按键去抖说明
按键消除抖动的措施
按键消除抖动的措施
按键消除抖动是指在使用电子设备中,当按下按键后可能会出
现的多次触发信号的问题。
为了解决这个问题,可以采取以下措施:
1. 软件滤波,在程序设计中,可以采用软件滤波的方法来消除
按键抖动。
软件滤波可以通过延时、状态机等方式来确保只有真正
的按键按下才会触发相应的操作,而忽略短暂的抖动信号。
2. 硬件滤波,在电路设计中,可以加入电容、电阻等元件来实
现硬件滤波,通过延长按键信号的上升沿或下降沿时间,从而消除
按键抖动带来的干扰。
3. 使用稳定的按键元件,选择质量好、稳定性高的按键元件,
可以减少按键抖动的发生。
4. 金属片设计,在按键设计中,可以添加金属片来增加按键的
稳定性,减少抖动。
5. 硬件消抖器,使用专门的硬件消抖器芯片,这些芯片可以自
动检测和消除按键抖动,提高按键的稳定性。
综上所述,消除按键抖动可以通过软件滤波、硬件滤波、选择稳定的按键元件、金属片设计以及使用硬件消抖器等多种措施来实现。
在实际应用中,可以根据具体情况选择合适的方法或者结合多种方法来解决按键抖动问题。
按键开关去抖动问题
目录
• 引言 • 按键开关抖动的常见解决方法 • 按键开关去抖动的原理 • 去抖动效果的评估和测试 • 实际应用中的按键开关去抖动案例
01
引言
按键开关去抖动的背景和重要性
按键开关在电子设备中广泛应用,但在实际使用中,由 于机械或电气噪声的影响,按键开关可能会出现抖动现 象,即开关状态在短时间内的快速切换。
结合硬件去抖和软件去抖的优点,先通过硬件电路对按键信号进行初步处理,再通过软件算法 进一步去除抖动。
互补滤波法
采用硬件滤波和软件滤波两种方法对按键信号进行互补处理,提高去抖效果。
04
去抖动效果的评估和测试
去抖动效果的评估方法
实际使用评估
在实际使用场景中,观察 按键开关去抖动的表现, 评估其稳定性和可靠性。
在智能家居领域,按键开关被广泛应用于各种智 能设备的控制面板上。由于用户操作频繁,按键 开关容易出现机械疲劳和抖动现象,影响设备的 正常使用。
通过采用去抖动技术,可以有效消除按键开关的 抖动现象,提高设备的响应速度和稳定性,提升 用户的使用体验。
汽车电子中的按键开关去抖动应用
在汽车电子领域,按键开关广泛应用于车载信息娱乐系统、空调控制、车窗升降 等系统中。由于汽车环境的复杂性和使用频率高,按键开关的抖动问题尤为突出 。
实验过程
在实验中模拟按键开关的 抖动情况,记录去抖动电 路的表现和性能数据。
数据处理
对实验数据进行处理和分 析,提取关键性能指标, 如抖动抑制时间、抑制率 等。
结果分析
根据实验结果,分析去抖 动电路的性能表现,评估 其优缺点和适用场景。
实际应用中的按键开关去抖
05
动案例
工业控制中的按键开关去抖动应用
vivado按键消抖原理
vivado按键消抖原理按键消抖是指在数字电路中,当按键按下或释放时,由于按键机械开关的特性,会导致电路出现不稳定的信号状态。
这种不稳定状态可能会导致错误的触发,例如出现多次触发或漏触发。
因此,为了确保按键信号的稳定性和可靠性,需要进行按键消抖处理。
按键消抖的原因主要有两个方面。
首先,按键机械开关的接触面存在微小的弹跳现象,当按键按下或释放时,接触面会在短时间内反复接触和分离,导致电路信号出现多次变化。
其次,由于电路中存在的噪声干扰,也会使得按键信号产生抖动。
为了解决按键消抖问题,可以采用硬件和软件两种方法。
硬件方法主要通过添加滤波电路或使用稳定的按键开关来消除按键弹跳现象。
滤波电路可以通过RC电路或者使用专用的按键消抖芯片来实现。
而软件方法主要通过在数字电路中添加按键消抖算法来处理按键信号。
在Vivado中,按键消抖可以通过使用状态机来实现。
状态机是一种用于描述系统行为的模型,可以根据输入信号的状态变化来改变系统的状态和输出。
在按键消抖中,可以使用状态机来检测按键信号的变化,并根据一定的状态转换规则来消除按键弹跳现象。
具体实现时,可以将按键信号作为输入,将按键状态和输出作为状态机的状态和输出。
当按键信号发生变化时,状态机会根据一定的状态转换规则进行状态转换,并输出消抖后的按键信号。
常用的状态转换规则包括按键按下时状态转换为按下状态,按键释放时状态转换为释放状态,以及连续按键时状态不变。
在Vivado中,可以使用Verilog或VHDL等硬件描述语言来编写状态机代码。
首先,需要定义状态机的输入、输出和状态变量,并初始化各个变量的初始值。
然后,需要编写状态转换规则和输出逻辑,根据输入信号的状态变化来改变状态和输出。
最后,需要将状态机代码综合生成对应的逻辑电路,并进行仿真和验证。
总结起来,按键消抖是数字电路设计中常见的问题,为了确保按键信号的稳定性和可靠性,需要进行按键消抖处理。
在Vivado中,可以使用状态机来实现按键消抖,通过定义状态转换规则和输出逻辑,消除按键弹跳现象。
按键消抖
状态机实现去抖动原理:按键去抖动关键在弄提取键稳定的电平状态,滤除前沿、后沿抖动毛刺。
对于一个按键信号,可以用一个脉冲对它进行取样,如果连续三次取样为低电平,可以认为信号已经处于键稳定状态,这时输出一个低电平的按键信号。
继续取样的过程如果不能满足连续三次取样为低,则认为键稳定状态结束,这时输出变为高电平。
设计的状态转换图如图所示。
Reset信号有效时,电路进入复位状态s0,这时认为取样没有检测到低电平,在输入取样过程中,每次检测到一个低电平,发生依次向下的状态转移,直到连续检测到三个低电平时,进s3态,这时输出置低(按键信号稳定态),在中间状态s1,s2时,一旦检测到高电平,就进入s0状态,重新检测。
library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity xiaod isport(clk : in std_logic ;reset : in std_logic ;din : in std_logic ;dout : out std_logic);end entity;architecture rtl of xiaod isTYPE state IS( s0,s1,s2,s3);SIGNAL pre_s, next_s: state;beginprocess( reset, clk )beginif reset = '0' thenpre_s <= s0;elsif rising_edge( clk ) thenpre_s <= next_s;elsenull;end if;end process;process( pre_s, next_s, din ) begincase pre_s iswhen s0 =>dout <= '1';if din = '1' thennext_s <= s0;elsenext_s <= s1;end if;when s1 =>dout <= '1';if din = '1' thennext_s <= s0;elsenext_s <= s2;end if;when s2 =>dout <= '1';if din = '1' thennext_s <= s0;elsenext_s <= s3;end if;when s3 =>dout <= '0';if din = '1' thennext_s <= s0;elsenext_s <= s1;end if;end case;end process ;end rtl;程序中din为要去抖动的热键信号,dou为去抖后输出的稳定信号。
按键去抖说明
(r>O v« O-按键去抖说明由于机械触点的弹性振动,按键在按下时不会马上稳定地接通而在弹起时也不能一下子完 全地断开,因而在按键闭合和断开的瞬间均会出现一连串的抖动,这称为按键的扌耳动干扰, 其产生的渡形如图5.3.1所示,当按键按下时•会产生前沿抖动,当按键弹起时会产生后沿抖 动。
这是所有机械蝕点武按键在状态输出时的共性问题,抖动的时间长短取决于按键的机械 特性与操作状态,一般为10~L00ms,此为键处理设计时要考虑的一个重要参数。
取按键状态,必须在按键囲合或斷开时,消除产生的前沿或后沿抖动,去抖动的方法有硬件 方法和软件方法两种。
1.硬件方法硬件方法是设计一个滤波延时电路或单稳态电路尊硬件电路来遥开按键的抖动时间。
图>3. 2是由R2和C 组成的滤波延时消抖电路,设豈在按键S 与CPU 数据线Di 之 间。
按键S 未按下时•,电容两端电压为0,即与非门输入丙为0,输出卩o 为1。
当S 按下 时,由于C 两端电压不能突变,充电电压丙在充电时间内未达到与非门的开启电压,门的瑜 出心将不会改变,亘到充电电压巧丈于门的开启电压时,与非门的输出X )才变为0,这 段充电延迟时间取决于Rl 、R2和C 值的大小,电路设计时只要使之大于或等于10 0 ms 即可避开按键抖动的彫响。
同理,按键S 断开时,即使出现押动,由于C 的放电延迟 过程,也会消除按键抖动的彫响-4-5 VR-1按键去抖说明^2是施帕滤波电路后消除抖动的波形"2.软件方法软件方法是指编制一段时间大^lOOms的延时程序,在第一次检测到有键按下时,执行这段延时子程序使键的前沿抖动消失后再检测该键状态,如果该键仍保持闭台伏态电平,则确认为该钳已稳定按F 否则无镇按兀从而消除了料动的影响’同理,在检测到按键释放后,也同样要延迟一段时间,以消除后沿抖动,然后转入对该按键的处理。
按键消抖的原理
按键消抖的原理一、引言在电子设备中,按键是常见的输入方式。
然而,由于按键的机械结构,当按下或松开按键时,会产生机械弹跳现象,导致信号出现多次跳变,这就是所谓的“按键抖动”现象。
为了避免这种现象对电路造成干扰,需要进行按键消抖处理。
二、什么是按键消抖?按键消抖是指在接收到按键信号后,在一定时间内只处理一次信号,并且保证该信号为有效信号。
其目的是消除因机械结构引起的多次跳变信号。
三、按键消抖的原理1. 机械弹跳原理在了解按键消抖原理之前,需要先了解机械弹跳原理。
当按下或松开一个开关时,由于接触面积有限和金属表面不完全平整等因素影响,开关触点会发生不稳定震荡,并在短时间内反复接通和断开。
这种现象称为“机械弹跳”。
2. 软件处理原理软件处理原理是通过程序来实现对按键状态进行检测和判断的方式。
具体实现方法包括:轮询法、中断法、计时法等。
(1)轮询法轮询法是指通过循环检测按键状态的方式来实现按键消抖。
具体实现方法为:在主程序中设置一个循环,不断检测按键状态,当检测到按键被按下时,进行一定的延时后再次检测按键状态,如果依然是按下状态,则判断为有效信号。
(2)中断法中断法是指通过外部中断来实现对按键状态进行检测和判断的方式。
具体实现方法为:将按键连接到微控制器的外部中断引脚上,在程序中设置好相应的中断服务程序,当检测到外部中断信号时,进入相应的中断服务程序进行处理。
(3)计时法计时法是指通过定时器来实现对按键状态进行检测和判断的方式。
具体实现方法为:当检测到按键被按下时,启动定时器并开始计数,在一定时间内只处理一次信号,并保证该信号为有效信号。
四、硬件处理原理硬件处理原理是通过使用电路元件来实现对按键消抖的方式。
具体包括RC滤波器、Schmitt触发器、反相器等。
1. RC滤波器RC滤波器是将电容和电阻组合在一起,利用电容的充放电特性实现对信号的滤波。
当按键被按下时,由于电容的充放电时间常数较长,可以使机械弹跳信号被滤除。
c语言按键消抖常用方法
在C语言中,按键消抖是指处理物理按键在按下或释放时可能产生的抖动或不稳定信号的问题。
常用的方法包括软件延时消抖和状态机消抖。
1. 软件延时消抖:- 当检测到按键按下或释放时,可以通过在代码中添加一个短暂的延时来过滤掉按键可能产生的抖动信号。
例如,在按键检测到变化后,延时几毫秒以确保按键信号稳定后再进行状态读取。
```cvoid delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 300; j++);}// 在按键检测中使用延时if (button_pressed && !last_button_state) {delay(10); // 等待10毫秒if (button_pressed) {// 执行按键按下后的操作last_button_state = button_pressed;}}```这种方法简单易行,但需要根据具体硬件和按键特性调整延时时间,且可能会造成按键响应速度变慢。
2. 状态机消抖:- 利用状态机来跟踪按键状态变化,并在一定持续时间内保持一致的状态才认定为有效按键按下或释放。
这可以通过一个状态变量和定时器结合实现。
```cenum ButtonState {IDLE, PRESSED, RELEASED};enum ButtonState current_state = IDLE;unsigned int debounce_timer = 0;// 在按键检测中使用状态机void button_check() {switch (current_state) {case IDLE:if (button_pressed) {current_state = PRESSED;debounce_timer = 10; // 设定10毫秒的延时}break;case PRESSED:if (!button_pressed) {current_state = RELEASED;debounce_timer = 10; // 设定10毫秒的延时}break;case RELEASED:if (button_pressed) {current_state = PRESSED;debounce_timer = 10; // 设定10毫秒的延时}break;}if (debounce_timer > 0) {debounce_timer--;} else {if (current_state == PRESSED) {// 执行按键按下后的操作} else if (current_state == RELEASED) {// 执行按键释放后的操作}current_state = IDLE; // 处理完毕后返回IDLE状态 }}```这种方法相对于延时消抖更加灵活,可以根据具体需求设置不同的延时时间,并且不会影响整体的按键响应速度。
单片机按键去抖原理
单片机按键去抖原理在单片机系统中,按键的应用非常广泛,无论是控制还是交互,经常需要使用按键来进行操作。
然而,由于按键的特性,往往会带来按键抖动的现象,这就需要对按键进行去抖处理。
本文将详细介绍单片机按键去抖的原理和方法。
1.按键抖动的原因及影响因素按键抖动是指按下或释放按键时,按键触点会产生不稳定的接触,导致按键信号在短时间内多次切换,造成系统误判。
按键抖动的原因主要有以下几点:(1)按键机械结构问题:按键存在接触不良、触点弹簧不稳定等机械问题,会导致接触突变。
(2)外部干扰:如按键线路附近的磁场、电源干扰等,会引发按键误触。
(3)按键的弹性和灵敏度:按键材料和设计的不同,会导致按键的弹性和灵敏度不一致,进而引发抖动。
按键抖动会带来以下几个问题:(1)误判:按键抖动会使系统误判按键的按下或释放,导致错误的逻辑操作。
(2)数据错误:抖动会造成按键信号的短时间内多次切换,可能导致数据传输错误、丢失等问题。
(3)系统性能下降:由于抖动会产生大量的开关信号,会占用系统资源,影响系统的运行速度和响应时间。
2.去抖的原理去抖的原理是通过软件或硬件的方式对按键信号进行滤波,消除了按键抖动信号,从而得到稳定的按键信号。
软件去抖的原理是通过软件算法对按键信号进行处理,主要有两种方法:软件延时去抖和状态机去抖。
(1)软件延时去抖:软件延时去抖的原理是在按键按下后,通过添加延时来屏蔽抖动信号。
当检测到按键按下后,先延时一段时间,并再次检测按键的状态,如果按键仍然处于按下状态,则确认按键按下有效。
软件延时去抖的优点是简单易行,只需通过软件延时来实现,无需额外的硬件支持。
缺点是实现的延时时间需要适当,过短容易漏掉有效按键,过长则会增加系统响应时间。
(2)状态机去抖:状态机去抖的原理是通过状态变化来屏蔽抖动信号。
状态机的设计是基于按键的状态转换,当按键按下时,状态变为按下状态;当按键释放时,状态变为释放状态。
只有在状态转换时,才认定按键按下或释放为有效信号。
单片机按键去抖
单片机按键去抖
我们首先要清楚为什么要按键去抖。
先看先按键按下的波形图
通过这个图形就很清楚为什么要按键去抖了,要是不去抖的话,当按下按键的时候就会在0~5ms 内出现抖动,相当于在不停地按下按键而就不是只按了一次了。
稳定闭合时间大约是10ms,松手抖动的时间和按下抖动的时间差不多。
去抖的方法有硬件去抖和软件去抖
我们常用牺牲CPU 的时间来软件去抖,就是按下按键后延时5~10ms 时间后再来检查是否有按键按下,松手检测也一样。
硬件去抖的方法如图所示
独立按键的去抖方法很简单,就是在按下和松手后分别加一小段延时再来判断。
例:
sbit key=P1;
........................
.......................
if(!key) //如果有按键按下
{
delay(10); //延时一小段时间
if(!key) //真有按键按下
{。
// 执行按键按下后的操作
}
while(!key); // 松手检测,要是没有松手的话就一直执行while 循环。
按键消抖原理
按键消抖原理
按键消抖原理是指通过某种方法在按键被按下或松开时,消除或减少按键的抖动现象,使输入信号得到稳定的识别和处理。
在实际应用中,按键在被按下或松开时,由于机械结构的原因,往往会引起按键的不稳定状态,表现为按键在短时间内多次触发开关。
这种按键抖动不仅会导致输入信号的波动,还可能对系统造成误操作或不良影响。
为了解决按键抖动问题,常用的按键消抖原理主要有以下几种:
1. 软件延时消抖:通过在程序中设定一个适当的延时时间,当按键被按下或松开后,延时一段时间再读取按键状态,以判断按键是否稳定。
如果经过延时后按键状态仍然相同,则可以认为按键已经稳定按下或松开,从而减少抖动的影响。
2. 硬件滤波消抖:通过在按键电路上设计滤波器或添加电容元件,可以对按键信号进行滤波处理,去除短时间内的干扰信号,使输入信号更加稳定。
常用的滤波电路包括RC滤波电路、OTA滤波电路等。
3. 状态改变检测消抖:在按键电路中,通过检测按键的状态变化来判断按键是否按下或松开。
当按键在短时间内发生多次状态变化时,只会认为按键状态发生了一次改变,从而忽略了抖动现象。
这种方式适用于按键状态改变的速度较慢的情况。
通过以上的按键消抖原理,可以有效地减少按键抖动现象,提
高按键输入的可靠性和稳定性。
在实际应用中,可以根据具体情况选择适合的原理和方法来实现按键消抖,以满足不同的需求。
键盘的消抖原理
键盘的消抖原理键盘消抖是指在通过键盘输入时,对于一个按键在被按下到最终确认的过程中,可能会出现多次触发的情况,这样会导致输入数据错误,给使用者带来很大的困扰。
消抖技术旨在解决这一问题,通过特定的电路设计或编程算法,将输入信号进行抑制或过滤,以保证输入数据的准确性。
一、消抖技术的原理1. 机械式按键的消抖机械式按键的消抖主要是通过按键的物理特性来实现的。
当按键被按下时,按键头与底座之间会产生一定的位移或压缩,导致弹簧被压缩或弯曲,使得电路闭合,从而产生按键信号。
为了避免按键震动在电路中产生的反复触发问题,通常会在按键电路中加入一个RC电路或短暂延时电路。
在按键按下后,通过加电、蓄电和放电等过程,使得输入信号稳定下来,从而消除了多余的触发信号。
触摸式按键的消抖主要是通过电容值的变化来识别按键信号的。
当手指接触到触摸板时,会引起电容量的变化,从而识别出按下的位置和时间。
在识别过程中,通常利用滤波器或计数器进行信号的稳定化处理,消除不稳定的噪声输入。
还可以利用防误触算法,对快速按下和抬起的操作进行识别和排除。
矩阵式按键是由多个按键交错排列而成的,通过多个行列连接交叉的方式来实现按键的输入。
在输入时,需要依次扫描每个按键的状态,并将状态从矩阵输出到处理器或控制器中。
为了防止按键的反复触发,通常可以采用“按下即认为有效,抬起则认为无效”的算法,以保证输入数据的准确性。
还可以利用短暂延时电路或状态寄存器等技术来消除抖动干扰,从而有效地提高按键输入的精度和可靠性。
1. 电子游戏电子游戏是一种需要快速响应、高精度的应用场景,玩家需要在短时间内完成复杂的操作,并保证输入的准确性和流畅度。
此时,键盘消抖技术就显得尤为重要,可以有效消除按键的抖动和误触干扰,提高玩家的游戏体验和胜率。
2. 工控设备工控设备是一种需要高可靠性、稳定性和安全性的系统。
在工控设备中,键盘消抖技术可以保证输入的精度和可靠性,减少系统的故障率和维护成本。
按键消抖原理
按键消抖原理
按键消抖是指在按下按键后,由于机械原因或者信号干扰等因素导致按键在短时间内出现多次开关状态变化的现象,这种现象会给电子系统带来干扰和误判。
为了避免这种情况的发生,常常采用按键消抖技术。
按键消抖的原理是在按键输入电路中添加一个延时电路和滤波电路,可以在按键按下后延迟一段时间后再检测按键状态,同时通过滤波电路去除掉抖动信号,从而保证按键的稳定性和可靠性。
延时电路可以采用RC延时电路或者数字延时电路,其作用是在按键按下后,延迟一段时间再检测按键状态,这段时间一般为几毫秒至几十毫秒不等。
这样可以保证按键状态稳定后再进行后续处理,避免了抖动信号的影响。
滤波电路可以采用RC滤波电路或者数字滤波电路,其作用是去除掉按键抖动信号,只保留按键真实的状态信号。
这样可以保证按键状态的准确性和可靠性。
总之,按键消抖技术是保证电子系统稳定和可靠运行的重要技术手段。
- 1 -。
按键消抖原理
按键消抖原理
按键消抖原理是指在按下按键后,由于机械特性引起的按键跳动现象被过滤掉,保证按键信号的稳定性和可靠性。
按键消抖的实现原理通常是通过软件技术来实现。
下面将介绍两种常见的按键消抖原理。
1. 软件延时消抖原理:
在按键按下时,通过软件延时一段时间,然后再读取按键状态。
软件延时的作用是等待机械抖动的结束,只有当一段时间内按键状态保持不变时,才认为按键真正被按下。
这种方法简单易行,但缺点是消抖时间较长,响应速度较慢。
2. 状态扫描消抖原理:
在按键按下时,通过不断扫描按键状态来判断按键是否真正被按下。
状态扫描的过程是周期性地读取按键状态,如果发现连续几次读取到的按键状态相同,则认为按键稳定,即按键被按下。
这种方法比延时消抖的响应速度更快,但需要一个额外的线程或中断服务程序来执行状态扫描。
以上是两种常见的按键消抖原理,它们都能有效解决按键抖动问题,提高按键信号的稳定性和可靠性。
在具体应用中,可以根据需要选择适合的消抖原理来实现按键的稳定响应。
按键消抖原理
按键消抖原理
按键消抖通俗来说就是在按下或松开按键时,由于机械性能的限制,会出现短时间内多次开关状态的变化,这种现象称为按键抖动。
对于需要按键精准响应的电子设备而言,按键抖动会给正常使用带来很大的干扰。
按键消抖的原理是通过软件算法实现。
一般来说,消抖分为两个阶段:第一阶段叫做消除抖动,第二阶段叫做确认有效。
具体做法是在按键按下时,先等待一段时间(一般为几毫秒),然后读取按键的状态。
如果读取到的状态与第一次读取到的状态相同,就确认按键是有效的;如果读取到的状态与第一次不同,则重新进行第一阶段的消抖处理。
按键消抖的实现方法有多种,其中比较常见的是基于中断处理的方法和基于定时器的方法。
基于中断处理的方法是指在按键按下时,通过中断函数来响应按键事件,并进行消抖处理;基于定时器的方法是指通过定时器设定一定时间,在这段时间内进行按键状态的检测和消抖处理。
无论采用哪种方法,按键消抖的原理都是一样的。
综上所述,按键消抖是通过软件算法实现的,可以有效地消除按键抖动对电子设备的干扰。
在实际应用中,需要根据实际情况选择合适的消抖方法和参数,以达到最佳的按键响应效果。
- 1 -。
实验05按键消抖
实验5 按键消抖1. 实验目的1. 掌握QuartusII的硬件描述语言设计方法2. 了解同步计数器的原理及应用3. 设计一个带使能输入、进位输出及同步清零的增1四位N (N<16)进制同步计数器2. 准备知识在按键使用的过程中,常常遇到按键抖动的问题,开关在闭合(断开)的瞬间,不能一接触就一直保持导通(断开),因为开关的机械特性,重要经历接触-断开-再接触-再断开,最终稳定在接触位置,这就是开关的抖动,即虽然只是按下按键一次然后放掉,结果在按键信号稳定前后,竟出现了一些不该存在的噪声,这样就会引起电路的误动作。
在很多应用按键的场合,要求具有消抖措施。
按键抖动与开关的机械特性有关,其抖动期一般为5-10ms。
图5.1 按键电平抖动示意图按键的消除抖动分为硬件消除抖动和软件消除抖动。
硬件消除抖动一般采用滤波的方法,通常在按键两端并联一个1~10u左右的电容,有时这样也不能完全消除按键的抖动。
软件消除抖动的方法有多种,常用的是延时扫描和定时器扫描。
延时扫描其原理为:检测到按键操作后延时一端时间(如10ms)后,再检测是否为仍然为同样的按键操作状态,如果相同,就认为是进行了按键操作,然后对该操作进行相应的处理。
定时器扫描的原理是:每隔一端时间(几毫秒)扫描一次键盘,如果连续两次(或3次)的所获得的按键状态相同,就输出按键状态,然后再对这种按键状态进行处理,这里的扫描时间间隔和连续判断按键状态的次数是有关系的,一般总时间要大于按键的抖动期。
如果总时间太长,则感觉按键迟钝,太短可能不能完全消除抖动,要根据实际的情况合适的选择。
在实际电路设计中,经常采用的是软硬件相结合对按键进行消除抖动的处理方法。
本实验采用的方法:实验箱按键的硬件电路是共阳极电路,按下按键时输出到FPGA管脚的电平为低电平,松开按键时为高电平。
我们采用5ms的定时器扫描FPGA管脚电平,如果连续3次为低电平时,存储连续按键状态的次数CNT的值加1,直到该计数值等于10(或再大一些),就不再累加(防止长按该值溢出而重新计数),此时认为按键已稳定,输出按键操作标志;在该过程中,一旦FPGA管脚电平为低电平就对CNT复位清零并同时对按键操作标志位复位,即一个异步复位。
按键消抖的原理
按键消抖的原理引言按键消抖是电子设备中常见的一种技术处理方式,用于解决按键在按下或松开时可能出现的多次触发的问题。
本文将介绍按键消抖的原理、常见的实现方法以及应用场景。
什么是按键消抖?当我们按下或松开一个物理按键时,由于按键弹性或机械性能的原因,按键可能会在短时间内多次切换状态。
这种多次切换状态的现象被称为按键抖动。
按键消抖的目的是通过软件或硬件的方式,保证在按下或松开一个按键时,系统只识别一次按键操作,而不是多次。
按键消抖的原理按键消抖的原理是通过延时和状态稳定来处理按键信号。
通常情况下,按键的信号变化是非常快速的,因此需要通过延时来等待按键信号稳定。
延时的时间设置要根据按键的特性及使用环境而定,一般情况下,10毫秒的延时已经足够。
具体的按键消抖原理如下: 1. 监测按键状态:通过采集按键的电压信号或连接处的电流变化,检测按键的状态。
2. 检测按键抖动:将检测到的按键状态与先前的状态进行比较,判断是否出现按键抖动。
3. 延时处理:当检测到按键状态发生变化时,延时一段时间,等待按键信号稳定。
这段时间的长短要根据按键的特性和使用环境来决定。
4. 状态稳定判断:在延时过后,再次检测按键的状态,如果按键状态仍然保持稳定,则判断为有效的按键操作。
常见的按键消抖实现方法为了实现按键消抖,有多种方法可供选择,下面介绍几种常见的实现方式:软件消抖软件消抖是通过编程的方式来实现按键消抖的。
具体步骤如下: 1. 监测按键状态:在软件中定时采集按键状态。
2. 判断按键状态变化:将采集到的按键状态与先前的状态进行比较,判断是否出现按键抖动。
3. 延时处理:在检测到按键状态变化后,延时一段时间,等待按键信号稳定。
这段时间的长短要根据按键的特性和使用环境来决定。
4. 状态稳定判断:在延时过后,再次检测按键的状态,如果按键状态仍然保持稳定,则判断为有效的按键操作。
硬件消抖硬件消抖是通过电路设计来实现按键消抖的。
按键消抖的原理
按键消抖的原理按键消抖是指在按键被按下或松开时,因按键触点的弹性以及机械结构原因,导致按键信号在短时间内频繁抖动,从而产生多次触发信号的现象。
为了有效避免按键抖动对系统带来的干扰和误操作,需要进行按键消抖处理。
按键消抖的原理主要包括硬件消抖和软件消抖两种方式。
硬件消抖是通过在按键电路中添加外部元件实现的。
常见的硬件消抖方式包括使用电容、电感或者滤波器等元件,通过延迟、滤波或者稳定电平等方式来消除按键抖动信号。
电容消抖的原理是利用电容的充放电特性,将抖动的信号通过电容进行延时处理,从而产生稳定的按键触发信号。
电感消抖则是利用电感的滤波特性,通过电感对抖动信号进行滤波处理,从而获得稳定的按键信号。
而滤波器消抖则是通过在电路中加入滤波器元件,对抖动信号进行滤波处理,使得按键信号变得稳定可靠。
硬件消抖的优点是简单可靠,但缺点在于需要占用额外的电路资源和成本,且对于信号干扰抑制能力有一定的限制。
软件消抖是通过程序算法来实现的,常见的软件消抖方式包括延时消抖、状态机消抖和计数器消抖等。
延时消抖的原理是在按键按下后通过一个设定的延时时间来判断按键的有效触发,若在延时时间内未出现抖动信号,则判定为有效触发信号。
状态机消抖是通过设定按键的状态机来判断有效触发信号,只有在按键状态经过一定的稳定转换后才判断为有效触发。
计数器消抖则是通过设定一个计数器,在计数器计数达到一定次数后才判断为有效触发信号。
软件消抖的优点是不需要额外的硬件资源,可灵活性高,但缺点在于需要占用系统的处理器资源和对于时间精度的要求较高。
在实际应用中,通常会结合硬件消抖和软件消抖来实现按键的稳定触发。
例如在按键电路中加入电容滤波器来消除抖动信号,同时在系统程序中采用延时消抖或状态机消抖算法来进一步确保按键信号的稳定可靠。
这样既能保证按键信号的稳定触发,又能兼顾系统的资源和成本。
综上所述,按键消抖是通过硬件或者软件手段对按键信号进行处理,消除由按键触点的弹性抖动引起的干扰信号,从而获得稳定的按键触发信号。
按键的防抖技术
按键的防抖技术键盘,作为向系统操作人员的干预指令的接口,以其特定的按键序列代表着各种确定的操作命令,所以,准确无误的辨认每个键的动作和其所处的状态,是系统能否正常工作的关键。
多数键盘的按键多使用机械式弹性开关,一个电信号通过机械触点的断开,闭合过程完成高低电平的切换。
由于机械触点的弹性作用,一个按键开关在闭合及断开的瞬间必然伴随着一连串的抖动,其波形如图所示:抖动过程的长短是由按键的机械特性决定,一般是10~20ms。
为了使CPU对一次按键动作只确认一次,必须消除抖动的影响,可以从硬件及软件两个方面着手:(1)、硬件防抖技术通过硬件电路消除按键过程中的抖动的影响是一种广为采用的措施。
这种做法,工作可靠且节省机时,下面介绍两种硬件防抖电路。
① 滤波防抖电路利用RC积分电路对干扰脉冲的吸收作用,选择好电路的时间常数,就能在按键抖动信号通过此滤波电路时,消除抖动的影响。
滤波防抖电路入,如图所示:+15VR15.1KSW243215.1KR22uF174LS062OUT由图可知,当按键SW2按下时,电容C两端的电压钧为0,非门输出为1。
当SW2按下的时候,由于C两端电压不可能产生突变。
尽管在触点接触的过程中可能会出现抖动,只要适当选却R1,R2和C值,即可保证电容C两端的充电电压波动不会超过非门的开启电压(TTL为0.8V),非门的输出将维持高电平。
同理,在触点K断开的时候,由于电容C经过R2放电,C两端的放电电压波动不会超过门的关闭电压,因此,门的输出也不会改变。
总之,只要R1,R2,C的时间常数选择适当,确保电容C由稳态电压充电到开启电压,或放电到关闭电压的延迟时间等于或大于10ms,该电路就能消除抖动的影响。
② 双稳态防抖电路用两个非门构成一个RS触发器,即可构成双稳态防抖电路,其原理电路如图:+5VR14.7KU1A1A(ON)74LS0023QOUTK 4U1B74LS006Q#5R34.7K+5VB(OFF)设按键K未按下时,建K与A端(ON)接通。
按键消抖
end
else
cnt <= 0; end
always @(posedge clk or negedge nrst) begin
if(nrst == 0)
key_out <= 0;
else if(cnt == TIME_20MS - 1)
key_out <= key_in; endendmodule
方案3
// key down, bounce 19ms
repeat(951) @(negedge clk) key_in = ~key_in;
// last 60ms
repeat(3000) @(negedge clk);
cnt <= 0;
//
end always @(posedge clk or negedge nrst) begin
if(nrst == 0)
key_cnt
<= 0;
else if(key_cnt == 0 && key_in != key_out)
key_cnt <= 1;
else
if(cnt == TIME_20MS - 1)
// clock .key_out(key_out) );
initial begin
clk = 1;
forever #(T/2) clk
= ~clk; end
// reset initial begin
nrst = 1;
@(negedge clk) nrst = 0;
@(negedge clk) nrst
按键消抖
按键去抖:由上图可以看出理想波形与实际波形之间是有区别的,实际波形在按下和释放的瞬间都有抖动的现象,抖动 时间的长短和按键的机械特性有关,一般为5~10ms。通常我们手动按键然后释放,这个动作中稳定闭合的时间超过了 20ms。因此单片机在检测键盘是否按下时都要加上去抖动操作,有专用的去抖动电路,也有专门的去抖动芯片,但通常 我们采用软件延时的方法就可以解决抖动问题。
单片机按键去抖动程序设计思路
单片机按键去抖动程序设计思路
1.去抖动原理:按键在按下和松开的瞬间会产生震动,导致按键信号在短时间内出现多次转换,给程序带来困扰。
为了解决这个问题,需要对按键信号进行去抖动处理,即在按键按下和松开时,只记录一次按键状态变化。
2.软件去抖动方法:软件去抖动方法主要通过软件延时来判断按键信号是否稳定。
具体来说,可以通过以下步骤实现软件去抖动:-初始化按键引脚为输入模式,并使能内部上拉电阻;
-设定一个延时时间阈值t,用于判断按键是否稳定;
-读取按键引脚的电平,如果为低电平,说明按键按下;
-进入一个循环,每次循环读取一次按键引脚的电平,并与前一次读取的电平进行比较;
-如果连续读取到的电平与前一次相同,说明按键信号稳定;
-如果连续读取到的电平与前一次不同,则说明按键信号还在抖动,继续读取直到连续读取到的电平与前一次相同;
-当稳定的电平持续时间超过延时时间阈值t时,认为按键信号已稳定,可以进行相应的处理。
3. 硬件去抖动方法:硬件去抖动方法主要通过电路设计来实现。
常见的硬件去抖动电路包括RC滤波电路和Schmitt触发器电路。
其中,RC 滤波电路利用电容和电阻的特性,对按键信号进行平滑处理;Schmitt触发器电路则通过正反馈的方式,将不稳定的信号转换为稳定的信号。
这两种方法可以根据实际需求选择。
总结:
按键去抖动程序设计可以通过软件去抖动和硬件去抖动两种方式实现。
软件去抖动主要通过软件延时判断按键信号是否稳定,而硬件去抖动则通
过电路设计实现。
根据具体的应用场景和需求,可以选择适合的方法来设
计按键去抖动程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于机械触点的弹性振动,按键在按下时不会马上稳定地接通而在弹起时也不能一下子完全地断开,因而在按键闭合和断开的瞬间均会出现一连串的抖动,这称为按键的抖动干扰,其产生的波形如图5.3.1 所示,当按键按下时会产生前沿抖动,当按键弹起时会产生后沿抖动。
这是所有机械触点式按键在状态输出时的共性问题,抖动的时间长短取决于按键的机械特性与操作状态,一般为10~100ms,此为键处理设计时要考虑的一个重要参数。
按键的抖动会造成按一次键产生的开关状态被CPU 误读几次。
为了使CPU 能正确地读取按键状态,必须在按键闭合或断开时,消除产生的前沿或后沿抖动,去抖动的方法有硬件方法和软件方法两种。
1. 硬件方法
硬件方法是设计一个滤波延时电路或单稳态电路等硬件电路来避开按键的抖动时间。
图5.3.2 是由R2 和C 组成的滤波延时消抖电路,设置在按键S 与CPU 数据线Di 之间。
按键S 未按下时,电容两端电压为0,即与非门输入V i 为0,输出V o 为1。
当S 按下时,由于C 两端电压不能突变,充电电压V i 在充电时间内未达到与非门的开启电压,门的输出V o将不会改变,直到充电电压V i 大于门的开启电压时,与非门的输出V o 才变为0,这段充电延迟时间取决于R1、R2 和C 值的大小,电路设计时只要使之大于或等于100ms 即可避开按键抖动的影响。
同理,按键S 断开时,即使出现抖动,由于C 的放电延迟过程,也会消除按键抖动的影响
图5.3.2 中,V1 是未施加滤波电路含有前沿抖动、后沿抖动的波形,V2 是施加滤波电路后
消除抖动的波形。
2. 软件方法
软件方法是指编制一段时间大于100ms 的延时程序,在第一次检测到有键按下时,
执行这段延时子程序使键的前沿抖动消失后再检测该键状态,如果该键仍保持闭合状态电平,则确认为该键已稳定按下,否则无键按下,从而消除了抖动的影响。
同理,在检测到按键释放后,也同样要延迟一段时间,以消除后沿抖动,然后转入对该按键的处理。