又∵∠OMA =45°,∴∠OAB =90°,∴AB ∥x 轴,∴点B 的坐标为(4,-1).∵抛物线过A (0,-1),B (4,-1)两点,将两点代入抛物线的解析式中, 得⎪⎩⎪⎨⎧=++⨯=-141621--1c b c ,解得⎩⎨⎧==-12c b , ∴抛物线的解析式为y =-21x 2+2x -1. 5.解:(1)∵OA =2,∴点A 的坐标为(-2,0).∵OC =3,∴点C 的坐标为(0,3).把A (-2,0),C (0,3)分别代入抛物线y = -21x 2+bx +c , 得⎩⎨⎧=+=c c b 32--20, 解得⎩⎨⎧==312c b , ∴抛物线的解析式为y =-21x 2+21x +3. 6.解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B ,C 三点的抛物线的解析式为y =ax 2+bx +2(a ≠0),将点B 、C 分别代入得⎩⎨⎧=++=++02392224b a b a , 解得⎪⎪⎩⎪⎪⎨⎧==3432-b a ,∴抛物线的解析式为y = - 32x 2+ 34x +2. 7.(1)解:∵二次函数y =ax 2+bx +3过点A (-3,0)、B (1,0),∴⎩⎨⎧=++=+03033-9b a b a ,,解得⎩⎨⎧==-2-1b a , ∴二次函数的表达式为y =-x 2-2x +3.8.解:(1)将A (-3,0),C (0,3)代入y =-x 2+bx +c ,得⎩⎨⎧=+=03-9-3c b c ,解得⎩⎨⎧==3-2c b . ∴抛物线的解析式为y = -x 2-2x +3.9.解:(1)∵抛物线过点A (0,4)、B (1,0)、C (5,0),∴设过A 、B 、C 三点的抛物线的解析式为y =a (x -1)·(x -5)(a ≠0),∴将点A (0,4)代入y=a (x -1)(x -5),得a =54, ∴此抛物线的解析式为y =54x 2-524x +4, ∵抛物线过点B (1,0)、C (5,0),∴抛物线的对称轴为直线x =251+=3. (2)存在,如解图①,连接AC 交对称轴于点P ,连接B P 、BA , ∵点B 与点C 关于对称轴对称,∴PB =PC ,∴AB +AP +PB =AB +AP +PC =AB +AC ,∵AB 为定值,且AP +P C≥AC ,∴当A 、P 、C 三点共线时△P AB 的周长最小,∵ A (0,4)、C (5,0),设直线A C 的解析式为y =ax +b (a ≠0), 第4题解图① 将A 、C 两点坐标代入解析式得⎩⎨⎧=+=054b a b , 解得⎪⎩⎪⎨⎧==454-b a ,∴直线AC 的解析式为y = -54x +4. ∵在y = -54x +4中,当x =3时,y =58, ∴P 点的坐标为(3,58), 即当对称轴上的点P 的坐标为(3,58)时,△ABP 的周长最小. 10.解:(1)∵点A (1,0),B (4,0)在抛物线上,∴设抛物线解析式为y =a (x -1)(x -4),将点C (0,3)代入得a (0-1)(0-4)=3,解得a =43, ∴抛物线解析式为y =43(x -1)(x -4), 即y =43x 2-415x+3. 11. 解:(1)令x =0,可得y =2,令y =0,可得x =4,即点B (4,0),C (0,2).(2)设二次函数的解析式为y =ax 2+bx +c ,将点A 、B 、C 的坐标代入解析式得,⎪⎩⎪⎨⎧==++=+204160-c c b a c b a ,解得b c b a ⎪⎪⎪⎩⎪⎪⎪⎨⎧===22321- , 即该二次函数的关系式为y=-21x 2+23x +2. 12.解:(1)∵B (4,4),∴AB =BC =4,∵四边形ABCO 是正方形,∴OA =4,∴A (0,4),将点A (0,4),B (4,4)代入y = -61x 2+bx +c , 得⎪⎩⎪⎨⎧=++⨯=441661-4c b c , 解得⎪⎩⎪⎨⎧==432c b ,∴二次函数解析式为y =-61x 2+32x +4. 13.解:(1)将B 、C 两点的坐标代入得:⎩⎨⎧==++-40416c c b ,解得⎩⎨⎧==-4-3c b , ∴二次函数的表达式为y =x 2-3x -4.14.解:(1)∵抛物线过点G (2,2),∴2=-m1 (2+2)(2-m ), ∴m =4.(2)①y =0,- m 1 (x +2)(x -m )=0,解得x 1=-2,x 2=m ,∵m >0,∴A (-2,0)、B (m ,0),又∵m =4,∴AB =6.令x =0,得y =2,∴C (0,2),∴OC =2,∴S △ABC =21×AB ×OC =21×6×2=6.第1题解图① ②∵m =4,∴抛物线y = -41(x +2)(x -4)的对称轴为x =1,如解图①,连接BC 交对称轴于点H ,由轴对称的性质和两点之间线段最短的性质可知, 此时AH +CH =BH +CH =BC 最小.设直线BC 的解析式为y =kx +b (k ≠0).则⎩⎨⎧==+204b b k ,解得⎪⎩⎪⎨⎧==221-b k ,∴直线BC 的解析式为y=-21x +2.当x =1时,y =23,∴H (1, 23).。
(中考复习)第15讲 二次函数概念及其解析式

基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
题组一
用一般式求函数解析式
【例1】(2013· 佛山)已知抛物线y=ax2+bx+c经过点A(0,3),
解得 a=-1,b=2.
∴抛物线的解析式为 y=-x2+2x+3. (2)存在.
由y=-x2+2x+3得,D点坐标为(1,4),对称轴为x=1,
①若以CD为底边,则PD=PC,设P点坐标为(x,y), 根据勾股定理得x2+(3-y)2=(x-1)2+(4-y)2,即y=4-x, 又P点(x,y)在抛物线上,∴ 4-x=-x2+2x+3,即 x2-3x+ 1=0.
基础知识 · 自主学习 题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
3± 5 3- 5 解得 x= , 小于 1,应 舍 去 . 2 2 3+ 5 ∴x= , 2 3+ 5 5- 5 5- 5 ∴ y=4-x= ,即点 P 坐标为 . , 2 2 2 ②若以 CD 为一腰,∵点 P 在 对 称 轴 右 侧 的 抛 物 线 上 ,由抛物 线 对 称 性 知 ,点 P 与点 C 关 于 直 线 x=1 对称,此时 P 点 的 坐 3+ 5 3+ 5 标为(2,3),∴符 合 条 件 的 点 P 的坐标为 , 或 (2, 2 2 3).
基础知识 · 自主学习
题组分类 · 深度剖析
否存在点P,使得△PDC是等腰三角形,若存在,求出符合 条件的点P的坐标;若不存在,请说明理由.
求二次函数解析式几种常用方法

求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。
现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。
一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。
二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。
例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。
若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。
九年级数学 二次函数的解析式三种形式

二次函数的解析式三种形式(1)一般式:(a,b,c是常数,a≠0);(2)顶点式:(a,h,k是常数,a≠0)(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。
如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。
定义:一般地,如果(a,b,c是常数,a≠0),那么y 叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a 是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
考点分析1.二次函数的概念、图像和性质2.二次函数的图像与字母系数的关系3.确定二次函数的解析式4.二次函数与一元二次方程以及不等式之间的关系5.二次函数图像常见的变换思想方法基本思想:数形结合,从二次函数的图像研究其开口方向、对称轴、顶点坐标、增减性、最值及其图像的平移变化,到利用二次函数图像求解方程与方程组,再到利用图像求解析式和解决实际问题,都体现了数形结合的思想真题精选例题精讲类型一二次函数的解析式【解后感悟】解题关键是选择合适的解析式:当已知抛物线上三点求二次函数的关系式时,一般采用一般式y=ax^2+bx+c(a≠0);当已知抛物线顶点坐标(或对称轴及最大或最小值)求关系式时,一般采用顶点式y=a(x-h)^2+k;当已知抛物线与x轴的交点坐标求二次函数的关系式时,一般采用交点式y=a(x-x1)(x-x2).类型二二次函数的图像、性质【解后感悟】解题关键是正确把握解析式的特点、图像的特点、二次函数的性质,注意数形结合.类型三二次函数的图像变换【解后感悟】①平移的规律:左加右减,上加下减;②对称的规律:关于x轴对称的两点横坐标相同,纵坐标互为相反数;关于y轴对称的两点纵坐标相同,横坐标互为相反数;关于原点对称的两点横、纵坐标均互为相反数;③旋转的规律:旋转后的抛物线开口相反,顶点关于旋转点对称.类型四二次函数的综合问题【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解后感悟】抛物线与x轴的交点问题;二次函数的性质;待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的判定和性质.类型五二次函数的应用【解后感悟】此题是二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.热点题型专题小结二次函数是中考必考题型。
九年级数学二次函数解析式的确定

n 1 则: 2k n 5
∴y=3x-1
2 b 4 c b ) ∵抛物线y=x2+bx+c的顶点坐标为( , 2 4
4c b 2 b 3 1 4 2 4 2b c 5
试一试:
5 (0, )(1,6)三点,直线L的解析式为 2 y=2x-3,(1)求抛物线的解析式;(2)求证:
试一试:
2、把抛物线y=ax2+bx+c向下平移1个单位, 再向左平移5个单位时的顶点坐标为(-2,0), 且a+b+c=0,求a、b、c的值。 点拔: 设原抛物线的解析式为y=a(x+m)2+n 则平移后抛物线的解析式为y=a(x+m+5)2+n-1
根据题意得: (m 5) 2
n 1 0
16 a 4b c 8 c 0
A
o C x
∴y=-x2+6x
4、如图,抛物线y=ax2+bx+c与直线y=kx+4相交 于A(1,m),B(4,8)两点,与x轴交于原点
及C点,(1)求直线和抛物线的解析式;(2) 3 在抛物线上是否存在点D,使S△OCD= S△OCB, 2 若存在,求出点D;若不存在,请说明理由。 y (1)y=x+4 y=-x2+6x B ( 4, 8) A
则解析式为y=-3(x-2)2+5
试一试:
1、已知:二次函数y=ax2+bx+c的图象的顶点为P (-2,9),且与x轴有两个交点A、B(A左B右), S△ABC=27,求:(1)二次函数的解析式;(2)A、 B两点的坐标;(3)画出草图;(4)若抛物线与y轴 交于C点,求四边形ABCP的面积。 (1)y=-x2-4x+5 (2)A(-5,0),B(1,0) (4)S=30
二次函数中考专题一:二次函数解析式的求法

二次函数中考专题专题一:二次函数解析式的求法待定系数法:(1)已知抛物线上三点的坐标,则可采用一般式:y=ax2+bx+c(a≠0),利用待定系数法求出a、b、c;(2)若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:y=a(x-h)2+k(a≠0),其中顶点坐标为(h,k)对称轴为直线x=h;(3)若已知抛物线与x轴的交点的横坐标,则可采用交点式:y=a(x-x1)(x-x2)(a≠0),其中与x轴的交点坐标为(x1,0)(x2,0).例题:一、已知三点求解析式1.抛物线y=ax2+bx+c经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向、对称轴和顶点.2.已知抛物线y=ax2+bx+c经过点(-1,10),(2,7),且3a+2b=0,求该抛物线的解析式。
3.抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式.4.已知:如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的解析式.5.已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的解析式;(2)求点M的坐标.6.如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.求抛物线的解析式.7.如图所示,抛物线y=ax2+bx-4a经过点A(-1,0),C(0,4).(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于x轴对称的点的坐标.二、已知顶点或对称轴求解析式1.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.2.已知抛物线y=x2+kx+k+3,若抛物线的顶点在y轴上,求此抛物线的解析式。
3.已知某二次函数,当x=3时,函数有最小值-2,且函数图象与y轴交于,求此二次函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的解析式【重点难点提示】重点:二次函数的解析式难点:从实际问题中抽象出二次函数考点:二次函数的解析式的求法是中考命题的重中之重,它可以填空题、选择题出现,更多的是通常以综合题的形式出现在中考试卷的压轴题中,占10~12分左右。
【经典范例引路】例1 已知函数y=x 2+kx -3图象的顶点为C 并与x 轴相交于两点A 、B 且AB=4(1)求实数k 的值;(2)若P 为上述抛物线上的一个动点(除点C 外),求使S △ABC =S △ABP 成立的点P 的坐标。
解 (1)设A(x 1,0)B(x 2,0)则AB 2=|x 2-x 1|2=(x 1+x 2)2-4x 1x 2=k 2+12=16∴k=±2(2)由y=x 2±2x -3= (x ±1)2-4得点C 1(1,-4),C 2(-1,-4)∴S △ABC =21×4×4=8设点P(x,4)在抛物线上,则有x 2±2x -3=4,即x 2±2x -7=0得:x=-1±22或x=1±22∴P 点坐标为(-1+22,4)(-1-22,4)(1+22,4)(1-22,4)例2 阅读下面的文字后,解答问题有这样一道题目:已知:二次函数y=ax 2+bx+c 的图象经过点A(0,a),B(1,-2)求证这个二次函数图象的对称轴是直线x=2,题目中的横线部分是被墨水污染了无法辨认的文字。
(1)根据现有信息,你能否求出题目中二次函数的解析式,若能,写出求解过程?若不能,说明理由(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整。
解 (1)能:根据题意有:⎩⎨⎧++=-=c b a c a 2又∵二次函数图象的对称轴为x=2 ∴-a b2=2解方程组⎪⎪⎩⎪⎪⎨⎧=--=++=222abcbaca⎪⎩⎪⎨⎧=-==141cba∴能求出二次函数解析式,解析式为y=x2-4x+1(2)可供补充的内容有:(任选一个)①满足y=x2-4x+1的任一点的坐标②a=1或b=-4或c=1③与y轴交点坐标为(0,1)④与x轴交点坐标为(2-3,0)或(2+3,0)⑤最值为-3⑥顶点为(2,-3)等【解题技巧点拨】解此题的关键是把直线x=2作为已知条件来用,从而确定二次函数的解析式。
【同步达纲练习】一、填空题1.有一个抛物线拱桥形,其最大高度为16米,跨度为40米,现把它的示意图放在平面直角坐标系中(如图),则此抛物线解析式为。
2.已知二次函数y=ax2+bx+c的图象经过A(0,1),B(-1,0),C(1,0),那么函数解析式是如果y随x的增大而减少,那么x的变化范围是。
3.已知抛物线y=ax2+bx+c与抛物线y=-x2-7x+12形状相同,顶点在直线x=1上,且顶点到x轴的距离为3,则此抛物线解析式为。
4.已知抛物线y=x2-(a+2)x+9的顶点在坐标轴上,同a= 。
二、选择题5.已知抛物线y=ax2+bx+c,经过A(4,-2),B(12,-2)两点,那么它的对称轴是()A.直线x=7B.直线x=8C.直线x=9D.无法确定6.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2-2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x-3)2+27.已知函数y=ax2+bx+c的图象如图,那么函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y=-x2-2x-38.关于x的二次函数y=x2-2mx+m2和一次函数y=-mx+n(m≠0),在同一坐标系中的大致图象正确的是()三、解答题9.已知二次函数y=ax2+bx+c,当x=2时,有最大值2,其图象在x轴截得的线段长为2,求这个二次函数的解析式。
10.如图在平面直角坐标系中A、B是x轴上两点,C是y轴上一点,∠ACB=90°,∠CAB=30°,以AO、BO 为直径的半圆,分别交AC、BC于E、F点,若点C坐标为(0,3)。
(1)求图象过A、B、C三点的二次函数的解析式(2)求图象过点E、F的一次函数的解析式。
11.已知:二次函数的图象经过点A (1,0)和点B (2,1),且与y 轴交点的纵坐标为m(1)若m 为定值,求此二次函数的解析式(2)若二次函数的图象与x 轴还有异于点A 的另一个交点,求m 的取值范围(3)若二次函数的图象截直线y=-x+1所得线段长为22,求m 的值。
12.如图,抛物线y=ax 2+bx+c(a>0)与x 轴交于A(1,0),B(5,0)两点,与y 轴交于M ,抛物线顶点为P ,且PB=25(1)求这条抛物线的顶点P 的坐标和它的解析式(2)△MOP (O 为坐标原点)的面积。
13.已知抛物线y=x 2-(2m -1)x+m 2-m -2(1)证明抛物线与x 轴有两个不同的交点(2)分别求出抛物线与x 轴的交点A 、B 的横坐标x A ,x B ,以及与y 轴的交点C 的纵坐标y C (用含m 的代数式表示)(3)设△ABC 的面积为6,且A 、B 两点在y 轴的同侧,求抛物线的解析式。
14.已知抛物线y=-21x 2-(n+1)x -2n(n<0)经过A(x 1、0),B(x 2、0),D (0、y 1),其中x 1<x 2,△ABD 的面积为12(1)求这条抛物线的解析式及它的顶点坐标(2)如果点C (2,y 2)在这条抛物线上,点P 在y 轴正半轴上,且△BCP 为等腰三角形,求直线BP 的解析式。
15.某化工材料经销公司购进了一种化工原料,共7000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元也不得低于30元,市场调查发现:单价定为70元时,日均销售60千克,单价每降低1元,日均多售出2千克,在销售过程中,每天还要交出其他费用500元。
(天数不足一天时,按整天计算)设销售为x 元,日均获利为y 元。
(1)求y 关于x 的二次函数关系式,并注明x 的取值范围(2)将(1)中所求出的二次函数配方成y=a(x -h)2+k 的形式,写出顶点坐标、画出草图、观察图像,指出单价定为多少元时,日均获利最多,是多少?16.已知二次函数y=x 2-(2m+4)x+m 2-4(x 为自变量)的图象与y 轴的交点在原点的下方,与x 轴交于A 、B 两点,点A 在点B 的左边,且A 、B 两点到原点的距离AO 、OB ,满足3(OB -AO )=2AO ·OB ,直线y=kx+k 与这个二次函数图象的一个交点为P ,且锐角∠POB 的正切值为4。
(1)求这个二次函数解析式 (2)确定直线y=kx+k 的解析式17.已知抛物线y=x 2+bx+c 的顶点在第一象限,顶点的横坐标是纵坐标的2倍,对称轴与x 轴的交点在一次函数y=x -c 的图象上,求b 、c 的值。
18.今有网球从斜坡点O 处抛出(如图),已知网球的运动路线方程是y=4x -21x 2,斜坡的方程是y=x 21,其中y 是垂直高度(米),x 是与点O 的水平距离(米)(1)网球在斜坡的落点为A ,写出点A 的垂直高度,以及点A 与点O 的水平距离;(2)在图象中,标出网球所能达到的最高点B ,并求出OB 与水平线OX 之间夹角的正切。
19.已知抛物线y=x 2-2x+m 与x 轴有两个不同的交点A 、B ,其坐标为A(x 1,0),B(x 2,0),其中x 1<x 2,且x 12+x 22=4(1)求这条抛物线,(2)设所求抛物线顶点为C ,P 是此抛物线上的一点,且∠PAC=90°,求P 点的坐标。
20.已知二次函数y 1=ax 2+2bx+c 与y 2=(a -1)x 2+2(b -2)x+c -3的图象如图所示,C 点坐标为(-1,0),B 点的横坐标为-3,D 点与C 点关于y 轴对称,线段AB 与线段BC 等长,求这两条抛物线的解析式。
【创新备考训练】21.已知点A (1,2)和B (-2,5),试写出两个二次函数,使它们的图象都经过A 、B 两点 (20XX 年广州市中考题)22.(2002吉林省中考题)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。
(1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板。
除掉系木板用去的绳子后,两边的绳子长正好各为2米,木板与地面平行,求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1).参考答案1.y= - 251x 2+58x (0≤x ≤40)2.y= -x 2+1 (x>0)3.y= -x 2+2x -1-3或y= -x 2+2x -1+34.a= -2或4或-8(顶点可能在x 轴上,也可以在y 轴上)5.B6.D7.A8.B9.y= -2x 2+8x -610.(1)y= -33x+33x+3,(2)y= -33x +3311.(1)y=21+m x 2-213+m x+m(m ≠-1),(2)△=41(m -1)2,∴m 的取值范围是m ≠±1 (3)m=-5或3112.(1)P(3,-4),解析式y=x 2-6x+5 (2)S △MOP =7.513.(1)△=9>0,∴抛物线与x 轴有两个不同的交点,(2)y c =m 2-m -2,(3)y=x 2-5x+4或y=x 2+5x+414.(1)y= -21x 2+x+4,顶点(1,29),(2)BP 为y=-221+x15.(1)y= -2x 2+260x -6500 (30≤x ≤70),(2)y= -2(x -65)2+1950,顶点(65,1950)图略,当单价是65元时,日均获利最多是1950元16.(1)y 2=x 2-2x -3,(2)y=23x+23或y= -2x -217.b=-1,c=2118.(1)垂直高度为3.5米,水平距离为7米,(2)B (4,8),且tanx=48=2(∠BOX=x)19.①y=x 2-2x,②P(3,3) 20.y 1=31x 2-31,y 2= -32x 2-4x -31021.本题答案不唯一,解法(1):抛物线y=ax 2+bx+c 经过A (1,2),B(-2,5)两点得⎩⎨⎧+-=++=c b a c b a 2452 ②① ②-①得3a -3b=3,a -b=1,设a=2,得b=1,代入①得c=-1,得y=2x 2+x -1 设a=1,得b=0,代入①得 c=1,得y=x 2+1解法(2):抛物线y=ax 2+bx+c经过A(1,2),B(-2,5)和(0,0)三点 依题意得⎪⎩⎪⎨⎧=+-=++=c c b a c b a 02452 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===02123c b a 得y=23x 2+21x 用同样的方法可得另一函数。