厌氧生物处理知识
厌氧处理单元说明
![厌氧处理单元说明](https://img.taocdn.com/s3/m/eb4da0624a35eefdc8d376eeaeaad1f3469311b2.png)
厌氧处理单元说明
厌氧处理单元是一种生物处理装置,主要用于处理有机废水,如高浓度的有机废水、粪便污水等。
其原理是利用厌氧微生物在无氧环境下分解有机物,产生沼气和无机物质。
厌氧处理单元有多种类型,包括厌氧消化池、厌氧滤池、厌氧接触池等。
厌氧处理单元的主要优点包括:
1. 能源回收:厌氧处理单元可以回收沼气,用于发电、供热等能源利用。
2. 节能:厌氧处理单元的能耗较低,运行费用相对较低。
3. 污泥产量少:厌氧处理单元产生的污泥量较少,且污泥的稳定性较好,易于处理和处置。
4. 对环境影响小:厌氧处理单元产生的废水中有机物含量较低,对环境影响较小。
厌氧处理单元也存在一些缺点:
1. 处理时间长:厌氧处理单元的处理时间较长,通常需要数天或数周时间才能完成。
2. 启动困难:厌氧处理单元需要培养厌氧微生物,启动时间较长。
3. 对水质要求高:厌氧处理单元对进水水质的要求较高,如果水质波动较大,会影响处理效果。
4. 对温度要求高:厌氧处理单元对温度的要求较高,如果温度过低或过高,会影响处理效果。
总之,厌氧处理单元是一种有效的有机废水处理技术,具有广泛的应用前景。
UASB基础知识
![UASB基础知识](https://img.taocdn.com/s3/m/0a7acc84d4d8d15abe234e79.png)
一、概述UASB是升流式厌氧污泥床反应器废水厌氧生物处理技术的简称。
1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。
使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。
1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。
颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。
继荷兰之后,德国,瑞士,美国以及我国也相继开展了对UASB的深入研究和技术开发工作,并将其作为一种新型厌氧处理工艺在高浓度有机废水处理中快速的推广应用。
目前全世界已有1000余座UASB反应器在实际生产中使用。
二、反应器的基本构造与原理UASB反应器是集有机物去除及泥(生物体)、水(废水)和气(沼气)三相分离于一体的集成化废水处理工艺,其工艺的突出特征是反应器中可培养形成沉降性能良好的颗粒污泥、形成污泥浓度极高的污泥床,使其具有容积负荷高,污泥截留效果好,反应器结构紧凑等一系列优良的运行特征。
1、UASB反应器的构造图1是UASB反应器的示意图。
UASB反应器的主体部分主要分为两个区域,即反应区和三相分离区。
其中反应区为UASB 反应器的工作主体。
反应器的基本构造主要由污泥床、污泥悬浮层、沉淀区、三相分离器及进出水系统等各功能部分组成。
2、UASB工作原理(1)反应过程UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。
在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。
要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。
UASB基础知识
![UASB基础知识](https://img.taocdn.com/s3/m/d880d3f93186bceb19e8bb70.png)
一、概述UASB是升流式厌氧污泥床反应器废水厌氧生物处理技术的简称。
1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。
使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。
1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。
颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。
继荷兰之后,德国,瑞士,美国以及我国也相继开展了对UASB的深入研究和技术开发工作,并将其作为一种新型厌氧处理工艺在高浓度有机废水处理中快速的推广应用。
目前全世界已有1000余座UASB反应器在实际生产中使用。
二、反应器的基本构造与原理UASB反应器是集有机物去除及泥(生物体)、水(废水)和气(沼气)三相分离于一体的集成化废水处理工艺,起工艺的突出特征是反应器中可培养形成沉降性能良好的颗粒污泥、形成污泥浓度极高的污泥床,使其具有容积负荷高,污泥截留效果好,反应器结构紧凑等一系列优良的运行特征。
1、UASB反应器的构造图1是UASB反应器的示意图。
UASB反应器的主体部分主要分为两个区域,即反应区和三相分离区。
其中反应区为UASB 反应器的工作主体。
反应器的基本构造主要由污泥床、污泥悬浮层、沉淀区、三相分离器及进出水系统等各功能部分组成。
2、UASB工作原理(1)反应过程UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。
在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。
要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。
污水处理知识:为您解析缺氧、厌氧、好氧(第三期)
![污水处理知识:为您解析缺氧、厌氧、好氧(第三期)](https://img.taocdn.com/s3/m/5b943ff10722192e4436f65f.png)
污水处理知识:为您解析缺氧、厌氧、好氧(第三期)厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
水污染控制工程(下册)重点知识点汇总
![水污染控制工程(下册)重点知识点汇总](https://img.taocdn.com/s3/m/2f502f1addccda38376bafe8.png)
水污染控制工程下册重点知识点第九章污水水质和污水出路1、污水类型:生活污水、工业废水、初期雨水、城镇污水2、物理指标:温度、色度、嗅和味(异臭:S和N化合物、挥发性有机物、氯气、总固体(溶解性固体DS、悬浮固体SS)固体残渣根据挥发性能可分为挥发性固体VS、固定性固体FS3、有机物指标:BOD、COD、TOC、TOD (燃烧化学氧化反应)4、无机物指标:PH (6-9)、植物营养元素、重金属、无机性非金属有害物(总砷、含硫化合物、氰化物)5、生物指标:细菌总数、大肠菌数、病毒6、自净作用:物理、化学、生物7、混合过程:竖向混合阶段、横向混合阶段、断面充分混合后阶段(POP下降)8、根据BOD5与DO曲线,可以把该河划分为清洁水区、污染恶化区、恢复区、清洁水区9、污水排放标准:浓度标准、总量控制标准、国家排放标准、行业排放标准、地方排放标准10、一级处理:主要去除 SS 、 COD 、 BOD11、二级处理:去除有机物(90%)12、三级处理:去除 N 、 P ,色度第十章污水的物理处理1、污水的物理处理法去除对象主要是污水中的漂浮物和悬浮物,采用的主要方法有:筛滤截留法、重力分离法、离心分离法2、格栅作用:截留污水中较粗大漂浮物和悬浮物3、格栅设计的主要参数:确定栅条间隙宽度4、按格栅形状,可分为平面格栅、曲面格栅5、曲面格栅:固定曲面格栅、旋转鼓式格栅6、清渣方式:人工清渣(过水面积不小于灌渠有效面积的2倍)机械清渣(1.2倍)7、工业废水根据水质确定是否有沉砂池8、水流适当流速:0.4-0.9 污水通过格栅:0.6-1 最大 1.2-1.49、在典型的污水处理厂中沉淀法可用于下列几个方面:污水处理系统的预处理、污水的初级处理、生物处理后的固液分离、污泥处理阶段的污泥浓缩10、沉淀类型:自由沉淀(水中悬浮固体浓度不高) 、絮凝沉淀(悬浮颗粒浓度不高(活性污泥二沉池中间)、区域沉淀(悬浮颗粒浓度高,二沉池下部、重力浓缩开始) 、压缩沉淀(高浓度悬浮颗粒,污泥浓缩、重力浓缩)11、斯托克斯公式u=(P 固-P gd2/18μ12、水温上升,黏度减小、沉速增大13、理想沉淀池:进口区、沉淀区、出口区、缓冲区、污泥区14、沉淀池工作原理:利用水中悬浮颗粒可沉降性能,在重力作用下产生下沉作用15、假定:沉淀池经过水断面上各点水流速度相同, 悬浮颗粒在沉淀区等速下沉, 在进口区域水流中悬浮颗粒均匀分布在水断面上,颗粒一沉底即可认为被去除16、溢流率q=Q/A (表面水力负荷反应沉淀池性能)17、沉砂池工作原理:以重心分离或离心力分离为基础, 即控制进入沉砂池的污水流速或旋流速度,是相对密度大的无机颗粒下沉,而有机悬浮颗粒则随水流带走18、沉砂池常用形式:平流式沉砂池、曝气沉砂池、旋流沉砂池19、城市废水一定要有沉砂池,工业废水根据废水水质情况确定是否需要沉砂池20、初沉池:一级污水处理系统主要处理构筑物、生物处理中预处理构筑物、去除 %40-50SS, %20-30BOD,降低后续生物处理构筑物有机负荷21、二沉池:生物处理构筑物后,用于分离活性污泥或去除生物膜法中脱落的生物膜22、沉淀池:平流式沉淀池(地下水位高水质差、大中小型污水处理厂)、竖流式沉淀池(小型污水处理厂)、辐流式沉淀池(地下水位高,大中型污水处理厂)23、沉淀池组成:进水区、出水区、沉淀区、缓冲区、污泥区24、沉淀池的运行方式:间歇式、连续式25、间歇式工作过程:进水、静置、排水26、平流式:优点(对冲击负荷和温度变化适应能力强、造价低)缺点(泥斗单独操作、易腐蚀)27、竖流式:优点(排泥方便、占地小)缺点(施工困难、对冲击负荷差、造价高、池径小)28、辐流式:优点(机械排泥、排泥设备有定型产品缺点(水流速不稳、异重流现象、设备复杂)29、沉淀池设计原则:设计流量、沉淀池数量、沉淀池经验设计参数、沉淀池构造尺寸、沉淀池出水部分、贮泥斗的容积、排泥部分30、设计流量:自流时取最大流量、水泵提升时按泵最大组合流量31、构造尺寸:超高不小于0.3、水深2-432、出水部分一般采用堰流,堰口保持水平、多槽出水提高水质33、贮泥斗容积:一般不大于2d ,机械排泥4h、活性污泥后二沉池2h、生物膜后4h34、排泥部分:一般采用静水压力排泥35、斜板沉砂池:效率高占地小、工业废水常用(异向流、同向流、侧向流)36、提高沉淀池沉淀效果:在沉淀区增设斜板、对污水进行曝气搅动、回流部分活性污泥37、隔油池:平流式隔油池、斜板式隔油池38、气浮法:固液和液液分离方法,对颗粒密度接近或小于水的细小颗粒的分离39、气浮法工艺条件:必须向水中提供足够量的细微气泡、必须使废水中的污染物质能形成悬浮状态、必须使气泡与悬浮的物质产生黏附作用40、气浮法类型:电解气浮法(工业废水)、分散空气气浮法(矿物浮选)、溶解空气气浮法(最常用)41、电解气浮法:正负两极通电产生气泡附着悬浮物(优点:效率高、部分可回收、应用广42、分散空气气浮法:微孔曝气气浮法(简单易行、易堵塞、气泡大气浮效果不高)、剪切气泡气浮法(除油)43、溶解空气气浮法:真空气浮法、加压溶气气浮法44、加压溶气气浮法:全加压溶气流程、部分加压溶气、部分回流加压溶气(部分澄清液回流加压、入流废水直接进入气浮池)45、提高气浮效果:混凝剂、浮选机、助凝剂、抑制剂、调节剂46、压力溶气气浮法:压力容器系统(加压水泵考虑溶气压力、水力损失、空气释放系统、气浮分离系统)42、压力溶气罐溶气方式:水泵吸水管吸气溶气式、水泵出水管射流溶气式、空压机供气式第十一章污水生物处理的基本概念和生化反应动力学基础1、污水生物处理过程中有机物的生物降解实际上就是微生物将有机物作为底物进行分解代谢获取能量的过程2、污水生物技术:好氧生物处理、缺氧生物处理、厌氧生物处理3、悬浮生长法(活性污泥法、附着生长法(生物膜法4、微生物代谢:分解代谢(同化、分解有机物 )、合成代谢(异化、增殖)5、营养源(底物、基底):大部分有机物、部分无机物6、分解代谢:发酵(厌氧消化、丙酸型发酵、丁酸型发酵呼吸(好氧呼吸、缺氧呼吸7、区别:电子载体不是将电子直接传递给底物降解的中间产物、而是交给电子传递系统、逐步释放出能量后再交给最终电子受体8、好氧生物处理:利用好氧微生物降解有机物、反应速度快、臭气少9、厌氧生物处理:兼性细菌与厌氧细菌降解有机物、剩余污泥小、反应速度慢、构筑物容积大(有机污泥、高浓度有机污水)10、生物除N:氨化、硝化、反硝化、同化11、生物除P:在厌氧好氧或厌氧缺氧交替运行系统中、厌氧释放P ,好氧吸收P、排除富P的活性污泥排除12、研究微生物生长:分批培养法13、生长过程:延迟期、对数增长期(营养要求高、有机物易超标)、稳定期、衰亡期(活性污泥常用控制时期)14、微生物生长环境影响因素:营养、温度、PH、溶解氧、有毒物质15、厌氧生物处理:低温性、高温性16、好氧生物处理:中温性17、PH :6.5-7.518、溶解氧:2-4mg/l第十二章活性污泥法1、活性污泥组成:有活性的微生物(Ma)、微生物自身氧化残留物(Me)、吸附在活性污泥上不能被微生物降解的有机物(Mi)、无机悬浮固体(Mii)2、污泥性状:茶褐色(曝气池中一般呈黑色(供氧不足或出现厌氧灰)、白色(供养过多,营养不足))3、活性污泥评价方法:生物相观察、MLSS和MLVSS(污泥浓度)、污泥沉降比、污泥体积指数4、混合液悬浮固体浓度(MLSS):单位体积混合液中活性污泥悬浮固体质量5、混合液挥发性悬浮固体浓度(MLVSS):混合液悬浮固体中有机物质量6、污泥沉降比:曝气混合液静止30min后沉淀污泥的体积分数、反映沉降性能7、污泥体积分数(SVI):单位质量干泥形成的湿污泥体积、判断沉降浓缩性能(>200差 20-150良好、过低污泥活性差)8、回流污泥目的:使曝气池内保持一定悬浮固体浓度,也就是保持一定微生物浓度9、污泥降解有机物过程(悬浮和胶体有机物越多吸附效果越好:吸附阶段(活性污泥比表面积大、表面上有糖类黏性物质稳定阶段(利用有机物)10、曝气池:推流式曝气池、完全混合曝气池、封闭环流反应池、序批式反应池(SBR)11、推流式曝气池:去除效率高稳定、抗冲击负荷能力弱、供养需氧矛盾12、完全混合曝气池:去除率低于推流式、抗冲击负荷能力强、节省动力、适宜处理高浓度工业废水、连续出水易形成污泥膨胀13、处理工业:传统推流式、渐减曝气法、高负荷曝气法、延时曝气法、吸附再生法(接触稳定法、吸附-生物降解工艺(AB法、序批式活性污泥法(SBR)、氧化钩(需二沉池、循环活性污泥工艺(CASS) 14、SBR:组成简单、耐冲击负荷、反应推动力大、运行操作灵活、沉降性能好、可计算机、自动控制15、生物除磷过程需设置好氧区厌氧区16、出水有机物浓度S=Ks(1+kd0/0(Yr-kd -117、污泥浓度X=YQ(So-Se0/V(1+Kd018、污泥浓度与进出水水质、污泥泥龄和动力学参数有关19、活性污泥三要素:引起吸附和氧化分解作用的微生物也就是活性污泥、污水中的有机物、溶解氧20、充氧和混合通过曝气设备实现21、气体传递原理:传质过程(扩散过程)、界面两侧物质浓度差为推动力22、提高氧转移速率:提高Kla值(紊流程度、总传质系数(微孔爆气)、增大气、液接触面积、提高Cs值(气相氧分压(纯氧曝气、深井曝气23、氧转移影响因素:污水水质、水温(降低利于氧转移)、氧分压24、曝气设备:鼓风曝气(过滤器、鼓风机、空气输配管系统、扩散器)、机械曝气(竖轴式、卧轴式)25、扩散器:微气泡扩散器(接触面积大氧利用率高、压力损失大多堵塞)、小气泡扩散器、中气泡扩散器、大气泡扩散器、剪切分散空气曝气器26、曝气设备性能指标:氧转移速率、充氧能力、氧利用率27、活性污泥过程设计:曝气池选型、剩余污泥量计算、需氧量计算28、有机物负荷法:活性污泥负荷、曝气池容积负荷29、曝气池实际上是一个反应器主要分为推流式、完全混合式、封闭环流式、序批式30、剩余污泥量计算:按污泥泥龄计算▷ X=VX/0、根据污泥产率系数或表观产率系数计算 (▷X=Y(So-SsQ-KaVX 、▷X=YobsQ(So-Se)31、需氧量设计计算:实际需氧量(O=aQSr-bVXv 、 O=Q(So-Se/0.68-1.42▷Xv32、生物脱氮工艺:三段生物脱氮工艺、前置缺氧好氧生物脱氮工艺、后置缺氧好氧生物脱氮工艺、Bardenpho生物脱氮工艺、同步硝化反硝化(SNdN)过程33、生物除磷工艺:A/O工艺、Phostrip除磷工艺(将生物除磷和化学除磷结合在一起)34、生物除NP工艺:AAO工艺(厌氧区释P)、缺氧区脱N、好氧区吸P去除BOD(沉降性能好)、改良Bardenpho工艺、UTC及改良UTC工艺、SBR工艺(同时脱NP)、耐受水利冲击负荷、操作灵活性好、静置沉淀可获得低SS出水35、生物除NP影响因素:环境因素、工艺因素、污水成分36、硝化只能在泥龄长的低负荷系统中进行37、污泥膨胀:混合液在1000ml量筒中沉淀30min,污泥体积膨胀、上清液减少。
化工厂循环水知识点
![化工厂循环水知识点](https://img.taocdn.com/s3/m/28df71ea32d4b14e852458fb770bf78a65293ac1.png)
化工厂循环水知识点化工厂循环水是指在化工生产过程中经过处理后再次使用的水。
循环水的使用可以大大节约水资源,减少化工废水的排放,对环境保护具有重要意义。
下面将介绍化工厂循环水的相关知识点。
一、循环水的重要性化工厂的生产过程中需要大量的水资源,而传统的处理方式是将废水排放到外部环境中,这不仅浪费了水资源,还对环境造成了污染。
循环水的使用可以将废水再次利用,减少废水的排放,达到节约资源、保护环境的目的。
二、循环水的处理工艺化工厂循环水的处理工艺包括预处理、生物处理、深度处理等环节。
1. 预处理:预处理是循环水处理的第一步,其目的是去除水中的悬浮物、沉淀物等杂质。
预处理的方法有沉淀、过滤、气浮等。
2. 生物处理:生物处理是指利用微生物对水中的有机物进行降解和转化的过程。
生物处理可以通过好氧生物处理和厌氧生物处理两种方式进行。
3. 深度处理:深度处理是对生物处理后的水进行进一步处理,以去除水中的微量有机物、无机盐和重金属等。
常见的深度处理方法有活性炭吸附、反渗透等。
三、循环水的回收利用经过处理的循环水可以回收利用在化工生产过程中。
循环水的回收利用可以通过以下几方面实现:1. 冷却循环:循环水可以用于化工设备的冷却,通过吸热后的循环水再次循环使用,达到节能的效果。
2. 注水循环:循环水可以用于化工设备的注水,替代新鲜水的使用,减少水资源的消耗。
3. 洗涤循环:循环水可以用于化工设备的洗涤,通过循环使用可以减少洗涤用水的消耗。
四、循环水的管理和维护化工厂循环水的管理和维护对于保证循环水质量的稳定和循环水系统的正常运行非常重要。
1. 定期监测:化工厂应定期对循环水进行监测,包括水质指标、微生物指标等,以及对循环水系统进行检查,及时发现和解决问题。
2. 水质调整:根据循环水的实际情况,采取相应的水质调整方法,保持循环水的稳定性和适用性。
3. 设备维护:定期对循环水处理设备进行检修和维护,确保设备的正常运行和处理效果。
污水处理厂资料分析环境工程原理知识点
![污水处理厂资料分析环境工程原理知识点](https://img.taocdn.com/s3/m/bf86ae347275a417866fb84ae45c3b3567ecdd98.png)
污水处理厂资料分析环境工程原理知识点
1、什么是生物污水处理法?
生物处理是利用微生物来吸咐、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。
现代的生物处理法,按作用微生物的不同,可分好氧氧化和厌氧还原两大类。
前者广泛用于处理城市污水和有机性工业废水。
好氧氧化应用较广包含着很多艺种工艺和构筑物。
生物膜法(包含生物过滤池、生物转盘)、生物接触氧化等多种工艺和构筑物。
活性污泥法和生物膜法都是人工生物处理方法。
此外还有农田和池塘的天然生物处理法,即灌溉田和生物塘。
生物处理成本低廉,因此是目前应用最广泛的污水处理方法。
2、什么是废水处理量或BOD5去除总量和处理质量?水处理量或BOD5去除总量:每日进入污水厂处理的总污水流量(以m3/d 计),可作为污水厂处理能力的一个指标。
每日去除BOD5的总量亦可作为污水厂处理能力的指标。
去除BOD5总量等于处理流量与进出水BOD5差值的乘积,以kg/d或t/d为单位。
处理质量:二级污水处理厂以出厂的BOD5与SS值作为处理质量指标。
按新制订的污水处理厂出水排放标准,二级污水处理厂出水BOD。
3、什么是pH值及其指示意义?pH表示污水的酸碱程度。
它是水中氢离子浓度倒数的对数值,其范围为0~14,pH值等于7,则水呈中性,小于7呈酸性,数值越小,其酸性越强,大于7呈碱性,数值越
大,其碱性越强。
4、什么是总固体(TS)?是指水样在100℃温下,在水浴锅上蒸发至干所留的总固体数量。
5、什么是悬浮固体(SS)?是指污水中能被滤器截留的固体物质数量。
厌氧塔的小知识
![厌氧塔的小知识](https://img.taocdn.com/s3/m/8b7226c2710abb68a98271fe910ef12d2af9a9fe.png)
厌氧塔的小知识什么是厌氧塔?厌氧塔是一种生物反应器,利用微生物代谢能力进行有机废水的处理。
它是厌氧菌生长的生物反应腔,通过添加底部的有机物质(如污泥)来促进生物反应。
此过程涉及各种微生物发酵和腐败活荷电子接受或转移,从而将污水中有机成分还原成水和气体。
厌氧塔主要用于高浓度的废水处理和有机废水的深度处理。
厌氧塔的种类厌氧反应器(Anoxic Reactor) ,通常包括普通厌氧反应器(UASB),加速厌氧池(AA)。
其中,普通厌氧池适合于高浓度废水的处理,加速厌氧池则适用于中低浓度废水的处理。
厌氧塔的原理厌氧反应器(Anoxic Reactor)的原理是,在缺氧状态下,厌氧菌通过吸收有机物,释放H+,在管道内形成一个强酸环境,以此环境作为它们微环境的基础,来生成尿素和甲烷等化合物并且发挥协同的作用。
厌氧塔的理论运行需要有三大要素:•微生物群落的合理设计和运行调整,厌氧反应器必须得到科学的微生物运转和控制。
•恰当的进出机制:进水方面,废水不可大量向厌氧反应器倾倒,反应器需要加强调节进水量,以便保持良好的可控性;机资源方面,除了厌氧菌,我们需要添加适量的培养菌(如O0-cocci),维持良好的水生平衡。
•合理的操作和控制:需要调考虑到各种因素,如 pH 值、温度等,维持厌氧反应器良好的运行。
厌氧反应的有益作用厌氧反应器可以使利用率高达95%。
这是由于微生物群体中的生态纵深的区分,不同类型的微生物在不同的情况下对于有机物的分解都有对应的能力,从而使得反应器的利用率高于传统的处理方式。
厌氧反应器的应用范围厌氧反应器适用于有机废水的处理,如酿造废水、造纸废水和化工废水。
其可将废水的 COD 值降低 ,达到环保和生态经济的双重目的并获取大量的有机肥料产生了非常积极的效果。
总结厌氧反应器作为一种处理有机废水的新型反应器,其腐败方式在能源治理和污染治理方面具有很强的应用前景和应用价值。
随着新型技术的不断发展完善,厌氧反应器的应用越来越广泛,能够提高污水处理设施效率,减少资源浪费,实现废水资源化、环境保护和可持续发展的目标。
厌氧污水处理
![厌氧污水处理](https://img.taocdn.com/s3/m/3d3fe0271fb91a37f111f18583d049649b660e98.png)
厌氧污水处理厌氧污水处理是一种常见的污水处理方法,通过在缺氧或无氧环境下进行微生物降解有机物质,达到净化水体的效果。
在厌氧污水处理过程中,有一些关键的技术和方法需要注意。
本文将从不同角度分析厌氧污水处理的重要性和方法。
一、厌氧污水处理的原理1.1 厌氧污水处理是通过微生物在缺氧或无氧环境下降解有机物质的过程。
1.2 厌氧微生物利用有机物质作为碳源,通过厌氧呼吸将有机物质转化为甲烷和二氧化碳。
1.3 厌氧污水处理可以有效去除水体中的有机物质和氮、磷等营养物质,净化水体。
二、厌氧污水处理的优势2.1 厌氧污水处理相比于好氧处理更适合处理高浓度有机废水。
2.2 厌氧污水处理过程中产生的甲烷可以作为能源利用,提高资源利用效率。
2.3 厌氧污水处理对氮、磷等营养物质的去除效果较好,有利于水体生态环境的改善。
三、厌氧污水处理的关键技术3.1 控制好缺氧或无氧环境是厌氧污水处理的关键,需要合理设计反应器结构。
3.2 选择适合的厌氧微生物菌种,保证微生物的活性和生长。
3.3 厌氧污水处理过程中需要监测和调控PH值、温度等参数,保证处理效果。
四、厌氧污水处理的应用领域4.1 厌氧污水处理广泛应用于城市污水处理厂、工业废水处理等领域。
4.2 在一些偏远地区或资源匮乏地区,厌氧污水处理可以作为一种有效的废水处理方法。
4.3 厌氧污水处理也可以与其他污水处理方法结合使用,提高处理效率。
五、厌氧污水处理的发展趋势5.1 随着环保意识的提高,厌氧污水处理技术将得到更广泛的应用。
5.2 未来厌氧污水处理技术可能会向着高效、节能、环保的方向发展。
5.3 厌氧污水处理技术的不断创新将推动污水处理行业的发展,为环境保护作出更大的贡献。
综上所述,厌氧污水处理是一种重要的污水处理方法,具有许多优势和应用前景。
通过不断的技术创新和实践经验总结,厌氧污水处理技术将为环境保护和资源利用做出更大的贡献。
CSTR厌氧发酵罐工作基础学习知识原理
![CSTR厌氧发酵罐工作基础学习知识原理](https://img.taocdn.com/s3/m/00c66cf068dc5022aaea998fcc22bcd126ff422d.png)
CSTR厌氧发酵罐工作基础学习知识原理CSTR(Continuous Stirred Tank Reactor)厌氧发酵罐是一种连续搅拌型反应器,广泛应用于生物质转化、生物能源生产和废弃物处理等领域。
它的原理是利用微生物在缺氧条件下进行代谢,将有机废弃物转化为产气、产酒精等有用产品。
1.搅拌机械:CSTR厌氧发酵罐内设置了搅拌机械,通过机械搅拌使发酵罐内的微生物和废弃物充分混合,提高反应效率。
搅拌还有助于维持反应器内的温度均匀。
2.类反应器结构:CSTR厌氧发酵罐采用了连续流动的方式,将废弃物和微生物持续输入,产物持续流出,保持了恒定的反应体积和反应时间。
这种连续流动的结构可以提高反应效率,稳定运行。
3.温度控制:CSTR厌氧发酵罐内的反应需要在适宜的温度下进行,常见的温度范围为35-40℃。
一般通过外部加热或制冷装置来控制反应器的温度,确保微生物代谢的正常进行。
4.pH控制:CSTR厌氧发酵罐内的反应需要在适宜的pH范围内进行,常见的pH范围为6.5-7.5、过高或过低的pH值会抑制微生物的生长和代谢,影响反应效果。
可通过加入酸碱溶液来控制反应器内的pH值。
5.气体排放与收集:厌氧发酵过程中产生的气体,如甲烷、二氧化碳等,需要及时排放和收集。
排放通常通过气体排放管道进行,收集则通过气体收集设备,如气包或气体分析仪器进行。
收集的气体可以用于能量转换或其他化学反应。
1.连续操作:CSTR厌氧发酵罐采用了连续流动的结构,可以进行连续操作,大大提高了生产效率。
同时,连续流动结构还能够稳定反应条件,减少不均匀反应带来的问题。
2.反应效率高:CSTR厌氧发酵罐内设置了搅拌机械,能够使废弃物和微生物充分混合,提高反应效率。
同时,由于反应器内的体积固定,所以反应时间也是恒定的,进一步提高了反应效率。
3.应用广泛:CSTR厌氧发酵罐可以处理多种有机废弃物,如农业废弃物、食品废料、城市垃圾等。
通过将这些有机废弃物转化为燃气、肥料等有用产品,同时还可以减少环境污染,实现资源的再利用。
厌氧生物处理的基本原理
![厌氧生物处理的基本原理](https://img.taocdn.com/s3/m/ba975d07f6ec4afe04a1b0717fd5360cba1a8dce.png)
厌氧生物处理的基本原理
厌氧生物处理是一种利用厌氧微生物降解有机废水的生物处理技术。
厌氧生物处理的基本原理是在缺氧或无氧条件下,利用厌氧微生物对有机废水中的有机物进行降解,产生甲烷等气体和沼气,从而达到净化水质的目的。
首先,厌氧生物处理的基本原理是利用厌氧微生物。
厌氧微生物是一类能在缺氧或无氧条件下生存和繁殖的微生物,它们能够利用有机废水中的有机物作为碳源进行代谢活动。
这些厌氧微生物主要包括厌氧菌、产甲烷菌等。
其次,厌氧生物处理的基本原理是利用厌氧微生物对有机废水中的有机物进行降解。
在厌氧条件下,有机废水中的有机物经过厌氧微生物的作用,会被降解成简单的有机物、甲烷等气体和沼气。
这些产物对水质没有污染性,从而达到净化水质的目的。
最后,厌氧生物处理的基本原理是产生甲烷等气体和沼气。
在厌氧生物处理过程中,厌氧微生物降解有机废水中的有机物时,会产生大量的甲烷等气体和沼气。
这些气体可以被收集利用,既能减少污染物的排放,又能够转化成可再生能源,具有双重的环保和经
济效益。
总之,厌氧生物处理的基本原理是利用厌氧微生物对有机废水中的有机物进行降解,产生甲烷等气体和沼气,从而达到净化水质的目的。
这种生物处理技术在污水处理和有机废水处理中具有重要的应用价值,对于改善环境质量、减少污染物排放、提高资源利用率具有重要意义。
厌氧的基本原理及影响其效果的因素知识讲解
![厌氧的基本原理及影响其效果的因素知识讲解](https://img.taocdn.com/s3/m/939db9ad0875f46527d3240c844769eae009a31b.png)
厌氧的基本原理及影响其效果的因素知识讲解厌氧是一种生物过程,其主要在缺氧条件下进行。
与有氧代谢相比,厌氧代谢不依赖氧气来产生能量,而是通过其他物质来进行。
在厌氧环境中,有机化合物通常被分解为简单的无机分子,产生能量。
厌氧代谢分为多种类型,下面将重点讨论两种最常见的厌氧过程:乳酸发酵和乙醇发酵。
1.乳酸发酵:乳酸发酵主要由乳酸菌进行。
该过程中,葡萄糖被分解为两个乳酸分子,并释放出少量能量。
这是动物肌肉在缺氧状态下产生乳酸的主要途径。
乳酸发酵的方程式如下:C6H12O6→2C3H6O32.乙醇发酵:乙醇发酵主要由酿酒酵母等微生物进行。
这个过程中,葡萄糖被分解为两个乙醇分子和两个二氧化碳分子,并释放出一定的能量。
乙醇发酵的方程式如下:C6H12O6→2C2H5OH+2CO2厌氧代谢的效果受到多种因素的影响,包括以下几个方面:1.缺氧程度:厌氧代谢只有在氧气非常有限或完全缺乏的情况下才会发生。
缺氧程度越高,厌氧过程进行得越剧烈。
2.营养物质的可用性:厌氧代谢所需的有机物质也会影响其效果。
在厌氧条件下,微生物通常需要可利用的有机物作为能源,进行发酵过程。
不同的有机物质可能产生不同的发酵产物和能量产量。
3.微生物种类:不同的微生物对厌氧代谢有不同的适应性。
不同的菌株可能具有不同的发酵代谢能力,产生不同的产物和能量产量。
4.温度和pH值:适宜的温度和pH值也对厌氧代谢的效果有影响。
过高或过低的温度和pH值可能抑制微生物的活性,从而降低厌氧代谢的效果。
5.离子浓度:厌氧过程中的离子浓度,如钙离子和钠离子,也可能影响厌氧代谢效果。
适量的离子浓度可促进酵母和细菌等微生物的活性。
总的来说,厌氧代谢是一种在缺氧条件下进行的生物过程,其效果受到缺氧程度、营养物质的可用性、微生物种类、温度和pH值以及离子浓度等因素的影响。
深入了解这些因素对于应用厌氧代谢进行废物处理、能源生产等方面具有重要意义。
厌氧生物知识点总结
![厌氧生物知识点总结](https://img.taocdn.com/s3/m/4bc1a80ea9956bec0975f46527d3240c8447a1d4.png)
厌氧生物知识点总结厌氧生物是指一类不需要氧气即可生存的微生物,它们在生物学和生态学中起着重要的作用。
这些微生物可以在没有氧气的环境中生存和繁殖,它们通常生活在深海、泥沼、肠道等缺氧或无氧的环境中。
厌氧生物包括细菌、古细菌、真菌等,它们可以通过发酵、硝化还原等代谢方式生存。
厌氧生物的特点1. 不需要氧气:厌氧生物不需要氧气进行代谢和生存,它们可以在缺氧或无氧的环境中生存。
2. 代谢方式:厌氧生物可以通过发酵、硝化还原等不同的代谢方式进行能量获取和有机物合成。
3. 分布广泛:厌氧生物可以在土壤、淤泥、水体中生存,它们在各种环境中都有发现。
4. 重要性:厌氧生物在环境中的有机质分解、养殖业、医学等领域都有着重要的作用。
厌氧生物的分类根据其代谢方式和生物学特点,厌氧生物可以分为不同的类别:1. 厌氧细菌:厌氧细菌是厌氧生物中最为常见和丰富的一类,它们可以利用有机物进行发酵产生能量,也可以利用硝态氮化合物进行还原代谢。
2. 厌氧古细菌:厌氧古细菌是一类生活在极端环境中的微生物,它们可以在高温、高压、酸碱度极端的环境中进行生存和繁殖。
3. 厌氧真菌:厌氧真菌是一类生活在无氧环境中的真菌,它们可以在泥炭沼泽、深海底部等缺氧环境中进行生存。
厌氧生物的代谢方式厌氧生物可以利用不同的代谢方式进行生存和繁殖,其中最常见的代谢方式包括:1. 发酵:许多厌氧细菌和真菌可以利用有机物进行发酵代谢,产生能量和有机物。
2. 硝化还原:厌氧细菌可以利用硝态氮化合物进行还原代谢,从而产生能量。
3. 甲烷生成:一些厌氧细菌可以利用有机物产生甲烷,这是一种重要的生物地球化学过程。
4. 硫化氢生成:一些厌氧细菌可以利用硫化合物进行还原代谢,产生硫化氢。
厌氧生物在环境中的作用厌氧生物在环境中有着重要的作用,它们可以参与有机质分解、生物地球化学循环等过程,影响着环境中的能量流动和物质循环,对生态系统的稳定性和健康起着重要的作用。
厌氧生物还可以用于污水处理、沉积物降解、有机废弃物处理等方面,对环境保护和资源利用具有重要意义。
水处理微生物知识点总结
![水处理微生物知识点总结](https://img.taocdn.com/s3/m/59c3ea8d8ad63186bceb19e8b8f67c1cfad6ee1e.png)
水处理微生物知识点总结水处理是指对水进行物理、化学、生物等多种处理工艺,以使水质达到指定的标准,适用于不同的用途,如饮用、农业灌溉、工业生产等。
微生物在水处理中起着重要的作用,下面是水处理微生物的知识点总结。
1.微生物的种类:水中常见的微生物主要包括细菌、病毒、真菌和藻类等。
其中,细菌是水体中最常见的微生物,而病毒则是最小的微生物,通常需要借助电子显微镜才能观察到。
2.微生物的生理特性:不同类型的微生物具有不同的生理特性。
例如,细菌可以通过分解与生长,改变水体中的有机物含量;病毒则依赖宿主生存,且在水中具有较长时间的存活能力;真菌在水中可破坏有机物质和重金属等。
3.微生物对水质的影响:微生物在水体中的存在和繁殖会对水质产生一定的影响,包括有机物的降解、异味异色的产生、水质恶化等。
一些微生物还可能造成水中的传染病,对人类的健康造成威胁。
因此,水处理过程中需要针对不同的微生物进行相应的处理。
4.微生物的水处理应用:微生物在水处理中有着广泛的应用,主要包括以下几个方面:-生物膜技术:通过利用微生物的附着生长特性,形成生物膜来去除水中的有机物和微生物。
常见的生物膜技术包括生物滤池、MBR等。
-生物接触氧化法:利用微生物降解有机物的能力,通过使水与生物膜接触,利用微生物的附着和代谢能力去除有机物。
-活性污泥法:通过混合微生物菌群的降解作用对水体中的有机污染物进行处理。
-厌氧处理:利用厌氧微生物在无氧环境下降解有机物质,产生甲烷等可用作能源的产物。
5.微生物监测与控制:为了保障水质安全,需要对水处理过程中的微生物进行监测和控制。
常用的微生物监测方法包括培养法、PCR法、流式细胞仪等。
对于微生物的控制,可以通过调节水的处理工艺和添加适当的消毒剂等方式进行。
6.水处理微生物的抗药性问题:近年来,一些微生物在水处理过程中出现了抗药性的问题,使得水处理变得更加困难。
抗药性微生物的出现主要是由于滥用抗生素和不当处理水的原因所导致的。
水污染控制工程知识点总结
![水污染控制工程知识点总结](https://img.taocdn.com/s3/m/9e3c7369453610661ed9f463.png)
1 污水污染指标中,固体物质的分类水中所有残渣的总和称为总固体(TS);总固体=溶解性固体(DS)+悬浮固体(SS);水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS);固体残渣根据挥发性能可分为挥发性固体(VS)+固定性固体(FS);600℃温度下灼烧,挥发掉的量即为挥发性固体(VS),灼烧残渣则是固定性固体(FS)2 BOD COD BOD5TOC TOD生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)5日生化需氧量(BOD5):测定有机物第一阶段的生化需氧量至少需要20天时间,在实际应用中周期太长,故目前以5天作为测定生化需氧量的标准时间(BOD5=70%BOD20)化学需氧量(COD):化学需氧量是用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量(mg/L) (用高锰酸钾作氧化剂测得CODMn/OC,用重铬酸钾作氧化剂测得CODCr/COD)总有机碳(TOC):包括水样中所有有机污染物的含碳量总需氧量(TOD):当有机物被氧化时。
碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量3 水体自净作用的定义和净化机制定义:是指河水中的污染物质在河水向下流动中浓度自然降低的现象机制:(1)物理净化:稀释、扩散、沉淀或挥发(2)化学净化:氧化、还原、分解(3)生物净化:水中微生物对有机物的氧化分解作用4 受到污水污染的河流,根据水体中BOD5和DO曲线的关系,可以分为哪几个区域(氧垂曲线)污染带:BOD、DO均下降显著阶段5第十章污水的物理处理1 格栅和筛网的作用和去除对象格栅:格栅由一组或数组平行的金属栅条、塑料齿钩或金属筛网、框架及相关装置组成,倾斜安装在污水渠道、泵房集水井的进口处或污水处理厂的前端,用来截留污水中较粗大漂浮物和悬浮物筛网:应用于小型污水处理系统,主要用于短小纤维回收(振动筛网、水力筛网) 2 格栅和筛网的分类栅条净间隙分类:粗格栅50~100mm,中格栅10~40mm,细格栅~10mm,超细格栅~1mm格栅形状分类:平面格栅,曲面格栅清渣方式分类:人工清渣、机械清渣3 沉淀法在污水处理厂中,主要用于哪几个方面①污水处理系统的预处理→沉砂池:预处理手段用于去除污水中易沉降的无机性颗粒物②污水的初级处理→初沉池:去除污水中悬浮固体,同时去除一部分呈悬浮状态的有机物③生物处理后的固液分离→二沉池:分离悬浮生长生物处理工艺中的活性污泥,生物膜法工艺中脱落的生物膜④污泥浓缩池→污泥浓缩池:将污泥一起进一步浓缩,以减少体积4 沉淀的类型和各种类型的特点及应用①自由沉淀(悬浮固体浓度不高):沉淀过程中悬浮颗粒互不干扰,各自独立完成沉淀过程,颗粒的沉淀轨迹呈直线。
预防疾控微生物检验技术:厌氧性细菌知识学习
![预防疾控微生物检验技术:厌氧性细菌知识学习](https://img.taocdn.com/s3/m/0373999a27fff705cc1755270722192e453658cd.png)
预防疾控微生物检验技术:厌氧性细菌知识学习1、单选在人体的肠道正常菌群中,占绝对优势的是()A.大肠杆菌B.无芽胞厌氧菌C.产气杆菌D.白色念珠菌E.肺炎杆菌正确答案:B2、单选关“艰难梭菌所致(江南博哥)假膜性肠炎”的叙述,哪一项是错误的()A.为二重感染B.应停用原来抗生素C.可注射抗毒素D.可口服微生态制剂E.首选甲硝唑,如无效换用万古霉素正确答案:C3、单选下列细菌不形成芽胞的是()A.破伤风梭菌B.白喉棒状杆菌C.艰难梭菌D.炭疽芽孢杆菌E.肉毒梭菌正确答案:B4、单选培养时能产生汹涌发酵现象的细菌是()A.脆弱类杆菌B.产黑色素杆菌C.产气荚膜梭菌D.艰难梭菌E.破伤风梭菌正确答案:C5、单选关于产气荚膜梭菌哪项是错误的()A.为革兰阳性粗大梭菌B.病变组织水肿、触之有"捻发音"C.培养时有"汹涌发酵"现象D.不引起食物中毒E.在机体内可形成荚膜正确答案:D6、单选病灶多在深部,造成脓汁呈灰黑色或乳白色、泡沫状、奇臭等特征的细菌是()A.金黄色葡萄球菌B.乙型溶血型链球菌C.无芽胞厌氧菌D.产气荚膜梭菌E.淋球菌正确答案:C7、单选疱肉培养基可用来培养()A.枯草芽孢杆菌B.炭疽芽孢杆菌C.百日咳鲍特菌D.产气荚膜梭菌E.流感嗜血杆菌正确答案:D8、单选既有芽胞又有鞭毛结构的细菌是()A.大肠杆菌B.炭疽杆菌C.破伤风梭菌D.产气荚膜梭菌E.枯草杆菌正确答案:C9、单选“汹涌发酵”试验是用于鉴别()A.破伤风梭菌B.肉毒梭菌C.产气荚膜梭菌D.炭疽杆菌E.艰难梭菌正确答案:C10、单选分离培养无芽胞厌氧菌时,应注意的事项中不包括()A.从感染中心处采取,并避免正常菌群的污染B.标本采取后应立即放入厌氧标本瓶中C.迅速送检D.通常接种在牛心脑浸液为基础的血平板E.厌氧培养24小时正确答案:E参考解析:标本采集与送检是否正确,常直接关系到病原菌检出的成败。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厌氧生物处理知识
水解阶段——含有蛋白质水解、碳水化合物水解和脂类水解。
发酵酸化阶段——包括氨基酸和糖类的厌氧氧化,以及较高级脂肪酸与醇类的厌氧氧化。
产乙酸阶段——含有从中间产物中形成乙酸和氧气,以及氢气和二氧化碳形成乙酸。
产甲烷阶段——包括从乙酸形成甲烷,以及从氧、二氧化碳形成甲烷。
废水中有硫酸盐时,还会有硫酸盐还原过程。
工艺控制条件:
温度:按三种不同嗜温厌氧菌(嗜温5-20℃嗜温20-42℃嗜温42-75℃)工程上分为低温厌氧(15-20℃)、中温厌氧(30-35℃)、高温厌氧(50-55℃)三种。
PH:厌氧水解酸化工艺,对PH要求范围较松,即产酸菌的PH应控制4-7℃范围内;完全厌氧反应则应严格控制PH,即产甲烷反应控制范围6.5-8.0,最佳范围为6.8-7.2,PH低于6.3或高于7.8,甲烷化速降低。
氧化还原电位:水解阶段氧化还原电位为-100~+100mv,产甲烷阶段的最优氧化还原电位为-150~-400mv。
因此,应控制进水带入的氧的含量,不能因以对厌氧反应器造成不利影响。
营养物:厌氧反应池营养物比例为C:N:P=(350-500):5:1。
有毒有害物:抑制和影响厌氧反应的有害物有三种:无机物:有氨、无机硫化物、盐类、重金属等,特别硫酸盐和硫化物抑制作用最为严重;有机化合物:非极性有机化合物,含挥发性脂肪酸(VFA)、非极性酚化合物、单宁类化合物、芬香族氨基酸、焦糖化合物等五类。
生物异型化合物:含氯化烃、甲醛、氰化物、洗涤剂、抗菌素等。
问题与解决方法
活性污泥系统知识
活性污泥微生物及其在系统中作用:
细菌:占大多数,生殖速率高,世代时间性20-30分钟。
真菌:丝状菌,控制不当会导致污泥膨胀。
原生动物:鞭毛虫、肉足虫、纤毛虫,作用:捕食游离细菌,使水进一步净化。
活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。
原生动物作为活性污泥处理系统的指示性生物。
后生动物:主要指轮虫,在活性污泥处理系统中很少出现。
作用:吞食原生动物,使水进一步净化。
存在完全氧化型的延时曝气补充中,后生动物是水质非常稳定的标志。
活性污泥微生物的增长
适应期(延迟期,调整期):细菌总量不变,但有质的变化对数增殖期增殖旺盛期或等速增殖期:细菌总数迅速增加,增殖表速率最大,增殖速率大于衰亡速率。
减速增殖期(稳定期或平衡期):细菌总数达最大,增殖速率等于衰亡速率。
内源呼吸期(衰亡期):细菌总数不断减小,增殖速率小于衷亡速率,微生物的增殖要受到有机物含量的控制。
培菌方法
(1)所谓活性污泥培养,就是为活性污泥的微生物提供一定的生长繁殖条件,即营养物,溶解氧,适宜温度和酸碱度。
营养物:即水中碳、氮、磷之比应保持100∶5∶1。
溶解氧:就好氧微生物而言,环境溶解氧大于0.3mg/l,正常代谢活动已经足够。
但因污泥以絮体形式存在于曝气池中,以直径500μm活性污泥絮粒而言,周围溶解氧浓度2mg/l 时,絮粒中心已低于0.1mg/l,抑制了好氧菌生长,所以曝气池溶解氧浓度常需高于3~
5mg/l,常按5~10mg/l控制。
调试一般认为,曝气池出口处溶解氧控制在2mg/l较为适宜。
温度:任何一种细菌都有一个最适生长温度,随温度上升,细菌生长加速,但有一个最低和最高生长温度范围,一般为10~45°C,适宜温度为15~35°C,此范围内温度变化对运行影响不大。
酸碱度:一般PH为6~9。
特殊时,进水最高可为PH9~10.5,超过上述规定值时,应加酸碱调节。
(2)培养方法
生活污水培菌法:在温暖季节,先使曝气池充满生活污水,闷曝(即曝气而不进污水)数十小时后,即可开始进水。
引进水量由小到大逐渐调节,连续运行数天即可见活性污泥出现,并逐渐增多。
为加快培养进程,在培菌初期投加一些浓质粪便水或米泔水等,以提高营养物浓度。
特别注意,培菌时期(尤其初期)由于污泥尚未大量形成,污泥浓度低,故应控制曝气量,应大大低于正常期曝气量。
干泥接种培菌法:最好取水质相同已正常运行的污水系统脱水后的干污泥作菌种源进行接种培养。
一般按曝气池总溶积1%的干泥量,加适量水捣碎,然后再加适量工业废水和浓粪便水。
按上述的方法培菌,污泥即可很快形成并增加至所需浓度。
数级扩大培菌法:根据微生物生长繁殖快的特点,仿照发酵工业中菌种→种子罐→发酵罐数级扩大培菌工艺,分级扩大培菌。
如某工程设计为三级曝气池,此时可先在一个池中培菌,在少量接种条件下,在一个曝气池内培菌,成功后直接扩大至二三级。
工业废水直接培菌法:某些工业废水,如罐头食品、豆制品、肉类加工废水,可直接培菌;另一类工业废水,营养成分尚全,但浓度不够,需补充营养物,以加快培养进程。
所加营养物品常有:淀粉浆料、食堂米泔水、面汤水(碳源);或尿素、硫氨、氨水(氮源)等,具体情况应按不同水质而定。
有毒或难降解工业废水培菌:有毒或难降解工业废水,只能先以生活污水培菌,然后再将工业废水逐步引入,逐步驯化的方式进行。
直接引进种菌种培菌:有些特殊水质菌种难于培养,还可利用当地科研力量,利用专业的工业微生物研究所培养菌种后再接种培养,如PVA(聚乙烯醇)好氧消化即有专门好氧菌。
此法,投资大,周期长,只有特殊情况才用。
(3)驯化:在培菌阶段后期,将生活污水和外加营养物量,逐渐减少,工业废水比例逐渐增加,最后全部转为受纳工业废水,这个过程称为驯化。
理论上讲,细菌对有机物分解必须有酶参与,而且每种酶都要有足够数量。
驯化时,每变化一次配比时,需要保持数天,待运行稳定后(指污泥浓度未减少,处理效果正常),才可再次变动配比,直至驯化结束。
运行管理
(1)二沉池观察污泥状态:主要观察二沉池泥面高低、上清液透明程度,有无漂泥,漂泥粒大小等。
上清液清澈透明----运行正常,污泥状态良好;上清液混浊----负荷高,污泥对有机物氧化、分解不彻底;泥面上升----污泥膨胀,污泥沉降性差;污泥成层上浮----污泥中毒;大块污泥上浮----沉淀池局部厌氧,导致污泥腐败;细小污泥漂浮----水温过高、C/N不适、营养不足等原因导致污泥解絮。
(2)曝气池观察:曝气池全面积内应为均匀细气泡翻腾,污泥负荷适当。
运行正常时,泡沫量少,泡沫外呈新鲜乳白色泡沫。
曝气池中有成团气泡上升,表明液面下有曝气管或气孔堵塞;液面翻腾不均匀,说明有死角;污泥负荷高,水质差,泡沫多;泡沫呈白色,且数量多,说明水中洗涤剂多;泡沫呈茶色、灰色说明泥龄长或污泥被打破吸附在泡沫上,应增加排泥;泡沫呈其它颜色,水中有染料类物质或发色物污染;负荷过高,有机物分解不完全,气泡较粘,不易破碎。
(3)污泥观察:生化处理中除要求污泥有很强的“活性“,除具有很强氧化分解有机物能力外,还要求有良好沉降凝聚性能,使水经二沉池后彻底进行“泥”(污泥)“水”(出水)分离。
污泥沉降性SV30是指曝气池混合液静止30min后污泥所占体积,体积少,沉降性好,城市污水厂SV30常在15-30%之间。
污泥沉降性能与絮粒直径大小有关,直径大沉降性好,反之亦然。
污泥沉降性还与污泥中丝状菌数量有关,数量多沉降性差,数量少沉降性好。
污泥沉降性能还与其它几个指标有关,它们是污泥体积指数(SVI),混合液悬浮物浓度(MLSS)、混合液挥发性悬浮浓度(MLVSS)、出水悬浮物(ESS)等。
测定水质指标来指导运行:BOD/COD之值是衡量生化性重要指标,BOD/COD≥0.25表示可生化性好,BOD/COD≤0.1表示生化性差。
进出水BOD/COD变化不大,BOD也高,表示系统运行不正常;反之,出水的BOD/COD比进水BOD/COD下降快,说明运行正常。
出水悬浮物(ESS)高,ESS≥30mg/l时则表示污泥沉降性不好,应找原因纠正,ES S≤30mg/l则表示污泥沉降性能良好。
(4)曝气池控制主要因素:
1.维持曝气池合适的溶解氧,一般控制1-4mg/l,正常状态下监测曝气池出水端
DO2mg/l为宜。
2.保持水中合适的营养比,C(BOD):N:P=100:5:1
3.维持系统中污泥的合适数量,控制污泥回流比,依据不同运行方式,回流比在0-100%之间,一般不少于30-50%。
污泥形状异常及分析
部分设备操作规程
1、风机房操作规程
2、气浮设备操作规程
3、厢式压滤机操作规程
4、加药间操作规程
5、泵房操作规程
6、混凝和混凝剂常用无机盐类混凝剂
常用有机合成高分子混凝剂及天然絮凝剂
常用助凝剂
单螺杆泵操作规程。